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I. Introduction 

The top ic I was o r i g i n a l l y assigned f o r t h i s colloquium was "Generation of Non 

Thermal, Non Osc i l l a to ry Motions". 3eing bas ica l l y a f l u i d dynamicist , a t f i r s t I 

thought t h i s meant I was supposed to t a l k about the o r i g i n of motions which are not 

thermal ly d r i ven , i . e . , I should not t a l k about convect ion. But then I rea l ized a l l 

that was meant was tha t I was to t a l k about bulk f l u i d motions, rather than the 

molecular " thermal" motion of s t e l l a r gas tha t defines i t s temperature. Obviously the 

o r i g ina l question was posed by a s t e l l a r spectroscopist ! Having surmounted tha t small 

semantic hurd le, I began to th ink about a l l the ways c i r c u l a t o r y motions might be 

generated in a s ta r . A l l manner of f l u i d dynamical i n s t a b i l i t i e s come to mind--not 

only convective i n s t a b i l i t y , but also barotropic or i n e r t i a l , b a r o c l i n i c , Ke lv in -

Helmholz, Rayleiqh-Taylor, Goldreich-Shubert, Solberg-Hoi land, e t c . The l i s t i s 

la rge , over lapping, I am sure confusing to an observer (and to many a t h e o r e t i c i a n ) . 

Then there are Eddington-Sweet cu r ren ts , and several add i t iona l motions a r i s i ng from 

the presence of magnetic f i e l d s - - f i e l d s which give r i se to magnetic buoyancy of f l u x 

tubes, and large co l l ec t i on of magnetohydrodynamic i n s t a b i l i t i e s . 

I could t r y to review a l l of these e f fec ts in t h i s t a l k - - b u t tha t has been done 

in several other places, f o r example in the recent book Rotating Stars by Tassoul, and 

a soon to be published book on astrophysical magnetohydrodynamics by Parker. The 

audience is bet ter advised to look there . In a d d i t i o n , I am not convinced tha t an 

observer can gain much guidance on how to i n t e r p r e t his s t e l l a r spectra from ex t ra ­

polat ions that p red ic t the nonl inear consequences of these i n s t a b i l i t i e s (wi th the 

exception of convect ion). With the l im i t ed time that I have, I would instead l i k e to 

address a s ingle quest ion: "What d i f f e r e n t i a l r o ta t i on should we expect to f i n d in a 

star tha t rotates and has a convection zone?" 

Why t h i s pa r t i cu l a r question? Aside from convection i t s e l f , d i f f e r e n t i a l r o ta ­

t i on i s probably the largest amplitude motion to be found in a t yp ica l s t e l l a r photo­

sphere. The s t a r ' s average ro ta t i on i s most l i k e l y la rger s t i l l (and easier to mea­

sure) but so l id ro ta t i on in and of i t s e l f is f l u i d dynamically t r i v i a l ; how i t a f fec ts 

other motions to produce d i f f e r e n t i a l r o ta t i on i s , I hope to convince you, very 

i n t e r e s t i n g . 

Why consider only stars which have convection zones? I personal ly feel on safer 

ground for t h i s case, but also I th ink more d e f i n i t e things can be sa id . Convection 

inf luenced by ro ta t i on can come to some sor t of s t a t i s t i c a l equ i l i b r ium wi th the 

d i f f e r e n t i a l ro ta t i on i t d r i ves , and therefore the d i f f e r e n t i a l r o ta t i on can be ex­

pected to be present over a large f r ac t i on of the s t a r ' s l i f e t i m e . By con t ras t , many 

of the other i n s t a b i l i t i e s I mention may produce t rans ients in the s t a r , not seen 
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again for a long time because the energy source for the instability is not replenished 

as fast as for convection (and maybe never). What we are after, then, are statements 

about differential rotation forced by convection, that might be applicable to a wide 

variety of stars. All stars rotate, and all stars that convect will have differential 

rotation. The real question is how much and what kind. 

Some further statements are perhaps in order. Differential rotation is from a 

fluid dynamical point of view a very important quantity to know about a star. It is 

probably the key to guessing its overall global dynamics. It may tell us what kind of 

dynamo action the star is experiencing—whether it should be undergoing cycles in its 

magnetic field. For example, it would be extremely useful to know the rotation and 

differential rotation of stars for which Olin Wilson sees calcium emission cycles. 

Let me acknowledge before I get any further that I know measurements of dif­

ferential rotation in stars are extremely difficult to achieve, and probably impos­

sible for several classes of stars by present techniques. Measuring rotation itself is 

bad enough. In the end, it may turn out that we have to be content with predictions 

of differential rotation for many stars, guided by other information such as rotation, 

spectral type, abundance, etc. 

II. Approach to the Problem 

Let me first list some of the physical parameters and processes we might expect 

to be important in determining the differential rotation at the surface of a convert­

ing star. Then I will review some of the models that have been developed to explain 

differential rotation in the sun, including some of the problems as well as successes. 

I have worked on models of this type myself, and I will summarize some of my own result: 

which I think are relevant to the question I have posed. From these results I will ther 

extrapolate to some qualitative statements about other stars—main sequence stars 

mostly, but red giants will also be considered. 

III. Important Parameters and Processes 

A. Convection Zone Parameters 

Probably the most important single parameter determining what kind of differ­

ential rotation to be expected in a stellar convection zone is the ratio of turnover 

time for the convection, to rotation time for the star. This determines how much 

rotation affects convection, introducing preference for certain convection patterns, 

as well as correlations between different velocity components implying nonlinear 

Reynolds stresses. The larger is this ratio, the more influence rotation has, be­

cause as the fluid element moves, coriolis forces have more time to act on it. We 

will iqnore systems with rotation so rapid that the departures from spherical geo­

metry become of order unity. 

In addition, certain other parameters are important, for example, convection 
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zone depth, as a fraction of the radius. It is reasonable to expect that stars with 

shallow convection zones will have different patterns of differential rotation than 

stars with deep zones. The scale of the dominant convective modes will certainly be 

larger for deeper zones, and in general, the rotational influence will be stronger, 

because the turnover time is longer. The particular form the stratification of the 

zone takes will also be important--how may scale heights it contains as well as how 

superadiabatic the temperature gradient is. These quantities clearly relate back to 

the turnover time estimates, as does the total heat flux being carried through the 

convection zone. 

B. Physical Processes Affecting Angular Momentum Distribution 

Any process that can redistribute angular momentum in a convection zone is po­

tentially important for determining the differential rotation profile. Since angu­

lar momentum can be convected by the fluid itself, any circulation that has a com­

ponent in either the radial or latitudinal direction, can change the rotation pro­

file in the meridian plane. Conventionally, these circulations are broken into two 

tyoes, axisymmetric meridional circulation, and global departures therefrom, usually 

called eddies. The eddies produce net momentum transport when the east-west velocity 

in them is correlated with either the north-south flow, the radial flow, or both. 

This correlation is induced by the presence of the Coriolis force and is called a 

Reynolds stress. Molecular and small scale turbulent diffusion is swamped by the 

turbulence. The distinction between small scale turbulent diffusion and global eddy 

transport is an arbitrary one, the former usually representing transport of momentum 

by those motion scales not resolved in the particular model, the latter being expli­

citly calculated. Other azimuthal torques, such as produced by electromagnetic body 

forces, may also be present, but their effect has not generally been taken into 

account. Buoyancy forces, since they act in the radial direction, do not directly 

contribute azimuthal torques that can change the differential rotation, but of course 

they drive motions which transport momentum. Similarly, azimuthal pressure torques 

average out when integrated around a complete latitude circle. 

Figure 1 illustrates angular momentum transport by different circulations. At 

the top, two schematic meridional circulations are shown, of opposite sense. If 

either pattern started up in a fluid originally in solid rotation and no other trans­

port processes were acting, high latitudes and deeper layers would tend to speed up, 

relative to low latitudes and shallow layers, because the circulation would conserve 

angular momentum. The fluid would move toward a state of constant angular momentum. 

But now if sufficient diffusion is also present to link different layers and keep 

the angular velocity more nearly constant, the circulation on the left may produce 

equatorial acceleration, because fluid moving toward the equator on the outer branch, 

for example, crossing the dashed line, would contain more angular momentum than 

fluid moving toward the pole underneath, where the moment arm is shorter. 
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Competing Mechanisms of Angular Momentum Transport 
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Figure 1. Angular momentum transport by circulation. 
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On the other hand, Reynolds stresses will transport momentum toward the equator to 

drive an equatorial acceleration if the convection patterns adopt a horizontal flow 

pattern as seen in the left middle schematic. Fluid particles moving eastward in 

the direction of rotation have a component toward the equator; particles moving 

west are also moving poleward. If we average along the dashed line, we get a net 

momentum flux toward the equator, even if there is no net mass flux. In the right 

middle schematic, we see a pattern of circulation in longitude and radius which 

leads to a net flux of momentum inwards. The two patterns I have shown are in fact 

the most common ones seen in actual model calculations. 

IV. Models Used in Solar Case 

Which angular momentum transport process dominates in producing differential 

rotation can only be determined by actual nonlinear model calculation. A number of 

such calculations have been carried out, mostly to explain solar equatorial acceler­

ation. 

One group of these models has been axisymmetric, in which all effects of convec­

tion are condensed into a few ad hoc parameters. In one such model, an anisotropic 

turbulent viscosity is assumed, which results in a meridian circulation qualitatively 

like that at the top left in Figure 1. With suitable choice of the sign and degree 

of anisotropy, the observed equatorial acceleration can be reproduced. This approach 

originated with Biermann (1951) and was exploited by Kippenhahn (1963), Cocke (1967) 

and in greater detail by Kohler (1970). The problem with it is that there is no real 

way to choose the sign and magnitude of anisotropy, without resort to fitting the 

correct differential rotation. Also, no account is taken of the influence of rota­

tion upon the parameterization of the convection. Another approach which has been 

carried further is to assume the convective heat flux is weakly perturbed by rota­

tion, such that it becomes a function of latitude. This was done by Durney and Rox­

burgh (1971) and later developed further by 3elvedere and Paterno (1976, 1977, 1978). 

Again the meridian circulation and convective parameterization are fitted to the 

observed differential rotation. The calculations are heavily dependent on the assump­

tion of weak influence of rotation upon convection, which is not likely to be valid 

in the deep part of the solar convection zone. Also, there is no independent evi­

dence that the heat flux parameterization is valid even under the assumptions made. 

As you probably have already guessed, I do not believe these models are the 

correct ones for the sun, mostly because I suspect the parameterizations upon which 

they depend are grossly inaccurate. I prefer models in which the dynamics respon­

sible for giving the correct differential rotation are explicitly calculated, with 

parameterizations of unresolved motions relegated to a less critical role, so their 

detailed form is less important. Such models have been developed, so far for physics 

considerably simpler than the real sun, but nevertheless instructive. In particular, 
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models have been developed for nonaxisymmetric convection of a stratified liquid in 

a rotating SDherical shell. Early, mostly linear analyses by 3usse (1970, 1973), 

Durney (1970, 1971) Kato and Yoshimura (1971) and Gilman (1972, 1975) demonstrated 

the preference for convective modes which transport momentum toward the equator, via 

the Reynolds stress mechanism described above. More recent, nonlinear calculations 

by myself (Gilman, 1976, 1977, 1978, 1979) have exploited this fact to determine in 

detail when equatorial acceleration occurs and with what amplitude relative to the 

convection which drives it and the basic rotation rate. 

I will summarize some results obtained from those calculations. I will give 

only the most basic, qualitative effects, since the model is incompressible, and many 

details will change in the compressible case--which we are currently coding. There 

are other weaknesses of the model, such as larger than observed differentials in heat 

flux, which I cannot describe in detail, but which we expect to be improved in the 

compressible case. 

V. Summary of Relevant Results from Calculations of Convection 

in a Rotating Spherical Shell 

A. Finite amplitude equatorial acceleration is produced only when the influence 

of rotation upon convection is strong, i.e., the rotation time is less than the 

turnover time for convection. Under these circumstances, the angular velocity also 

decreases inward with depth; when the rotational constraint is very strong, the 

angular velocity predicted is nearly constant on cylinders concentric with the axis 

of rotation. If the rotation time is a few orders of magnitude shorter than the 

turnover time, then the latitudinal profile of differential rotation may be more 

complicated, but this is an unlikely case for stellar application. 

B. When the convection zone is deep, say 1/3 of the radius or more, the equa­

torial acceleration profile with latitude is broad, with essentially monotonic de­

crease in angular velocity to the poles. 

C. When the convection zone is shallow, say 20 percent or less, and the-rota­

tional influence is strong, the angular velocity reaches a minimum in mid latitudes, 

and then increases again toward the poles. The width of the equatorial acceleration 

is determined by the depth of the layer. 

D. For both deep and shallow convection zones, with weaker rotational influence 

(increased convective velocities) the profile switches from equatorial acceleration 

to deceleration. Angular velocity now increases with depth. There is an interme­

diate stage in which the angular velocity is highest in mid latitudes and lower near 

the equator and near the pole, while still decreasing with depth. 

E. The maximum differential rotation sustainable by the convection is about 40 

percent of the average rotation. For larger values, the feedback from the shear on 

the convection is strong-enough to change the dominant patterns and consequently the 
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differential rotation profile, resulting in a new equilibrium with lower amplitude 

differential rotation. 

F. The maximum differential rotation maintainable by the convection has about 

the same kinetic energy in it as the convection itself. Larger differential rotation 

may be possible locally in the compressible case. 

G. Amplitudes of individual convective modes may change radically with time 

while the differential rotation amplitude changes hardly at all. 

The above statements concerning the profile of differential rotation for deep 

and shallow convection zones are summarized schematically in Figures 2 and 3 respec­

tively. The extra bumos in the profiles for the shallow layer are intended to indi­

cate that for a shallow layer, the convection, being smaller in horizontal scale 

itself, should produce more fine structure in the differential rotation profile. 

In addition, we can say that first results from linear calculations of compres­

sible convection in a rotating spherical shell indicate that moderate stratification 

(say a factor of 20 drop in density across the convection zone) will not change any 

of these results significantly. Larger density variations will produce larger changes, 

but the qualitative statements we have made with respect to differential rotation 

with latitude we do not expect to change a great deal. But clearly such conclusions 

must be tested with a compressible model. 

VI. Extrapolation to the Convection Zone of a Star 

How do we extrapolate the above results to the convection zone of a star, which, 

after all, is generally a long ways from being a Soussinesq liquid? In the case of 

the sun, the theory is generally thought to apply to the deepest layers of the con­

vection zone, which are more nearly Boussinesq, for which the natural scale for con­

vection is nearly global. As Gilman and Foukal (1979) have argued, the small scale 

but large amplitude granules and super granules are most likely not responsible for 

the latitude gradient of rotation at all, but perhaps the radial gradients in the 

shallowest layers. In addition, these small scale motions appear to obscure the global 

convection or "giant cells" (Simon \ Weiss, 1968) as they are sometimes called. 

A similar situation probably occurs in convection zones of other stars, as sum­

marized in Figure 4. The little cells at the top are weakly influenced by rotation, 

and by themselves would produce a weak equatorial deceleration. But they sit on top 

of slower, larger scale convection below, which is much more strongly influenced by 

rotation, where the latitude gradient is really produced. This gradient of deep 

origin is then transmitted to the surface by the small cells. 

One conclusion that can be drawn from this argument is that using surface tur­

bulent velocities, to estimate the turnover time for the convection zone would lead to 

a gross under-estimate, therefore too small a rotational influence and the wrong 

differential rotation. A better procedure, still very approximate, would be to esti-
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mate the turnover time from a mixing length model applied to the whole convection 

zone. This brings us to a prescription for estimating the differential rotation to be 

exoected in certain main-sequence stars. 

What we have done is to estimate convection zone depths and turnover times near 

the bottom of the zone, using a stellar envelope code, and then compare these with 

observed or estimated rotation times calculated from the well known summary of stellar 

rotation, by Kraft (1967). Part of this procedure is similar to one employed by 

Durney and Latour (1973) for another puroose, which calculation I discovered as I was 

beginning these calculations. In fact, I used Latour's envelope code, which in turn 

is similar to an earlier one apDlied to estimate convection zone depths by Baker 

(unoublished). I chose essentially Baker's values for a sequence of stars from A to 

early K, the luminosity, radius, and effective temperature for which are shown in 

Finure 5. We then used these values, together with a composition of X = .70, Y = .27, 

Z = .03 in Latour's code to estimate convection zone depth for these stars, shown in 

Figure 6, given as a function of a, the ratio of assumed mixing length to pressure 

scale height. The results are quite similar to those of Baker, though not identical. 

As expected, convection zone depth shrinks as a fraction of stellar radius as the mass 

and luminosity increase. Depending on the a choser, the convection zone effectively 

shrinks to zero somewhere between early F and late A. Larger a implies deeper con­

vection zone. 

Then, following Durney and Latour (1970) we find a convective velocity in meters/ 

second one pressure scale height up from the bottom, shown in Figure 7, which we use 

to compute a turnover time = scale height/velocity, shown in Figure 3. Note that it 

goes from 1-2 x 10 sec. for G and late F stars, down quickly to 10' sec. and less by 

F0. 

But early stars generally rotate much faster too, so the rotation time drops 

raoidly with increased mass, as seen in Figure 9, derived from Kraft (1967). (Here, 

for stars later than the sun, we assume an upper limit of the same angular velocity as 

the sun.) So how does the ratio change? This is plotted in Figure 10. We see that 

for a = 1.0, the sun is already in the steep part of the curve, with convection in 

slightly later stars much more strongly influenced by rotation, convection in slightly 

earlier stars much less so. For larger a, earlier stars out to F0-F2 are as strongly 

influenced, or more so, by rotation than the sun is. Which a is most reasonable (if 

any)? For the sun, a = 1 yields by my earlier arguments too shallow a convection zone 

(< 20%) to sustain an equatorial acceleration with angular velocity decreasing all the 

way to the Dole, so I favor a larger a (at least 2). Suppose we take a = 2. Then 

from all our results we should exDect broad equatorial acceleration on stars later 

than the sun, (unless they have much lower rotation rates than the sun) and also for 

slightly earlier stars, with an increasingly narrow equatorial acceleration out to log 

M/M £ .12. Maximum amnlitude in this equatorial acceleration would be about 40% of 
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Figure 2. Qualitative schematic of differential rotation regimes for 
a deep convection zone. 
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Figure 3. Qualitative schematic of differential rotation regimes for 
a shallow convection zone. 
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Figure 4. Schematic of a stellar convection zone. 
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Figure 8. Convective turnover times. 
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Figure 10. The ratio of turnover time to rotation time as a function of mass. 
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the average rotation rate. Beyond that, there would be a rapid transition to equa­

torial deceleration, with a lot of structure in the profile, due to the dominance 

of small scale modes in the shallow zones there. The conclusion for a = 3 would be 

similar. 

It would seem that rather analogous arguments could be made for red giants. 

Those with deep convection zones should have either broad equatorial accelerations or 

decelerations, depending on their rotation rate. Perhaps the calculations from which 

these inferences are made apply better here than for main sequence stars, since in 

most red giants the scale height is a large fraction of the convection zone depth so 

the convection is more nearly like that in a stratified liquid. 

In closing, let me remark again that if one knows the rotation rate of the star, 

and a few other basic properties, one may be able to estimate its differential rota­

tion even if one cannot observe it. For stars with surface emission features, from 

which an independent estimate of rotation rate, and perhaps even differential rota­

tion, can be made, we may be able to test our conclusions in detail. 

I close with a question for the observers: Can you tell the difference by spec­

tral measurements between a star in solid rotation, and one with nearly the same 

surface average angular velocity that in fact is rotating differentially? 
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