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STEADY STATES OF THE REACTION-DIFFUSION EQUATIONS.
PART I: QUESTIONS OF EXISTENCE

AND CONTINUITY OF SOLUTION BRANCHES

J. G. BURNELL1, A. A. LACEY1-2 and G. C. WAKE1

(Received 24 May 1982)

Abstract

When material is undergoing an exothermic chemical reaction which is sustained by the
diffusion of a reactant, the steady-state regime is governed by a coupled pair of nonlinear
elliptic partial differential equations with linear boundary conditions. In this paper we
consider questions of existence of solutions to these equations. It is shown that, with the
exception of the special case in which the mass-transfer is uninhibited on the boundary, a
solution always exists, whereas in this special case a solution exists only for sufficiently
low values of the exothermicity. Bounds are established for the solutions and the
occurrence of minimal and maximal solutions is shown for some cases. Finally the
behaviour of the solution set with respect to one of the parameters is studied.

1. Introduction

Consider a first-order exothermic reaction taking place within a porous medium
where we assume that the concentration of just one diffusing reactant, together
with temperature, controls the rate of reaction. Any convection effects, forced or
natural, are neglected. Taking the Arrhenius reaction rate law, this system can be
modelled by the coupled parabolic equations

C-. = <f>HAcexp(-E/RT) + kV2T, (la)
dt

—. = -Acexp(-E/RT) + Dv2T, (lb)
3/

1 Mathematics Department, Victoria University, Private Bag, Wellington, New Zealand. Please address
all correspondence to Dr. Wake at this address.
2Present address: Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.
© Copyright Australian Mathematical Society 1983

374

https://doi.org/10.1017/S0334270000003751 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003751


[21 The reaction-diffusion equations. I 375

in the region fi and t > 0. Here i is time, c is the concentration of the diffusing
reactant in pores, Cp is the volumetric specific heat, E is the activation energy of
the reaction, R is the universal gas constant, T is the local temperature, <j> is the
porosity of the medium, H is the exothermicity per unit volume, A is a rate
constant (frequency factor), k is the thermal conductivity and D is the diffusivity
of the reactant c. We shall assume that all these quantities are constant except
that c and T depend on position and t. Also we note that the values of Cp, A, k
are effective values with specific heat and thermal conductivity taking different
values in the matrix and the fluid-occupied spaces, while the reaction occurs only
on the interfaces between the solid matrix and the fluid. Equations of the form of
(1) are derived in Aris [2, Chapter 1].

The reacting region Cl is assumed to be surrounded by an infinite reservoir
containing a fixed concentration ca of the controlling reactant and which is
maintained at a constant ambient temperature Ta. The boundary conditions on
the surface 3fi are

g - o c ( r - 7 ; ) or T=Ta, (2a)

g- <x (c — ca) or c = ca. (2b)

Such a system arises from the diffusion of oxygen into a tightly packed material
such as wool or coal, with c being the concentration of oxygen; or the diffusion of
some nutrient with concentration c into a biological cell.

The systems of equations (1), (2) can be nondimensionalised to yield the
approximate model

du/dt — V2M + A(l + o)exp u in fi, / > 0, (3a)

L(dv/dt) = v2v-a\(\ +v)e\pu infi, t > 0, (3b)

du/dn + fiu = 0 on 3S2, (4a)

dv/dn + vv = 0 on 3S2. (4b)

The equations (3a), (3b) are approximations to the true model because of the
Frank-Kamenetskii approximation

( F \ I F \ i n
— ——; I = exp l — l e x p l i

RTI \ RTa I \ 1 + su

where u = E(T — Ta)/RT* is a dimensionless temperature excess and e —
RTa/E « 1. Also we have v = c/ca — 1 is a dimensionless reactant concentra-
tion, t = kt/d2Cp is a dimensionless time, d is a characteristic length of fl such as
half of the diameter, L — k/DCp is the Lewis number,

X = <}>Ed2Hcaexp(-E/RTa)/kRT2
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is the Frank-Kamenetskii parameter, a = kRT^/HDEca, /J is the heat-transfer
coefficient (Biot number) on the boundary, v is the mass-transfer coefficient on
the boundary, and fi is the region Cl in the nondimensional spatial coordinates. In
this paper we shall assume that the constants X, a, ft, v are positive real numbers
or satisfy the following special cases:

(i) X = 0, that is, no heat produced (H = 0);
(ii) a — 0, that is, infinite diffusion of reactant (D = oo) in which case v = 0

and the system (3) reduces to just one equation, the classical case;
(iii) n—oo, that is, infinite surface heat-transfer in which case the boundary

condition (4a) becomes the Dirichlet condition u — 0;
(iv) v — oo, that is, infinite surface mass-transfer with the condition (4b)

becoming v = 0.
Our purpose here is to investigate the steady-states of the system (3) and

related systems (such as when e ¥= 0), that is, when du/dt = dv/dt = 0 in (3). We
shall investigate conditions under which such steady-states exist and, if so, how
many steady solutions do exist. These questions are related to the question of
'critical behaviour' of these systems where large discontinuous changes in the
steady-state regime occur for small changes in the parameters. The steady system
of (3) is

V2u + A(l + u)expw = 0 in £2, (5a)

V2u - a \ ( l + u)exp« = 0 in S, (5b)

with the boundary conditions (4) holding on the boundary 9fi.
A primary motivation of this study occurs from the special case of a = 0 in

which case v = 0 and so (3) reduces to

9«/3/= V2u + Xeu infl, (6)

with the condition (4a) on the boundary. It has been found previously (Keller and
Cohen [6], Fujita [4]) that there exists a value of X, say X*, such that there is a
steady solution of (6), (4a) for \ < X* but not for X > X*. (We then say (0, X*) is
the spectrum of the problem.) Moreover for X < X* if the initial condition is small
enough then u tends to one of the steady-state solutions (Fujita [5], Sattinger [11]),
while for X > X*, u "blows-up", that is, u becomes infinite in either infinite or
finite time (Fujita [4], Lacey [7]). It is clear that for, this special case at least, there
is a "critical" value of X, namely X*.

We shall consider the more general problem (4), (5) to determine if there is a
similar number X*, that is, a value such that a solution to the equations exists if
X < X*, but not for X > X*. It transpires that for a > 0 there is one special case of
which a finite value of X* exists, but for all other cases a solution to equations (4),
(5) exists for all values of X. Somewhat similar to the quantity X* is a value Xcr (a
critical value) of X at which there is a turning point in the ((«, v), X) bifurcation
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diagram. At this point there may be a jump in the minimal solution (if such a
solution exists) as A passes through Xcr. This change in the solution to (4), (5) is
liable to correspond to a sudden alteration to the behaviour of the parabolic
equation. Again this is suggested by the behaviour of the solutions of the single
time-dependent equation (6) which approach the minimal steady-state solution if
the initial data is small enough (Sattinger [11]).

We shall frequently replace in (5) the specific function (1 + v)e" with a more
general function/, defined on R2, which is required to satisfy:

(i) there is some o0 < 0 such that/(tt, v0) = 0 for all u G R;
(ii)/(«, •): y Y-* f(u, y) and/ ( - , v): x \->f(x, v) are monotonic increasing for

all M G R and v > vQ respectively;

Accordingly, (5) is then replaced by the system

V2« + \f(u, v) = 0 in £2, (7a)

V2v-Xaf(u,v) = 0 infi, (7b)

together with the same boundary conditions (4) on 9fl. The above case covers the
situation when the Frank-Kamenetskii approximation is not made (e ¥= 0) in
equations (3) and the exact formulation of equations (1) in dimensionless coordi-
nates has

/(l+eu)). (8)

We shall frequently have occasion to use alternative formulations. In particular,
if we let

h = au + v (9)

and substitute for either u in terms of v and h or v in terms of u and h, we obtain

V2t> - Aa/((/i - v)/a, v) = 0 in fi,

-—h »»t> = 0 on 3fi,
on j

V2A = 0 infl, -r—I- u/i = (u — v)v on 9fi, (10b)
O/J

or

V 2 M + A / ( « , ^ — aw) = 0 in'fi, |

9M ( l l a )
-—\- au = 0 on 3fl,
0/3 J

V2/i = 0 in f i , -^—I-J»A = a(>» — /H)M on 9fl. (11 b)
an
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We note that in these forms of the problem, (10) and (11), the boundary
conditions for h change if /i or c is infinite. In (10b) if n = oo > v we have h = au
on 3fi; if v = oo > n we have h — v on 3J2; in both (10b) and (1 lb), and so h = 0
in fl.

Throughout this paper we shall take £2 as an open bounded subset R" (usually
n = 3) with a smooth boundary 3Q. In particular we require that 3fi is an n — 1
dimensional C2+° manifold, where 0 < o < 1. This assumption gives the property
that M G C*(Q) implies u G C*~I+/J(B), for any 0 < /? < 1.

We now proceed to the main results concerning existence of solutions.

2. Existence of solutions

We shall show in this section that if v < oo or if p. = v = oo, then solutions to
the problem (4), (7) and of course (4), (5) exist for all values of X provided that
a > 0. We shall use the theory of topological degree to prove this.

The following three results which are stated in Amann [1] and are proved in
Ladyzhenskaya and Ural'tseva [8] (Proposition 1), and Lloyd [9] (Propositions
2, 3) will be used:

PROPOSITION 1. Let £2 be as in Section 1. Then for each g GE C( f i ) there is an
element in C2+O(fl), Kvg say, which is the unique solution of

- V 2 w = g inQ,; dw/dn + vw = 0 on 3S2.

Furthermore the map Kv\ C°(fl) -* C2+O(fl): g H» Kvg is a positive linear operator
which can be extended uniquely to a compact linear operator, also denoted by Kp,
from C(J2) into Cp(U)for any 0 < /? < 2 {where C^(fi) has its usual norm).

(The solution operators Kv are just the linear integral operators with kernel the
Green's function for - V 2 with the appropriate boundary condition.)

PROPOSITION 2. Suppose X is a normed vector space and D is an open, bounded
subset of X containing 0. Further, suppose T: D -» X is a compact map (that is, it is
continuous and maps bounded sets into relatively compact sets) such that 0 £
( / - T)(dD). Then an integer d(I - T, D, 0), called the degree of I - T at 0 on D,
is defined and the following hold:

(i) // T = 0 then d(I, D, 0) = 1;
(ii) ifd(I- T, D,0)¥=0 then there exists x G D such that x - Tx - 0;

(iii) i / i / :DX[0 , l ] -* Xsatisfies:
(a) (Vs G [0,!])//(•, s): D -» X: x i-> H(x, s) is compact.
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(b) (Ve > 0)(35 > 0) such that whenever \sx — s2 | < 8 we have

(Vx E D)\\H(x, Sl) - H(x, s2)\\ < e, and

(c) (Vs E [0,1]) 0 g ( / - / / • ( • , *))(9/)), /ACT </(/ - # ( •, J ) , fl.O) « de-
fined for all s G [0,1], and is independent of s.

Further, we have a slightly more general version of (iii) which we shall make use
of:

(iv) // U is an open bounded subset of X X [0,1] and H: U -» X is a compact map
such that 0 £ (/ - H)(W) then d(I -H(-, s), Us,0) is defined for each s E [0,1],
and is independent of s, where

Us= {x:(x,s)<EU}.

PROPOSITION 3. Suppose T and D are as in Proposition 2.
(i) (Excision Property) If E C D is closedandO <£ (I - T)(E) then

d(l - T, D,0) = d(I - T, D\E,0).

(ii) There exists 8 > 0 (depending on TandD) such that if S is a compact map on
D with (\fx £ D) \\T(x) - S(x)\\ < 8 then d(I - S, D,0) is defined and equals
d(I-T,D,0).

We shall demonstrate the existence of a solution to the problem (4), (7) by
showing the equivalence of solutions («, v) to (4), (7) and fixed points of a certain
map T. We then use degree theory (Propositions 2,3) to show the existence of
fixed points of T, and hence solutions to the system (4), (7).

We define a map Ton C(fi) X C(fi) by

T(u, v) = (XK^u, v), -aKvF{u, v))

where K^, Kv were defined in Proposition 1 and F(u, v) is the Nemystsky
operator given by

F(u,v)(x)=f(u(x),v(x)).

We now establish the necessary properties of T which ensure it has a fixed point.

PROPOSITION 4. T is a compact map from C(fl) X C(fl) into itself (using the
supremum norm on C(fi)).

PROOF. By Proposition 1, K^, Kv are compact in the supremum norm on
and map into C(Q). So it suffices to show that the map («, v) i-» F(u, v) is
continuous and bounded. This follows from the requirement, (iii) in Section 1,
that/GC'(R2). Q.E.D.
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We now relate the fixed points of the operator T to the solutions of equations
(4), (7).

PROPOSITION 5. For any («, v) £ C(fi) X C(fi) and s £ [0,1] then (u, v) =
sT(u, v) if and only if{u, v) is a solution of the equations

V2!/ + \sf(u, v) = 0 in Q, du/dn + »u - 0 on dQ, (12a)

V2v- a\sf(u,v) = 0 inQ, dv/dn + vv = 0 on 3ft. (12b)

PROOF. Suppose (u, v) £ C(Q) X C(fi) satisfies (u, v) = sT(u, v). Then

u — XsK^F^u, v)

and

v — -\a.sKvF{u, v).

Now, u, v £ C(fi) and / £ C'(R2), so F(M, V) £ C(fi). Then, by Proposition 1,
K^Fiu, v), KvF(u, v) £ C°(S); so «, o £ Co(n).

Therefore F(M, U) £ C°(ft), which gives, by Proposition 1, KpF(u, v),
KvF{u, v) £ C2+O(fi). Hence u, v £ C2+O(J2). Now it follows from the definition
of K^ and A, (Proposition 1) that (M, «) satisfy (12).

The converse follows trivially from the definition of K^ and Kv. Q.E.D.

We note here that Propositions 4 and 5 hold for the case ju < v = oo. We shall
later have need of this fact.

We now proceed to show that T does indeed have fixed points. Our first step is
to define a homotopy between / and I — T satisfying Proposition 2(iii). We do
this as follows:

for.s£[0,1] and (w, v) £ C(fi) X

( « , © ) - H((u, v), s) = (u, v) - sT(u, v).

In order to show that H satisfies Proposition 2(iii) we need:

LEMMA 6. If, for s £ [0,1] and(u, v) £ C(ft) X

(«, v) = sT(u, v)

then (Vx £ ft) i>0 =£ v(x) < 0, and

0 < u(x) ^ -vo/a, forv^n,
0 < u(x) < -vov/an, for ft < v < oo,

where v0 is given in Section 1 (iii).
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PROOF. First, by Proposition 5, («, v) satisfies (12). Suppose now that v — v0

achieves a negative minimum at x' E fi; then there exists an open set fi0 C fi
such that x' G fi0 and v < D0 on fl0. It then follows from the properties of/((i)
and (ii) in Section 1) and (12b) that

V 2 ( w - v0) = \asf(u,v) < 0 , infi0. (13)

Consequently, by the maximum principle v — v0 is constant on fi0, which
contradicts (13). The boundary condition in (12b) ensures that v — v0 does not
achieve a negative minimum on 3S. So (Vx G fi) o0 =£ v(x).

From this it follows that

0 = v 2 o — \asf(u, v) < v2t> in fi,
dv/dn + vv = 0 on 9S2.

Again, applying the maximum principle shows that

(VxGfl) v(x)<0.

Now, it follows from (12) that (u, h = au + v) satisfies (10) (with X replaced by
Xs). Then, using the above bounds for v, we get

V2/i = 0, infl,
0

[ > 0
dh/dn + uh = (u — v)v\ „ / \ ifu <

The maximum principle then show that

(VxGfi) (1 - v/n)vo<h(x) ^ 0 forju>v,

for p>/ t

(if /t = p = oo we note that h = 0).
Since u — a'\h — v), we then get (where we also apply the maximum principle

to (12a))

(VxGfl) 0 < M ( X ) < -vo/a for jit > v,

0 ^ M(X) < -vvo/an forju<»'<oo. Q.E.D.

For convenience we denote
-vo/a for ft > v,

-vvo/an for/x < v.

We are now in a position to prove:

THEOREM 7. There exists («, v) G C(fi) X C(fi) suc/i //za/ (M, t>) = T(u, v).
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PROOF. Let B = {(u ,c )eC( ! i )XC(8) : | |«||0 + | |«| |0 < 1 - v0 + m{a)},
and H be as defined after Proposition 5. By Proposition 4 it is easily seen that, for
each s e [0,1], Hs - H( •, s) is a compact map from B into C(B) X C(S2). Since
T is compact, it maps B into a relatively compact set, and therefore into a
bounded set. So, for («, v) G. B and s,, s2 e [0,1],

\ \ H ( ( u , v ) , s x ) - H ( ( u , v ) , s 2 ) \ \ 0 = \ s i - s 2 \ \ \ T ( u , v ) \ \ 0 < T \ s 1 - s 2 \

for some constant T.
From Lemma 6, 0 £ (/ — Hs)(dB) for each 5 G [0,1]. Thus the conditions of

Propositon 2(iii) are satisfied. Then, by Proposition 2(i) and (iii),

d(I-T,B,0) = d(l,B,0) = 1.

So, by Proposition 2(ii), there is some («, v) G B such that

(u,v) = T(u,v). Q.E.D.

COROLLARY 8. There exists a solution («, t>) to (4), (7).

This is a consequence of Proposition 5 and Theorem 7.

COROLLARY 9. {Of the proof)
d(I-T,B,0)= 1.

In our method for showing the existence of solutions to (4), (7) it has been of
importance to derive an a priori estimate for the solution h = au + v of 10(b),
namely

(1 — v/fi) v0 < h < 0 in fi, for ju > v,

(I — v/n)vo> h>0 in fi, for/i<»><oo.

For the parameter range not covered in this section, viz. fx < v = oo, we no
longer have such a priori bounds for k. This is the reason that the argument given
in this section fails for this case. It transpires that there may be no solution for
certain values of X.

3. Non-existence and existence of solutions for p. < v = oo

In this section we shall investigate the question of existence of solutions to (4),
(5), equivalently (10), for the special case of v = oo with /x finite. Of course, we
continue to examine the general case of a > 0.

In line with Section 2 we shall generally use formulation (10) of the problem
(4), (5). However, we firstly obtain a regularity property of a solution (u, v) to (4),
(7).
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LEMMA 1. Suppose (U, V) satisfies (4), (7) for some X; then V G C2+O(fl).

PROOF. Firstly, note that since U G C'(fi), U G C(fl). From the maximum
principle, it follows that the equation

V 2 w - a\F(u,w) = 0 infl,
w = 0 on 3S2,

has a unique solution for specified u G C°(S2). We now show that there is a
solution, w, to (14) which is in C2+O(£2). To do this we define a map, for fixed
u G C°(Q),

S: C(fl) - C(fi): w^a\KxF(u,w),

where Kx is the operator defined in Section 2, Proposition 1, when v = oo.
Using similar arguments to those in Section 2, Propositions 4, 5 and Theorem

7, we can show that: S is well-defined and compact in the supremum norm; if
w G C(fi) satisfies w = Sw then it also satisfies (14); if w = sSw, for 5 G [0,1]
and_ w G C(fi), then II w||0 < -o0; the map H: {w: II w||0 < 1 - v0) X [0,1] -
C(fi): (w, s)\-+sSw satisfies the conditions of Section 2, Proposition 2(iii).
Consequently there exists some w G C2+o(0) such that w satisfies (14). Since the
solution to (14) is unique when u = U and (U, V) satisfies (4), (7), it follows that
V satisfies (14) and so V G C2+O(fi). Q. E. D.

The following argument requires us to find an explicit solution to v2t> + Ov = 0
in a sphere, with spherical symmetry. So the result (Theorem 2) is restricted to the
cases n = 1,2,3. We give the proof for n = 3, and note that the result for n = 1,2
can be derived by imbedding the region in 3-dimensions.

Suppose now, that, for some value X, there is a solution («, t>) to (4), (5), and
hence a solution (u, h) to (10). Then Lemma 1 allows us to define the quantity

Since v < 0 in the region fi, it follows that M s= 0. We now proceed to establish
the following inequality:

M > (aAeA//°'i)l/2coth[(a\eA//a'')1/2p] - 1/p, (15)

(see below for the definition of p).
Now, from (10), we have

V\h- M/n) = 0 infi,

•^(h-M/n) + ii{h-M/ii) = jj;-M>0 on3fi.

Therefore, by the maximum principle, h > M/fi in £2.
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Since 3fl is of class C2+a, it satisfies a uniform interior sphere condition, that
is, there exists p > 0 such that, for each x E 3fi, there is an open ball of radius p,
Bx, such that Bx C fi and x G 35X D 3S2.

Now, fix x o £ 3 Q and let fi0 = 2? .̂ We define a function t>,, on fi0, to be the
unique solution of

V 2 w - a A ( l + w)eM/c"1 = 0 in Qo, 1
w = 0 ondi20.J " '

Also, we have

V2u - «A(1 + u)eA//a'1 = a\(l + f})[e<*-°>/« - eM^]

>0 infl0,

and
v < 0 on 3fl0,

since /i > M/jn and t; < 0. Consequently v is a lower solution of (16). As 0 is an
upper solution of (16), it follows that

(Vxefl0) v(x)<Vi(x)<0. (17)

Moreover,

where r is the distance from the centre of BX{. Since v(x0) = vt(x0) — 0, it
follows from (17) that

0/2 0/7 0/

= (a\eM^y/2coth[(a\eM^y/2p\ - 1/p.

Taking x0 to be the point on 3Q at which dv/dn achieves its minimum, (15) then
follows. Since coth 6 ̂  1 for 0 3= 0, we obtain

By finding the maximum of the right hand side of this inequality, as a function of
M, we have

This last.inequality leads to the result:

THEOREM 2. For X sufficiently large, in particular A > 4aju2e~2+
 '/P0**, there is no

solution to (4), (5).
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A similar result may be obtained for (4), (7) if e" is replaced by a function of w
that grows faster than u2 as u tends to infinity.

Next we shall show that (4), (7) does have a solution for some values of X—in
particular, when X is sufficiently small. Again we consider a map T defined on
C(fi) X C(fi) by

T{u, v) = {XK^u, v),-a\KxF{u, v)), (18)

where K^, Kx are as in Section 2, Proposition 1. As noted after Section 2,
Proposition 5, we have:

LEMMA 3. The mapping T: (C(fi) X C(Q), || ||0 X || ||0) -> (C(Q) X C(H), IIII0

X || II0) is well-defined and continuous.

We also have:

PROPOSITION 4. Let B = {(«, v) e C(Q) X C(Q): \\u\\0 + \\v\\0 < r) for some
r > 0; then, for sufficiently small X, T is a contraction map from B to B.

PROOF. From the continuity of/, we have, for (M, t>) E B,

\\F(u,v)\\0<*M

for some positive M. Since/ £ C'(R2), it follows that there is a constant C > 0,
such that for (M, V), (H,, U,) G B,

\\F(u, v) - F(«,, o,)| |0

Hence

where II^CII0 arid I I ^ I I Q are the norms of the operators K^ and Km. Also, for

Consequently, for A sufficiently small, T is a contraction map from B to B.
Q.E.D.

This result then leads to:

THEOREM 5. For X sufficiently small, (4), (7) has a solution.

PROOF. Choose some r > 0; then by Proposition 4, T is a contraction map from
B to B for X sufficiently small. 5 is a closed subset of C(fi) X C(fi), hence it is
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complete. It then follows from the contraction mapping theorem that T has a
unique fixed point («, v) G B. Therefore, by the note after Section 2, Proposition
5, (u, v) is a solution to (4), (7). Q.E.D.

We have now shown that for X sufficiently small (4), (5) has a solution, but for
X sufficiently large there is no solution to (4), (5). In fact we have a stronger result
which we give after the following theorem:

THEOREM 6. / / there is a solution (M°, t>°) to (4), (7) for X = X° then there is a
solution to (4), (7) for each X G [0, X0].

PROOF. Since (M°, V°) is a solution to (4), (7), then (11) has a solution («°, h°)
when X — X°. We then consider, for X < X°, the iteration scheme:

h0 = 0 in fi;

for j > 0,

V2Uj + Xf(uj, hj_x — aUj) = 0 in fl
du, (19a)
Y1 + ptij = 0 on 9S2

and

V2h = 0 in Q 1
(19b)

where Uj is the minimal solution to (19a) (which is known to exist by the work in
Keller and Cohen [6]).

If hj > /iy_, in fi then, using the monotonicity of/,

V2«7 + 1 + Xf(uj+], hj_) - «M 7 + 1 )

= M/(M
7+I>/ I , - I ~auj+\) -f(u

J+\>hj-auj+\)) < 0 -

Hence uJ+i is an upper solution for the equation satisfied by uy, also 0 is a
lower solution, so uJ+] > uy It then follows that hJ+i > hy

Now, u, 3= 0, hence hl > 0. Therefore it follows inductively that u} and hj are
monotone increasing iny.

Moreover, if /iy_, =£ h°,

V 2 « ° + X/(M°, *,_, - a « ° ) =Xf(u°,hj_1 -au°) - X° f(u°, h° - au°) ̂  0.

So M° is an upper solution for the equation satisfied by uy Therefore Uj =£ u°, and
so hj =£ A0. Since h0 = 0, it also follows from an inductive argument that, for each
j , Uj and hj are bounded above by u° and /i° respectively.
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As in Keller and Cohen [6] we can then deduce that there is a solution («, h) to
(11), for any X =£ A0, such that

 equation to

 solution for

 X* is as yet
 there is indeed

 paper).

 all hold in
e being the

 solutions to
 condition in (19b)

 one shows that
o(v/p. — 1)

 scheme can be
 (11), and a

 (7). We now
 X varies.

 solutions to
, (7) can be

https://doi.org/10.1017/S0334270000003751 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003751


388 J. G. Burnell, A. A. Lacey and G. C. Wake [is]

The results and proofs that we shall give are of a standard type; but for the
sake of completeness we present them here.

For the first two results we can assume 0 < p, v ^ oo. Let

X= C(Q) X C(R) X (R+ U {0}),

2 = {((u,v), A,): (u,v) is a solution to (4), (7) with A - A,},

and

0 = [ T / \ f o r A > 0 ,
I 0 for A = 0,

where T is the map given in Section 2 (v < oo) or (18) (v = oo). First we need the
following result:

LEMMA 1. 2 is a closed subset of X, and further, if U is a closed bounded subset of
X then 2 fl U is a compact set.

PROOF. From Section 2, Proposition 5, we see that

2 = {({u,v),\):(u,v) = XQ(u,v)}. (20)

The lemma now follows from the continuity and compactness of Q (Section 2,
Proposition 4). Q. E. D.

We then get the general result:

THEOREM 2. 2 contains an unbounded subcontinuum, T, such that ((0,0), 0) £ T.

PROOF. Firstly we note that a continuum is a closed connected set. So, if no
such F exists then the component of 2 containing ((0,0), 0), C say, is bounded.
Hence, there exists r > 0 such that

CCB(r) = {((«,») , A) G X: \\{u, ©)||0 < rand A < r).

Consequently, by Lemma 1, C and D = (dB(r)) D 2 are closed disjoint subsets
of the compact metric space B(r) D 2. Since C is a component and D is compact,
it follows from a result in Engelking [3] (6.123) that there exist disjoint compact
sets £,, E2 such that

CQEU DCE2 and Ex U E2 = B(r) D 2.

As 2 is closed, £, and E2 are closed disjoint subsets of B(r). So there exists an
open set U C B(r) such that

£, C U and U n £2 = 0 .

Therefore W n 2 = 0 .
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Using (20), we then have that, for ((M, V), X) £ W,

(u,v)¥=XQ(u,v).

Hence, by Section 2, Proposition 2(iv),

d(I - XQ, Ux,0) is independent of \ on [0,2r],

where Ux = {(«, o): ((«, o), X) e £/}.
Now t/2r = 0 , so by Section 2, Proposition 2(ii),

d(l-XQ,U2r,0)=0. (21)

Also, (0,0) G i/0 (as C C U), so, by Section 2, Proposition 2(i),

But this contradicts (21), so the result follows. Q.E.D.

Theorem 2 does not tell us that any two points in 2 (or even F) can be joined
by a path lying in 2 (that is a path of solutions to (4), (7)); but it does tell us that
there is an unbounded subset of solutions, F, which contains the trivial solution
u = 0, v = 0 and X — 0 and for which it is impossible to find a ball in X of radius
r, about the origin, which contains no elements of F on its boundary.

We are able to give a stronger result for a certain special case. Since we require
Section 2, Corollary 9 we need to assume that n, v < oo; v < oo and jn < oo or
H — v = oo.

THEOREM 3. Suppose J is an open (not necessarily bounded) interval in R+ U {0}
such that, for each X G J, there is only one solution («(X), u(A)) to (4), (7). Then the
function J -» C(fl) X C(B): X t-» (w(A), v(X)) is continuous.

PROOF. Suppose the function is discontinuous at Xo G J. Then there exists
e0 > 0 such that

(Vn)(3XnEJ) so that | Xn - Xo |< 1/n

and

||(«(XB), o (X j ) - («(X0), o(X0))||0 > e0.

Now, by Section 2, Proposition 3(ii), there exists r0 > 0 such that whenever
IX X 0 1 <c r 0 ,
d{l - X0Q, B{(u(X0), v(X0)); eo),0) = d(l - XQ, B((u(X0), V(X0)); eo),O)
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where£((£/, V); r) = {(«, v) £ C(O) X C(Q): III /-w| | 0 + U K - o | | 0 < rJ.This
follows since there is only one solution to (4), (7) when \ = Xo and so, by Section
2, Proposition 5, there is only one fixed point of the map XQQ.

Also, by Section 2, Corollary 9 and Section 2, Proposition 3(i),

1 = < / ( / - XQQ, 2?((0,0); 1 - o0 + m(«) ) ,0 ) |

X e 5 ( ( « ( A ) u ( X ) ) ; £ ) 0 ) f [ ]

On the other hand, since (u(Xn), v(Xn)) & B((u(\0), v(X0)); e0), it follows from
Section 2, Proposition 2(ii), that for \/n < r0,

d(l - XnQ, B((u(X0), v(X0)); eo),O) = 0.

But this contradicts (22); so the theorem must hold. Q.E.D.

This result tells us that two solutions corresponding to values of X in / can
indeed be connected by a path (in A') of solutions. In the second part of this
paper we shall show that it is possible to find such an interval J.

5. Discussion

In this paper we have shown that, except for the extreme case of n < v = oo,
there is a solution to the steady state system (4), (7) for all values of X. This
suggests that other than for this special case, a solution to the initial value
problem (3), (4), with u sufficiently small and v < 0 at t = 0, remains bounded
and we do not obtain thermal runaway. It is plausible that this solution (M, V)
either approaches one of the steady states (that is solutions to (4), (5)) or tends to
a limit cycle (cf. Poore [10] for the corresponding "zero-dimensional case"—that
is the homogeneous system).

For the special case of ju < v = oo in 1, 2 or 3 dimensions, we see that there is
some X* such that there is no solution to (4), (5) for X > X*, that is there is no
steady solution for the parabolic problem (3), (4) if the region S2 is too large (since
X oz (radius of fl)2). It can be seen this parameter range corresponds to free
transfer of reactant through the surface 312 into fi, while the flow of heat out of fi
through 3S2 is restricted (however, this seems to be a rather unrealistic case).
Hence, it would appear the physical reason that there is no solution for large
values of X is that heat is produced from the incoming reactant too rapidly to be
lost through the surface. It then seems plausible that if X > X* then the solution to
(3), (4) blows-up, with u becoming infinite in either infinite or finite time {cf. the
case a = 0, v = 0 Fujita [4], Fujita [5], Lacey [7]).
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