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Abstract

We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
k > 2 distinct communities. The major difference in our model is that the intensities for Gaussian perturbations
are different for different entries in the observation matrix, and we do not assume that every community has
the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of
the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the
Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection
on hypergraphs.

1. Introduction

Community structures are ubiquitous in graphs modelling natural and social phenomena. In natural
sciences, atoms form molecules so that atoms in the same molecule have stronger connections compared
to those in different molecules. In social sciences, individuals form groups in such a way that individuals
in the same group have more communications compared to individuals in different groups. The main
aim for community detection is to determine the specific groups that specific individuals belong to based
on observations of (random) connections between individuals. Identifying different communities in the
stochastic block model is a central topic in many fields of science and technology; see [1] for a summary.

In this paper, we study the community detection problem for the Gaussian mixture model, in which
there are n vertices belonging to k (k > 2) different communities. We observe a p x 1 vector for each one
of the n vertices, perturbed by a p x 1 Gaussian vector with independent (but not necessarily identically
distributed), mean-0 entries. More precisely, each entry of the p x n perturbation matrix is obtained by
a multiple of a standard Gaussian random variable, while the intensities of different entries are differ-
ent. Given such an observation, we find the maximum likelihood estimation (MLE) for the community
assignment and study the probability that the MLE equals the true community assignment as the number
of vertices n — oo. If this probability tends to 1 as n — oo, we say exact recovery occurs. Heuristically,
it is natural to conjecture that exact recovery may occur when the intensities of the perturbations are
small but does not occur when these intensities are large. The major theme of the paper is to investigate
how small the intensities of the perturbations are needed in order to ensure the exact recovery and how
large the intensities are required to stop the occurrences of the exact recovery.

Clustering problems in the Gaussian mixture model have been studied extensively; see [5, 7, 15, 18]
for an incomplete list. We mention some recent related work here.
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The Gaussian mixture model when all the entries of the perturbation matrix are i.i.d was studied
in [4], in which a condition for the exact recovery of the semi-definite programming (SDP) is proved.
When all the communities have the same size, a condition that exact recovery does not occur was also
proved in [4] when the number of communities k <logn. The case of unbalanced communities was
investigated in [8]. In this paper, we obtain conditions when the exact recovery happens and does not
happen for the more general Gaussian mixture model when the entries of the perturbation matrix are
not necessarily identically distributed. Our result can be applied to the special case when intensities of
the Gaussian perturbations are all equal, and in particular, we obtain a condition that the exact recovery
of MLE does not occur when the number of communities k is ¢”°¢" in the hypergraph model; see the
explanations at the end of Example 4.5. We can also see from the sufficient condition (17) for the exact
recovery and the sufficient condition (22) that the exact recovery does not occur that when k is e?(°¢",
these two conditions match and there is a sharp phase transition. In Section 7, we see an example in
which these necessary and sufficient conditions of the exact recovery give a sharp phase transition when
the Gaussian perturbations are not i.i.d.

When p =n in our model, we may consider the rows and columns of the observation matrix are
indexed by the n vertices, and each entry represents an edge. In this case, we obtain the community
detection problem on a graph. When p =n* with s > 2, we may consider the rows of the observation
matrix are indexed by ordered s-tuples of vertices, and each entry of the observation matrix repre-
sents a (s 4 1)-hyperedge. In this case, we obtain the community detection problem on a hypergraph.
Community detections on hypergraphs with Gaussian perturbations were studied in [11], where the ver-
tices are divided into two equal-sized communities, and a weight-1 (d 4 1)-hyperedge exists if and only
if all the vertices are in the same group. The results proved in this paper can be applied to the commu-
nity detection problems on hypergraphs with Gaussian perturbation to obtain necessary and sufficient
conditions for the exact recovery, in which the number of communities is arbitrary and communities
are not necessarily equal-sized; moreover, the hyperedges have general weights as represented in the
(unperturbed) observation matrix. Community detection problems on random graphs were also studied
in [2, 3, 6,9, 14, 16]. Algorithms to efficiently implement the community recovery in mixture models
include the Expectation-Maximization (EM) algorithm ([5]) and the spectral method ([10, 12, 19]). The
EM algorithm is a local search heuristic that can fail. The spectral method is based on the singular value
decomposition of the dataset and then only use data related to a fixed finite number of largest singu-
lar values to achieve dimension reduction. The performance of the spectral method when the Gaussian
perturbations consist of i.i.d. Gaussian random variables was discussed in [12]. The major differences
between results in this paper and those in [12] are (1) this paper focuses on exact recovery, that is, the
probability that the estimation is exactly equal to the true community assignment and no mislabel is
allowed, while [12] allows a small number of mislabelled vertices (almost exact recovery) and (2) [12]
focuses on Gaussian mixture model with isotropic covariance matrix; while in this paper, the covariances
matrices for the model can be more general. Partial recovery was also discussed in [8].

The implement of the MLE is usually very slow; in some cases, relaxing some constraints in MLE
leads to the more efficient SDP. However, most SDPs require the partition to be balanced or that, at least,
the size of each group is known in advance. The MLE optimisation discussed here has the advantage to
attack the case of unbalanced sizes of groups, and the case when the size of each group is unknown. When
the perturbations for the entries of the observation matrix are assumed to be i.i.d. Gaussian, and using
the average value of the observations associated with each group to approximated the expectation of the
observation to the group, in this case the MLE becomes the K-means estimation. The SDP relaxation for
K-means have been studied extensively, see for example [17]. We expect a similar SDP relaxation for K-
means in the dependent case in which the inner product in the objective function should be defined with
respect to the inverse of the covariance matrix; yet in this paper, we shall focus on the more fundamental
MLE and try to investigate its statistical limit.

The organisation of the paper is as follows. In Section 2, we review the definition of the Gaussian
mixture models and hypergraphs and state the main results proved in this paper. In Section 3, we prove
conditions for the exact recovery of the Gaussian mixture model when the number of vertices in each
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community is unknown. In Section 4, we apply the results proved in Section 3 to the exact recovery of
the community detection in hypergraphs and also prove conditions when exact recovery does not occur
in hypergraphs under the assumption that the number of vertices in each community is unknown. In
Section 5, we prove conditions for the exact recovery of the Gaussian mixture model when the number
of vertices in each community is known and fixed. In Section 6, we prove conditions when exact recovery
does not occur in hypergraphs under the assumption that the number of vertices in each community is
known and fixed. In Section 7, we give an example in which these necessary and sufficient conditions of
the exact recovery give a sharp phase transition when the Gaussian perturbations are not i.i.d.; results of
numerical experiments are also included to show the performance of MLE with difference parameters
to illustrate the sharp phase transition. In Section A, we prove a lemma used to obtain the main results
of the paper.

2. Backgrounds and main results

In this section, we review the definition of the Gaussian mixture models and hypergraphs and state the
main results proved in this paper.

2.1. Gaussian mixture model
Let n > k > 2 be positive integers. Let
[n]={1,2,...,n}
be a set of n vertices divided into k different communities. Let
[k]:={1,...,k}

be the set of communities. A mapping x : [n] — [k] which assigns a unique community represented by
an integer in [k] to each one of the n vertices in [#] is called a community assignment mapping. Let Q2
be the set consisting of all the possible mappings from [#n] to [£], that is,

Q= {x:[n] — [k]}.

Each mapping in €2 is a community assignment mapping.

We shall define a function 8, which assigns to each vertex a p x 1 vector, depending on the commu-
nity of this vertex. Indeed, we require that all the vertices in the same community correspond to the same
p x 1 vector under 6. Observing 6 perturbed by some Gaussian noise, our goal is to identify the commu-
nity assignment and determine when exactly recovery occurs. It is natural to believe that those vertices
have corresponding observations close to each other are in the same community, while those vertices
whose corresponding observations are far away from each other are in different communities, but this
intuition may be complicated by the existence of the Gaussian noise. See Sections 4.1, 4.2 and 4.3 for
examples with specific 6.

More precisely, let p > 1 be a positive integer. Let

0:Q2x[p] x[k]l >R

be a function on the set 2 x [p] x [k] taking real values.
For a community assignment mapping x € €2, let A, be a p x n matrix whose entries are given by:

(A =0(x, i, x()), Vi€ [pl,j€ [n]. 1
Let X be a p x n matrix with positive real entries defined by:

Y = (0y))icipljeim € (R
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Let P, Q be two p x n matrices. Define the inner product of P, Q by
<P, Q) = Z ZPiJQiJ-
ie[p] jelnl

The norm || P|| for a matrix P is defined by:
IPI = /P, P).
Let P x Q be a p x n matrix defined by:
P Q= (PijQij)ietp)jetn)
Define a random observation matrix K, by:
K.=A +XxW; 2)

where W is a random p x n matrix with i.i.d. standard Gaussian entries. Note that if the entries of ¥ are
not all equal, the perturbation matrix X « W has independent but not identically distributed entries.
Let y € Q be the true community assignment mapping. Given the observation K, the goal is to
determine the true community assignment mapping y. We shall apply the MLE.
Letny, ..., n; be positive integers satisfying

k

Z n;=n.

i=1
and

ly @) =n;, Vielkl;
that is, n; is the number of vertices in community i for each i € [k] under the mapping y.
Let
Quyony = € QX)) =y, Vie[k]}

be the set of all the community assignment mappings such that there are exactly n; vertices in the
community i, for each i € [k].
For each real number ¢ € (0, 1), let

Ix~' (@) .
Q.= Qies——————>c¢V kl¢,
{xe > 0l >c, Vie] ]}

that is, €2. consists of all the community assignment mappings such that the percentage of the numbers
of vertices in each community is at least c.

Assume the true community assignment mapping y € €2, for some ¢ € (0, 1). Let ® be an p x n matrix
whose entries are given by:

1
(@)= —. Vielplj€lnl;

ij
in other words, the (i, j)-entry of @ is the reciprocal of the (i, j)-entry of X. Define
yi= argminxeg% | @ * (K, — A S
and
¥i= argmineg, , |© (K, — A @

Then we have the following lemma

Lemma 2.1. J is the MLE with respect to the observation K, in Q 2. v is the MLE with respect to the
observation K, in Q,, .. '
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assignment mapping y = x, we may consider K, as arandom matrix with mean value A, and independent
entries, such that variance of its (i, j)-entry is ofJ.. Therefore, the probability density of K is given by:

(Ky—Ap)?2;

1 = Lietpljetn — 5,7

Moo )e
iclpljeln] 2770!3/’

where the exponent is exactly
1
—5 10 % (K, — A"
It is straightforward to check that the minimiser of || * (K, — A,)||* is exactly the maximiser of the
probability density. Then the lemma follows. U

We shall investigate under which conditions we have y =y and y = y with high probability.
To state the main theorems proved in this paper, we first introduce a few assumptions.
For x,y € Q, let

Lo(x,y):= || * (A, — A)I. (5
For x € 2, let
ni(x) = x|, Vielkl;

then n,(x) is the number of vertices in community i under the community assignment mapping x. It is
straightforward to check that

k
Z n;(x) =n.
i=1
Fori,j € [k] and x, z € , let t;;(x, z) be a non-negative integer given by:

tij(x,2) = X '@ Nz Gl

That is, #;;(x, z) is the number of vertices in [n] which are in community i under the mapping x and in
community j under the mapping z. Then

Z 1;;(x, 27) = ni(x); Z t;;(x, 2) = ny(2); (6)
jelk] iclk]
We now introduce an equivalence condition on 2.
Definition 1. For x € Q, let C(x) consist of all the x' € Q such that x' can be obtained from x by a

0-preserving bijection of communities. More precisely, x' € C(x) C Q if and only if the following
condition holds

o forie[plandje[n], O(x,i,x(j)) =0, i,x(j)).

We define an equivalence relation on €2 as follows: we say x,z € Q are equivalent if and only if
x € C(z). Let 2 be the set of all the equivalence classes in Q.

We see that if x and z are equivalent in the sense of Definition 1, the non-random parts of the observa-
tion matrices corresponding to x and z satisfy A, = A.. Hence, any algorithm based on this observation
will not distinguish equivalent community assignments; and the best we expect is to exactly recover the
equivalent class of the community assignment. We want to assume this 6 function to be able to distin-
guish community assignments up to the composition with a bijection of communities more precisely.
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Assumption 2.2. Let x,z € Q. If for any i € [p] and j € [n],
0(x, 1, x(j)) = 0(z, 1, 2())); (7N
then there is a bijection n : [k] — [k], such that
xX=noz (8)
where o denotes the composition of two mappings.
Note that (8) is equivalent of saying that for i,j € [n], x(i) = x(j) if and only if x'({) = x'(j). See

Section 4.1 for examples.
Define a set

k
e@:: {([1.1, tl,2a ey tk,k) S {0, 1,2, e ,n}kz: Z ti,/' :l’lj} . (9)
i=1

For ¢ > 0, define a set A, consisting of all the (¢,,t,,...,4) € A satisfying all the following
conditions:

1. Vie [k], maXiery tj,,' >n; —ne.
2. Fori e [k], let t,;); = maX;e t;;- Then w is a bijection from [k] to [k].

3. wis @-preserving, that is, for any x € 2, i € [p] and a € [k], we have
O(x,i,a) =60(woux,i,wa)).

We may assume 6 and X satisfy the following assumptions.

2
> 3k

(tl,l(xs y)7 tl,Z(x’ )’), RN tk,k(x’ y)) € %\f%s’ (10)

Assumption 2.3. Suppose ¢ € (0, =), x € Q2 and y € Q.. Then for all x,y € Q, and
we have
Lo(x,y) = R(n) > 0. (11)

Here R(n) is some function of n, such that (11) combined with (15) leads to the desired exact recovery
result in Theorem 2.6.

Assumption 2.4. Assume ¢ € (0, i—lf), xe x and y € Q.. Assume there exists A >0 such that the
following holds:

Lety,,y, € Q% and a,b e [kland a #b. Let i,j € [n] such that i € yl’l(a) Nx~'(b). Let y, : [n] — [k]
be defined as follows:

. b ifj=i
)= 7 .
n() ifjeln]\ {i}
When
(tl,l(-x9 )71)7 tl,Z(-xa y|)7 ] tk,k(-x’ )’1)) S %S (12)

such that for all i € [k]
fii = Max £;;(X, y1);
e€(0,%), and
yi ¢ Cx);
we have
Lo(x,y1) — Lo(x, y2) = A(1 4 o(1)).

where o(1) — 0, as n — oo.
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Assumptions 2.3 and 2.4 are technical. One may interpret Assumption 2.4 as follows: when a com-
munity assignment mapping y, € 2 is sufficiently close to the community assignment mapping x in the
sense of (12), change the community of exactly one vertex j from y,(j) to x(j) and obtain a new com-
munity assignment mapping y,(j), then the distance between y, and x, in the sense of Ly, approximately
decreases by A from the distance between y; and x. In other words, as y, is close to x and approaching
x, Le(y1, x) decreases linearly with rate A. As we see later, this will create a convergent geometric series
when computing the lower bound for the probability of exact recovery.

Note that Assumption 2.3 can be guaranteed by the following stronger assumption with R(n) = %’);
see Lemma 3.5.
Assumption 2.5.
1. There exists B, > 0, such that for all i, € [p] x n, we have
loi;| < B,.
2. Assume ¢ € (0, %), X e Q%L and y € Q.. Then for all x,y € 2, and
(a6 ), 11206 Y)s - o Bi(X, ) € B\ B, (13)
we have
D O, i, x() — 60,1, y()))’ = T(n) > 0. (14)

i€[plj€ln]

Here T(n) is some function of n, such that (14) combined with (16) leads to the desired exact recovery
result in Theorem 2.6.

Assumption 2.5(1) gives an upper bound on the standard deviation of the Gaussian perturbations
(which may depend on n); Assumption 2.5(2) may be interpreted as when x, y € 2 are “far away” from
each other in the sense of (13), the corresponding 6 functions are “far away” from each other in the sense
of (11).

Theorem 2.6. Assume y € Q2 is the true community assignment mapping. Suppose that Assumptions

2.5 and 2.4 hold. Let ¢ € (0, i—;) Suppose one of the following cases occurs

1. Assumption 2.3 holds and

R
lim nlogk—%:—oo, (15)
2. Assumption 2.5 holds and
T
}Lrg nlogk — 85;? = —00. (16)
Moreover, suppose that for any constant § > 0 independent of n,
) A(l —9)
lim logk + logn — TZ_OO’ a7

then lim,_, . Pr( € Cy)) = 1.

Theorem 2.6 gives a sufficient condition for the exact recovery of MLE in the Gaussian mixture
model. It is proved in Section 3. An application of Theorem 2.6 on the exact recovery of community
detection on hypergraphs is discussed in Section 4.3.

We also obtain a condition for the exact recovery when the sample space of the MLE is restricted to

Assumption 2.7. Assume x,y,,, y, € Q2 such that

L. Do(yms yu) = J, where j > 2 is a positive integer; and
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2. There exist uy, . . ., u; € [n], such that

@) yu(W) =), forall v e [n]\ {u, ..., u}; and
(®) yul(wi) # yu(u:) = x(u;) = y,u(ui_y) for all i € [j].
(C) (tl,l(-xv ym)9 t1,2(x’ ynz)’ ceey tk,k(-x’ ym)) € ‘%E Wlth IS (O> g_z) and W(l) = l

Then
Lo(x, ym) — Lo(x, yu) = jA(1 + o(1)) (18)
Theorem 2.8. Suppose that Assumptions 2.5, 2.7, (15) and (17) hold. Then lim,_, ., Pr (y € C(y)) = 1.

Indeed, Assumption 2.4 implies Assumption 2.7; see Lemma 5.5. Theorem 2.8 is proved in
Section (5).

2.2. Hypergraphs

A special case for the Gaussian mixture model is the hypergraph model. Let s, s,, s, be positive integers
satisfying

2<s5<5<s,.
A hypergraph H = (V, E) has vertex set V := [n] and hyperedge set E defined as follows:
E:={(a,...,a):a,...,a,€[n],se{s,si+1,...,5}}

Let¢: Uz [k]* — [0, c0) be a function which assigns a unique real number ¢(cy, ..., c,) to each
s-tuple of communities (cy, . .., c,) € [k]’, and s € [s}, 55].
For a community assignment mapping x, the weighted adjacency tensor A, is defined by:

_ d(x(ay), ..., x(a,)), if(a,...,a,)€E

AX a s
(Aay....as 0 otherwise.

19)

and

2:(z/zl,...,a;) = O—(al,...,a.;)

Define a random tensor K, as in (2). Recall that y € 2, is the true community assignment mapping.
Define y and y as in (3) and (4).

Recall that y € € is the true community assignment mapping satisfying |y~ (i)| = n;, for all i € [k].
Let a € [n]. Let y € Q be defined by:

yi) ifie[n], andia

@7y — 20
Yo Y9a) ifi=a. 0
such that
y(a) #y“(a) € [k].
Theorem 2.9. Assume
lim min n; = oo. (20

n—o0 i€lk]
Suppose that there exists a subset H C [n] satisfying all the following conditions:
1. |H|=h=o0(n);

. logh __ 1.
2. 111'['1,1ﬁoo fogn — 1,
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3. Foreach g € H,

52 K 1
Z Z Z 2

_ o5 .. .
$=51 =1 G G €u\Hy=1 T oGt )

X(¢(y(ll)s s 7y(g)(g)’ e 7)’(13)) - ¢(y(ll)’ cee ,)’(8), e sy(ls)))z
= (1 +o()Ls(3*, y)

4. there exists a constant > 0 independent of n, such that

(a)
me.lxaeH Ld)(y 7y) 5132’ Vl’l
min,ey Lo (Y@, y)

If there exists a constant § > 0 independent of n, such that
max Lo(y,y) < 8(1 —8)logn (22)
Then lim,_, ,, Pr (3 € C(y)) =0.

Theorem 2.9 is proved in Section 4. An example is given in Section 4.2.
Leta, b € [n] such that y(a) # y(b). Let y» € Q,, . be the community assignment mapping defined

by:
y(@) ifie[n]\{a, b}
YP@) = yb) ifi=a (23)
y(@) ifi=b

In other words, y“? is obtained from y by exchanging y(a) and y(b).
We also prove a condition when the exact recovery does not occur if the sample space of the MLE is

Theorem 2.10. Assume

lim min n; = oo. 24)

n—soo iclk]
Suppose that there exist two subsets H,, H, C [n] satisfying all the following conditions:
L. |Hi| =|H,| =h=o(n);

logh __
n—>00 Jogy — 7

. lim,

W N

. Forany u,,u, € H, and v\, v, € H,,

) = y(uz) # y(vi) = y(»2);
4. Foranyue H, andv € H,

2 o 1 1
Z Z Z ("51,. i %, )

S=51 J=L G BRI\ UHR)P ! At ) A V)

(@O, -« s YW), oo Y(G)) — O, - o Y@, - .y (i)
= (1 +0(1)Le(", y)

5. For any g € H, U H,, the quantity

52 N 1
2.2 2 g
S=S1 =1 (i seesljoeenis)E(]\(H] UHR)Y (el 1 8ol 1 e-orl)

@O, -5 b, ., Y({)) = dOG), - -, ¥(@), - ., Y)Y

is a constant and is independent of g.
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If there exists a constant § > 0 independent of n, such that

max Lo(y“”,y) < 16(1 — 8) logn, (25)

ueH| ,veH)
lim,_ ., Pr(y € C(y)) =0.

Theorem 2.10 is proved in Section 6.

3. Community detection on K-community Gaussian mixture models

In this section, we consider the MLE when the number of vertices in each community is unknown. We
shall obtain a sufficient condition for the occurrence of the exact recovery. The main goal is to prove
Theorem 2.6.

Recall that we defined an equivalence relation on €2 in Definition 1. It is straightforward to check that

K,=K,, andA,=A,, ifyeC®).

Therefore, the MLE based on the observation K, can only recover the community assignment mapping
up to equivalence.
The main idea to prove Theorem 2.6 is as follows:

« We find an upper bound for the probability that the MLE is not in the equivalence class of the true
community assignment; see (32).

o We show this upper bound converges to zero as n — oo under the assumptions of Theorem 2.6.
This is achieved by splitting the upper bounds into two parts: one part I, is the sum over all the
community assignment functions that differs from the true community assignment functions by at
most ne and other part /; is the sum over all the community assignment functions that differs from
the true community assignment functions by at least ne. The fact that /, converges to 0 as n — 0o
follows directly from Assumption 2.5. To prove that I, converges to 0 as n — oo, we bound /, by a
geometric series that converges to 0 as n — oco.

Note that
Aii(AL)y
(@ xA, DxA)= Y M (26)
ielpljeln] i
_ Z 9()(, i’ x(j))@(z, i’ Z(]))
= =
i€[pljeln] W

In particular for each x € €2, we have

joxa =y GELIDN @7

O_2

ielplijeln] i
@ (K, —A)* = P+ K|[* = 2(® xK,, ® xA,) + | D+ A,|* (28)
For each fixed observation K,, ||® * K, ||* is fixed and independent of x € 2. Therefore,
yi= argminyeo @+ (K, — A)*
= argminxgg% (=2(® *K,, P xA,) + | D x A7)
For x € 2, define
f) = —2(dxK,,®xA,) + [|PxA,|’ (29)
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Then

FO) =) = [P+ A — @+ A, |I?
—2(PxA, Px(A, —A)) —2(W,Dx (A, —A))
= [|®* (A, — A)I* = 2(W, D x (A, — A)),
where we use the identity
Px(ZTxW)=W.
Then f(x) — f(y) is a Gaussian random variable with mean value

E(fx) —f() = Lo(x,);

and variance

Var(f(x) —f(y)) = 4Lo(x, y).

Lemma 3.1. Forx,ze Q. Ifx € C(z), then
J&x) =f(2).

501

(30)

Proof. By Definition 1, if x € C(z), then for any i € [p] and j, h € [n], x(j) = x(h) if and only if z(j) = z(h)

and 6(x, i, x(j)) = 6(z, i, z(j)), then A, = A_ by (19). Moreover, since for any i € [p] and j € [n],
(A.x)ij = (Az)ij;

we have
(Ax)ij _ (Az)u‘

0y o;;
this implies
DPxA, =D xA..
Then the lemma follows from (29).
Define
p(y;o):=Pr ()7 € C(y)) =Pr (f(y) <  _min f(x))
€ e CWACO)

Then

1=p@io)< Y Pr(f() —f()<0)

CEQ . : CIECY)
3

—JL )
- Z Pr-%e{/v(o,l) <$ < @)

C(X)Eﬁk :C()#C(y)
3

Loy’
< E e LI

C(x)Eﬁk : C(0)#C(y)
3

Lemma 3.2. Letx,y,x',y € Q, such that X € C(x) and y' € C(y), then
Lo(x,y) =Lo(x, y).
Proof. By (31), we obtain that when x’ € C(x) and y' € C(y),
OxA, =DxA,,; PxA, =DxA,.

Then the lemma follows from (5).
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Lemma 3.3. Forx,y e 2, Lo(x,y) > 0. Moreover,
1. If x € C(), then Le(x,y)=0.
2. If 0 satisfies Assumption 2.2 and Ly (x,y) =0, then x € C(y).

Proof. From (), it is straightforward to check that Ls(x, y) > 0 for any x, y € Q2. Moreover, from (5),
we obtain

Lo(o,y)= Y 6300 i,x() — 00, i, y())’
i€lpljeln]

By the fact that 0;; > 0 for all i € [p], j € [n], we obtain that L, (x, y) = 0 if and only if
0(x, i, x(j)) = 0(y, i, y())), vie[pl,jelnl (33)

If x € C(y), then there exists a O-preserving bijection 1 : [k] — [k], such that x =71 o y. Then (33) holds
by the 6-preserving property of 1, then we obtain Part(1).
On the other hand, if L¢(x, y) = 0, we have (33) holds. Then x € C(y) follows from Assumption 2.2.

O
Lemma 3.4. Assume thaty € Q. and x € Q% Forie k], let
tw(i),i(-x9 Y) = I};Ej‘ tj,i(-x7 )’), (34)
where w(i) € [k]. When ¢ € (O, 2—;) and (t,(x,¥), t12(x, ), . . ., h(x,Y)) € R¥ satisfies
max 4i(x, y) = n; — ne, Vi€ [k]
je
w is a bijection from [k] to [k].
Proof. See Lemma 5.6 of [13]. O

Definition 2. Define the distance function Dg, : Q2 x Q — [n] as follows:
Do(x,y)= Y 1;(x.y).
ijElkliZ]
Jorx,y e Q.

From Definition 2, it is straightforward to check that

Do(x,y)=n— Y t;(x, )

ic[k]

Lemma 3.5. Assume that 0, X satisfies Assumptions 2.5. Then for all the x,y € Q such that (10) holds,
we have
()

B}’

Ld>(x3 y) Z

Proof. Note that

) Zie[p].je[n] jz‘/ (Q(X» i» x(])) - e(y’ i’ y(])))Z

Ld> 3 — 0 : .’ B _ 9 , .’ . 2 >
(x,) <Z 00130 =00 100 | | === G

i€[pljeln]
By Assumption 2.5(1), we have
2 ictpljetn fz/ O, i, x() — 6(y, i, y()))* ]
Zie[p],/e[n] Ox, i, x(j)) — Oy, i, )’(f)))z T B}
Then the lemma follows from Assumption 2.5(2). O
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Proof of Theorem 2.6. Note that
_ Loty
Y e <L+l
CEQ\C()
where

—(Lg(x)?
1 1= E e 8

CeQy (11 @)tk (1)) E[PB\ B 1. COEC()

and

7(Lq>(.!.y))2
I = E e 8 .

Cwefy (M1 @Dl (1)) €Be COAECE)

and ¢ € (0, ).

> 3k
By Lemma 3.5, when Assumption 2.5 holds, we have

T(n)

I, < K'e *
When (15) holds, we obtain
lim 1, = 0. (35)
Now let us consider I,. Let w be the bijection from [k] to [k] as defined in (34). Let y* € 2 be defined

by:
V(@) =w(), Vz € [n].
Then y* € C(y) since w is §-preserving by the definition of %.. Moreover, x and y* satisfies
ti(x, y*) > n(y*) — ne, Vi€ [k]. (36)
We consider the following community changing process to obtain x from y*:

1. If for all (j, i) € [k]?, and j # i, £;;(x, y*) = 0, then x = y*.
2. If (1) does not hold, find the least (j, i) € [k]* in lexicographic order such that j # i and 1,:(x, y*) > 0.
Choose an arbitrary vertex u € {x~'(j) N (y*)~'(i)}. Define y, €  as follows:

@)= Jj ifz=u
MO @ ifzen\ )

Then we have

5i(x, y1) = 1,(x, y*) — 1 (37
106, y0) = 13,06, y) + 1 (38)
fap(% 1) = (%, y°) ¥(a, b) € (KPP \ (G, D, G.)))) -

ni(y)) =n(y*) — 1

ni(y1) =m(y") + 1
m(y) =n(y") VI € [k]\ {i, j}.
Therefore, x, y; and y* satisfy
t,(x, y1) = m(y,) — ne;
t,(x, y1) = m(Q*) — ne;
n(y1) = m(y*) — ne;
for all [ € [k].
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From Assumption 2.4 and Lemma 3.2, we obtain

Lo(x, y1) — Lo(x,y) = Lo(x, y1) — Lo(x,y") < —A(1 4 o(1)).

Therefore,

_ Loy _LoGy))  _ A(+4o(1)
8 — 8 e~ 8§

e <e

(39)
In general, if we have constructed y,; € 2 (» > 1) satisfying all the following conditions:

t(x, y,) = n(y,) — ne;
tu(x, y,) = n(y*) — ne;
n(y,) > n(y*) — ne; (40)
for all [ € [k]. We now construct y,,, € §2 as follows:
(1) Ifforall (j,i) € [k]*, and j # i, ;,(x, y,) = 0, then x = y,; then the construction process stops at this
step.

(2) If (a) does not hold, find the least (j, i) € [k]* in lexicographic order such that j # i and #;,(x, y,) > 0.
Choose an arbitrary vertex u € {x~'(j) N y;'(i)}. Define y,., € £ as follows:

j ifz=u

yr+1(Z) = yr(Z) le S [}’l] \ {M}

Then it is straightforward to check that

11X, Y1) = m(Yyg1) — NE;
(X, Y1) = m(Y*) — ne;
n(yr41) = m(y*) — ne;
for all [ € [k].
Then if (36) holds with y* replaced by y,, then (36) holds with y* replaced by y,.,. By Assumption 2.4,
we obtain

_ Lotxyr)
g

_LoGyrr) Ad+o(l)
g e LI

e <e

Recall that the distance Dg, in 2 is defined in Definition 2. From the constructions of y,,;, we have

Dq(x,y,41) =Dg(x,y,) — 1.

Therefore, there exists 4 € [n], such that y, = x. By (39) and Assumption 2.4, we obtain

_ Loy _ hA(+o(1)
8 8 .

e <e

Since any x in %, can be obtained from y by the community changing process described above, we

have
[2 S Z (nk)167 IA(l-go(l)) . (41)
=1

The right-hand side of (41) is the sum of geometric series with both initial term and common ratio

equal to
V iz glogktlogn— S (42)

When (17) holds, we obtain

lim 7, =0 43)

n—o0o

Then the proposition follows from (35) and (43).
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4. Community detection on k-community hypergraphs

In this section, we apply the results proved in Section 3 to the exact recovery of the community detection
in hypergraphs and also prove conditions when exact recovery does not occur in hypergraphs under the
assumption that the number of vertices in each community is unknown.

The main idea to prove Theorem 2.9 is as follows:

« We obtain an lower bound for the probability that the MLE is not in the equivalent class of the true
community assignment function; see (50).

« We show this lower bound converges to 1 as n — oco. The proof utilises the inequalities regarding the
distribution of the maximum of a number of Gaussian random variables as discussed in Section A.

In the case of a hypergraph, from (26), when

i= (ila i2’ ) i.v—l) € [n]Xil;

e(x’ i’ a) = d)(x(ll)’ LRI ,x(isfl)? a);
we obtain for x, z €

(PxA, PxA) (44)

:i Z (Ax)(il ,,,,, iv)(Az)(ilg..,ix)
OG,.iy

s=51 (i1,....i5)€[n]*

=Z DRSNS O GOV O)

2
Oiy.ii)

s=51 (i15-is)E[N]

In particular,

1P *A* = (P*A, PxA,)

_Z 2 (GG, . . -, x(0))
- U(%lv---vix)

s=51 (i1,....Iis)€[n]®

Recall that y € €2, is the true community assignment mapping. Then
j\) = argminxeﬁ'zk ” D * (Ky - AX)||2 = argminxeﬂﬁf(x)
3 3

where f(x) is given by (29).
By (30), we obtain that in the hypergraph case

Jx)=f) (45)
= P * (A —A)I* —2(W, 2% (A, — A)))
_ Zz 3 (PG(En), - - -, x(0y) — (), - - -, ¥(i)))’

2
Oy i)

=51 (i seeniy) NS

—2(W, % (A, — A,))

Then f(x) — f(y) is a Gaussian random variable with mean value L (x, y) and variance 4L (x, y), where
Ly (x,y) is defined by (5).

Proof of Theorem 2.9. When y“ € Q is defined by (20),

Lowyw V) =1; (46)
by Y) =y — 1 (47
606, ) =n; Yielkl\ (@)} (48)
1,0, y) = 0; V(0. j) € [k \ {(y* (@), y(a))}, and i #}. (49)
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and

ny(m(a)(y(a)) = nym)(,,) + 1,

”y(w()’(m) =nyg— 1

n(y ) =n; Vielkl\ {y“(a), y()}.
Moreover,

1= p(; 0) = Pr (Ve (FO') = f() < 0}) (50)

Since any of the event {f(y“) — f(y) < 0} implies y # y.
Let H C [n] be given as in the assumptions of the proposition. Under Assumption (3) of the
proposition when a € H, we have

[P * (Ayo — A
_ Z 3 (662G, - .. Y6 — OG0, . .. ¥()

2
Oy i)

s=81 (i1,-.,is)E[N]S

= L<I>(y(a)7 y)

—aHom Yy Y

o5 . . .
s=s1 j=I (il’___;»f _____ is)e((n\H)"! (U1 yeeesljm 5ol 1 5eenois)

X (@O, .., ¥y, ..., y(0) — dOG@), . . ., y(@), . . ., ¥(i)))}
Then from (45), we have

FOD=fO)

= 2(W,®%Aw —A,) + (1 +o0(1)) XZ:Z > 2;

s=s; j=1 (il;-44:’>/ ’’’’ i;)E([n]\H)’V_l U(ilw-v"j—ls“viﬂrlvwsis)

X (@), -y @), ..., y()) = ¢, - . ., ¥(@), ..., YD)}
Then 1 — p(3; o) is at least
Pr (User {£0*) —f() < 0})
2(W, D% (Ajw —A))) - 1)
10+ (Ao — A2
2(W, P x(Ayw —A))) 1>
[P (Ayw —A)|?
Let (2, % Z) be a partition of U2 [n]* defined by:
X ={a=(u,0,...,a,)€ Ujiﬂ [n), oy, ..., .} NH =0}
Y={a=(a,a,...,0,) e U2 [n]',[{i€[s]:; € H}| =1}
[n), [{i € [s]:0; € H}| = 2}

F={a=(aj,a,...,0a)€U?
For n e {Z, %, 2}, define the random tensor W, from the entries of W as follows:

s=5]
O lf(ll’,lr)¢n
(AP AT | S O RS/

> Pr (maxagm

> Pr <max,,E 1

(Wr])(il,iz,...,i.;) = {

For each a € H, let
2= (War, @5 (Ayo — A))
Y, =(Wg, ®*(Ajw —A))
% = <W$"s D % (A)-(a) - A))>

https://doi.org/10.1017/50956792524000263 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000263

European Journal of Applied Mathematics

Forse{s;,si+1,...,5]}, let
Ji:i= (i, .- .00 Clnl’
Explicit computations show that
(Ay)y, — (Ay),
_ {qﬁ(y@(m, YD) = OG- Y6 ifae i)

0 otherwise.

Claim 4.1. The followings are true:

1. Z,=0foracH.
2. For each a € H, the variables %, and %, are independent.

Proof. It is straightforward to check (1). (2) holds because N 2= @.
For g € H, let %% C %'be defined by
B =la=(a,t,...,0,) EX:sels;,s;1+1,...,8}, I els], st.a;=g}.
Note that for gy, g, € H and g, # g, #*' N %52 = (. Moreover, %= U, %*. Therefore,
Y= (Was, ®x (A —A,)

geH

Note also that (W, @ * (Ayw — A))) =0, if g # a. Hence,

% — Z (W)a . {(Ay(") - Ay)ot}

aea O«

So by (51), we obtain

W), - {Ajw —A)) S 1
I 55 D DR

aea s=51 J= (U B (=1 Gl 1@l )

{@OG), -y @, ) = @G, - Y@ YA Wiy i1 airiv |

507

(51

Then {#,},cn is a collection of independent centred Gaussian random variables. Moreover, the variance

of %, is equal to
1

¥y ¥
2
$=51 =1 (if B (nINH) Tl 1m0
@OGD, - - YO(Q), -, ¥(1) = BOGD), - .., ¥(8), - - -, ()
= (1 +o())Lo (", y)
by Assumption (3) of the proposition.
By Claim 4.1, we obtain

2(W, @ x (Ayw — A,)) _ 2%, n 2%,
|| D * (Afva) —A)|? o D% (Ayw —AD[I> [P *(Ajw — A2
Moreover,
A%, + Z2) 2%, 2%
max > max — max
ach @ x (Mg —ADIE = et |0 % Ay — A2 et [|® % (Ao — A2
Recall that

| P * (Ay(a) - Ay)”2 = L@(Y(”),y)
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By Lemma A.1 about the tail bound result of the maximum of Gaussian random variables, if (A1)
holds with N replaced by A, the event

E 2%, >(1—¢) [2mi —4 logh
= max — & min (0]
VT o A — AP e Ly(yo,y)

h

has probability at least 1 — e, and the event

2 4V,
E, = { Z 25(1—i—g)\/2logh-maxLﬁi)}

max
ach || @ * (Ayo — Ayl act (Lo(y'®, y))?

has probability 1 — A~°.
Moreover, by Assumption (3) of the Proposition and (52),

VarZ, = @ * (Ayw — A)I* = Var(#) = o(DLs ()", )
Define an event E by

2% +22, aeri Lo(Y",
E:= {max + >1—e—(14e8)o(l) W”—M
acl || * (Ayw — A2 Mingey Lo (Y@, y)

1
x . [8log hmin ———
act Lo(y', y)

Then E,NE, CE.
When 7 is large, and (22) holds

2{W, ® x (A, — A)))
Pr [ max, .y - — >1
1D % (Ao — A
>Pr(E)>Pr(E,NE)>1—-Pr(E]))—Pr(E) —1,

as n — 00. Then the proposition follows.

4.1. Examples of Assumption 2.2

We shall see some examples of the function 6 : @ x [k] x [k] — R satisfying Assumption 2.2. We first
see an example when 6 can uniquely determine the community assignment mapping in 2.

Example 4.2. Assume p=k. Fora,b e [k], xe Q

1 ifa=b
0 otherwise.

0(x,a,b)= {
Then if for all a € [p] and j € [n], (7) holds, we have x(j) = a if and only if z(j) = a, then x =z.

We now see an example when 6 cannot uniquely determine the community assignment mapping but
determines the community assignment mappings up to the equivalent class as defined in Definition 1.

Example 4.3. Assume p =n.
0k, i, a) = 1 ifx())=a;
0 otherwise.
Then if for all i,j € [n], (7) holds, we have x(j) = x(i) if and only if z(j) = z(i), then x € C(2).
Example 4.4. Assume p =n, a € [k] and i € [n].

O(x,i,a) =x) — a;
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Then if for all i,j € [n], (7) holds, we have x(i) — x(j) = z(i) — z(j). This implies that x(i) = x(j) if and
only if z(i) = z(j), therefore x € C(z). If both x and z are surjective onto [k], then x = z.

4.2. Example of Theorem 2.9

Example 4.5. Here we see an example about how to apply Theorem 2.9 to the exact recovery of com-
munity detection on hypergraphs. Lety € Q,, ., be the true community assignment mapping. Assume
that for any s € {s, ..., 82}, (i1, b2y - . ., 1s), G15J2s - - - » Js) € [1]°, we have

Oiyigunnis) = Ot o)

whenever

y(i,) =y(,), Vre€[sl;
that is, o, ;,, depends only on the communities of (i, . . ., i;) under the mapping y. In this case, we can
define o: U2 [k — (0, 00), such that

OGiyiny =0 (), -« YA, Y, i) €[n) (53)
Then for any a € [n],
L<p(y(“),y) =P * (Ayo — A’ b

_Z Z (O3, - -, YE)) — dG(D), - - -, ¥(0)))
@O, - .., ¥(@)))?

s=51 (i1,..is)€ln
Moreover, for any a, b € [n] such that
y(a) = y(b); y“(a) = y"(b)
we have

Loy, y) = Lo (", y).

We consider

min Lo, y) (55
09 @y@ERP YO @Ar(@

Assume that when y(a) = ry, Y (a) = ry, Lo(y', y) achieves its minimum. Let H C y~'(ry), then h = |H| <
n,,. Assume

logn, 1

n—oo log n

Then we may choose h = % such that Assumptions (1)(2) in Theorem 2.9 hold. Moreover, Assumption

(4) in Theorem 2.9 holds because if for all a € H, let y“)(a) = ry, then Lo,(y\?, y) takes the same value for
all a € H. There are many mappings ¢ : UL [k]' — R to guarantee Assumption (3) in Theorem 2.9.
For example, one may choose

25 ifby=...=b,
¢(b1,...,bs>={ ' (56)

0 otherwise.

forse{s,s,+1,...,8}and by, ..., b€ [k]. Then from (54), we obtain

Lq,(y(“),y):Z ) (57)

5=51 (b1,..b5)€ELK]S (dy,....ds)€E[k]S

di,....d)— b, ....0) (1
@....d) = $(br......b) (l—[%(yw,y))
=1

@by, ...,by))?
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From (46)—(49) and (56), we obtain that the terms actually contributing to the sum must satisfy
{(dl’ bl)’ ey (dss bs)} g {(rl’ r1)9 (rla rO)}
or

{(di, b)), ..., (d,by)} € {(ry, o), (r1, 10)}

Then we obtain

52
Lo(,y) = Y 2°(Los + L1.)

s=5]

where
| (b1 1--0sbs )ETKD (d 1ovosds YETKI (d b1 )l bs) S0, 70D 70D} (@ (roy ..., 10))?
(b1 ETKIE Ay ETK (1 1 (s ) SN O] @by, ...,b))?
Assume

lim min{n,,, n, } = oc.

n—o00

Ifin{(d\, b)), ..., (d b))}, there exist more than one g € [s], such that (d,, b,) = (11, ry), then the sum of
such terms will be of order o((n,,)™") (resp. o((n,,)*™")) in Ly, (resp. L ). Therefore, we obtain

s (n,) " (1 +0(1))

(E(r(), . ro))2

To analyse L, assume that there exists a positive constant C > 0 independent of n, such that

LO,S =

O < C < minbl ,,,,, bse{rg.r1} E_(bh sy b:) ,
maxy, . petror) 0 D15 - -+ by)

VneN,se{s,si+1,...5} (58)

Then we obtain

< (n,)"" (1 +0(1))
b= @,

j=1 "-’rl’FO’rla""rl))z

Then Assumption (3) of Theorem 2.9 follows from the fact that |H| = % =o(n,,).

In the special case when all the communities have equal size, we may obtain a sufficient condition
that the exact recovery of MLE does not occur in the hypergraph case when the number of communites
k = e’e"_Since in this case we have ny =n, = . . . =ny, > '°¢"~°0e" then (21) holds. Choose h =

then Assumptions (1) and (2) of Theorem 2.9 hold.

n
logn’
4.3. Example of Theorem 2.6

Example 4.6. We can also apply Theorem 2.6 to the case of exact recovery of community detection on
hypergraphs. Again we consider the case when oy, ;.\ depends only on (y(iy), . . ., y(iy)). Hence, we may
define o as in (53).
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To check Assumption 2.4, let v,,, Vi1, X € Q be given as in the proof of Proposition 2.6. For the
simplicity of notation, we use y instead of y*. By (57), we obtain

L<I>(-x ym) _Ld)(-x ym+l)

-y ¥ GO, ..,y(z;»)z

s=51 (i1s..0is)E[N]*

[(¢(x(ll) x(l )) - d)(ym(ll)s e ym(ls)))z - (¢(x(ll)’ . 9x(i3)) - ¢(ym+l(il)9 ce ’ym+l(i3)))2]

—Z Z L @06, ..,y(is)))2

s=51 (i1s...is)E[N
_2¢(-x(ll)9 e ’x(ls’)) [d)(ym(il)’ e 9ym(ls)) - ¢(ym+l(il)’ s ym+1(ls))]}
Forj,p,q € [k] and x,y, z € Q, we define

tipa(t, ¥, D) =i € [n]: x() =,y =p, 2 =P} = Ix"' DNy )Nz (9.

{(¢(ym(11)’ e aym(is))2 - (¢(ym+1(il)a cee aym+l(is))2

Then
52 1
Lo, yn) = Lo ymi) =) Y GG B, Z (59)
s=51 (b1ibs)elk Ireees®s cody)E[K

[(as(dl,.. ,d,)y’ (]‘[rb,d,@ ym>—]_[rb,d,(y,ym+1)>—2 >

(- ls)ELK]

¢, .., 1Py, . ... d) (1’[ Iy 0, s Vs X) — ]'[ Iy 0,0, s ym+1,x)> }

r=1 r=1

Recall that Do (¥, Y1) = 1, and there exists u € [n] such that

x(W) = j = Y1 () 7 yu(u) = i = y(u).

where i, ] € [k] and i # j, while y,,(v) = y,..1(v) for all the v € [n] \ {u}. This implies that if {d,, ...,d;} N
{i,j} =0, then the corresponding summand in (59) is 0 and does not contribute to the sum. Under the
assumption that

Lo (t1( ), ta(x,y), - . s ii(x, y)) € B, with w: [k] — [k] the identity map; and
2. m>n>. .. >0, and

3. min(,,]w___y;,l‘_)elkj.; |E(b1, ey bv)' > B3 > 0,' and

4. lim,_, o % =

we obtain

oGt ) = Lot ) =3 3 Z @, ... li b)) 2

s=s1 8=1 (by,....bg,....b5)Elk]® ’ () yeeridgeeosds) ELKTS

(¢(d1’ ey is sy ds))2 - (¢(d17 .. aja ceey ds))z) l_[ tb,,d,‘(y7 ym) - 2 Z

rels]\{g} () dgeenls)ELKTS

oy, L) (@, .0 d) — @y, L), L5 d))

nk—Z
1_[ tbnd,,lr (ya ym’ X) + 0 (?)
relsl\{g) 3

The identity above can be interpreted as follows. We can classify the terms satisfying {d,,...,d;} N
{i,j} # @ by the number

Nyy={lels]:d, € {i,j}},

https://doi.org/10.1017/50956792524000263 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000263

512 Z Li

and obtain that the leading term of Lo (x, ¥,,) — Lo (X, Yii1) is given by the terms when N;; = 1. Moreover,
by Assumption (1) we have

L¢<x,ym)—L¢(x,ymH>=ZZ Z =T ll.._. oy

s=s1 8=l (by....og.....bs)ElKIS e

@b, D) = (@1 b)) ] =2 >

rels\{g) (I} soegsennslsETKTS

¢y, fsoo b)) (@, ..l D) — Dby, L], DY)

l—[ ‘o n? ‘o enn?
Bz B;
relsl\(g) : 3

55 s 1
_ZZ Z @by, ...,i,...,b))?

s=s1 &=l (by,.. -bs)elk]®

(¢(b.,...,i,...,b.v)>—(¢(b],..., b))’ H m,
rels]\
+0 £>+0 8””;2)
B B

. 1
A= wgmxlﬁ Z Z Z (a(bl .. by))?

Define

s=s1 8=l (by,....bg...., bs)elk
x(¢<b1,...,i,...,b,r»—(qb(bl,...,j,...,bs)»Z [T m
relsi\(g}
We further make the assumptions below:
s—2
lim % —o. (60)
n—>00 33 A

Then

Ld)(-x» ym) - L<I>(-x’ ym+1) = A(l + 0(1))

Then by Assumption 2.5(1), the exact recovery occurs with probability 1 when n — oo if (15) and
(17) hold, and

Z DY @ i) = GG ) (61)

s=51 (i15nsis)ELK (o5 LKD)

X (1_[ t,'h,',_(x, y)) > T(}’l)

r=1
when (10) holds.
There are a lot of functions ¢ : U2 [k]' — R satisfying (60) and (61) and Assumption 2.2. For

example, we may consider the function ¢ as defined in (56). Assume

5 s 1
A=Yy Z )

s=s1 g=1 (by,...hg....bs)E[k]® IR

x(qb(bl,...,ro,...,bx))—(qb(bl,..., L b)) ]_[ 1,

rels]\
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where ry, r| € [k] and ry # 1. As in Example 4.5, we obtain that

52
A = Z 225(A0,s + Al,s)s

S=51
where
s—1 s—1
PN Y S (%)
©@ (o, ...,70)) B
s s—1 s—1
=y ) , 3(0)
! @, ... 1, 0,1, 1)) B

where the inequality follows from Assumption 2.5(2). It is straightforward to check that when ¢ is given
by (56) and (60) hold if (58) holds.
To check (61), note that

Z > (¢(i1,...,is)—¢(il,...,js))2><(ﬁmx,y))

$=51 ({15nsis)ELKT (1sennifs €LKT7) r=1

>ZZZ > @), W) = @G, i D)

s=s1 gels] jels] ielklij

Xt j (X, ) l_[ Lo i(X, )

r=[sI\(g}
When (10) holds, the following cases might occur

o wis not a bijection from [k] to [k]. In this case, there exists i, € [k], such that w(i) = w(j), then when
(10) holds, we obtain

Luipy = twgy = 7 k

o w is a bijection from [k] to [k]. However, there exists i € [k]*, such that
tw(/'):]' S n; —én.
Let
s —1
lL.=w (argmaxle[k]\(w(,-))tlJ),

then i # j and

( ) - En
tw i) (X5 -
(ON] y l ]

When (10) holds and y € 2., we have

Z Z Z (¢(lla ceey ls) - ¢01, . e 7js))2 X (1_[ tiv‘/x(-x’ )’))
$=81 ({15l ELK] (1,5 LK) r=1

52

5 B 25 o178
(MY 1 n en 2% sn
> 52 (k) mm{k’k—l}zg(ck)f‘max{ck,kg—l}

S=51

Let

2 2%sn’
T(n):=
™= 2 5 {ck, =11

s=5]

Then we obtain (61).
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5. Community detection on Gaussian mixture models with fixed number of vertices
in each community

In this section, we consider the MLE restricted to the sample space consisting of all the mappings satisfy-
ing the condition that the number of vertices in each community is the same as that of the true community
assignment mapping y € €2,, ., . Again we shall prove a sufficient condition for the occurrences of exact
recovery.

Recall that f(x) is defined as in (29). Recall also that f(x) — f(y) is a Gaussian random variable with
mean value L4 (x, y) and variance 4L4(x, ).

C'(x):= C)N Ly, s

J) =f().
Proof. The lemma follows from Lemma 3.1. U
Define
p(;0):=Pr(yeC(y)=Pr (f@) < cm)e(a,,rfl,ﬁ \{C*(y)))f (x))
Then

1 —p(s0) < > Pr (f(x) = f(») < 0) (62)

C*0E(Qny .. MC*0)))

Z Pr <%_ > L<1>(x’y)>
e M0,1) 2

C* @ (Qnp oy MC*ONY)

_Lpy)
2. e

C* e (Qnp ey \[C*O)))

IA

Lemma 5.2. Letye Q,, ,, N2, be the true community assignment mapping. Let x € Q,, . Forie
[k], let w(i) € [k] be defined as in (34). Then

1. Whene € (0, i) and (t,,(x, ), . . ., i (x, y)) € B, w is a bijection from [k] to [k].
2. Assume there exist i, j € [k], such that n; # n;. If

. n; —n;
£ < min (63)
ijelk]:n;#n; n
Then for any i € [k],
n=y" O =1y W) = 1. (64)
Proof. See Lemma 6.6 of [13]. O
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Definition 3. Let[ > 2 be a positive integer. Letx,y € Q,, . .. We say l distinct communities (i\, . . . , 1)) €

[k]" is an I-cycle for (x,), ift;_ ; (x,y)>O0forall2<s §l + 1, where i)y, := i;.

is— iy
Lemma 5.3. Letx,y € Q,, , and x #y. Then there exists an I-cycle for (x,y) with2 <1 <k.
Proof. See Lemma 3.3 of [13]. O]
Proof. The lemma follows from Lemma 3.3. O
Lemma 5.5. Suppose that Assumption 2.4 holds. Then Assumption 2.7 holds.
Proof. Letz, =Yy, and z; =y,. Fori € [j — 1], define z; € Q2 by

zio(v) ifve[n]\ {u}
z(v) = .

x(u;) ifv=uy;

Then for any i € [J],

Dqo(zi,zi21) = 1.
by Assumption 2.4, we obtain
Lo(x,zi-1) — Lo(x, 1) = A(1 4 o(1)), Vi€ [j] (65)
summing over all the i € [j], we obtain (18). ]

Proof of Theorem 2.8. Let
L (x,y)
I':.= Z e,
C* 0 (Qny ..y MC*0)))

By (62), it suffices to show that lim,_,,, I' =0.

Let
. c . n;—n;
O<e<min|{—, min
3k ijelklnizn; n
Note that
<y +TIy;
where
—Lo&y)
F] = Z e 8
W€ oy (11 ED)lik(5)) €(B\BE),CHNACH()
and

r,= 3 P (66)

_Tw
0<T, <k'e ™
By (15), we have

Now let us consider I',. Recall that y € €2,,, . N €2. is the true community assignment mapping. Let
w be the bijection from [k] to [k] as defined in (34). Let y* € 2 be defined by:

Y@ =w®(2), Vz € [n].
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Then y* € C(y). By Part (2) of Lemma 5.2, we obtain that for i € [k]
07 O] =y @] =y @

t:(x, y*) = m(y*) — ne, Vie[k]. (68)

If x #y*, by Lemma 5.3, there exists an /-cycle (iy, . . ., i) for (x,y*) with 2 <[ <k. Then for each
2 <a < (I+1), choose an arbitrary vertex u,, in S;,_, ;. (x,y*), and let y,(u,,) = i,,_,, where i;;, := i,. For
any vertex z € [n] \ {us, . . ., w1}, let y,(2) = y*(2).
Note that y, € 2,, . Moreover, for 1 <m <[, we have
biim (X y)+1= Fiin (X V1)5
L 6 YY) = L =1, (6, 1)

and

ta,b(xa y*) = ta,b(x’ }’1), V((l, b) ¢ {(inn im), (lma im+1)}i=1 .
When (t,,(x,y), . . ., tix(x,y)) € B, From Assumption 2.4 and Lemma 5.5, we obtain

Lo(x,y1) — Lo(x,y) = Lo(x,y1) — Lo(x, y") < —IA(1 4 0(1))

Therefore,

_Lepy) _ Loy 1A(4o(l)
e 8 <e 8 e 8

(69)

Ify, # x, we find an l,-cycle (2 < [, < k) for (x, y;), change community assignments along the /,-cycle
as above, and obtain another community assignment mapping y, € €2,, ., and so on. Let y, := y, and
note that for each r > 1, if y, is obtained from y,_; by changing colours along an /, cycle for (x, y,_;), we
have

DQ(x» yr) = DSZ(-xa yr—l) - lr

Therefore, finally we can obtain x from y by changing colours along at most LgJ cycles. By similar
arguments as those used to derive (69), we obtain that for each r

LGy
8

_LoGyr)  _ IrAd+o(1)
e <e 8 e 8
Therefore, if y, = x for some 1 <h < |_§J , we have

Loty Letwep _ (ZiZpi)Adtenn
8 <e 3 e 8

e
By Assumption 2.4 and Lemma 5.5, we obtain

Lo(x, )’1171))2 > 1L,A(1 +0(1))

_ Loy _ iAQ+o()
e 8 §| |e g

ie[h]

Therefore,

Note also that for any r, # r,, in the process of obtaining y,, from y, _, and the process of obtaining
v, fromy,,_,, we change community assignments on disjoint sets of vertices. Hence, the order of these
steps of changing community assignments along cycles does not affect the final community assignment
mapping we obtain. From (66), we have

k =)
r<[] (Z (nk)’"zle‘(l”(ls;wml) ~ 1 (70)
1=2

my=0

On the right-hand side of (70), when expanding the product, each summand has the form:

_(H»a(l))AZmz _(1+o(l))A3WI3 ) _(H»O(]))Akmk
[(nk)z‘"ze 8 ] . [(nk)3'"3e g ] e [(nk)k'"‘e 8 ]
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where the factor [(nk)z’"ze’

[(nk)3”’3e’
time we changed along an /-cycle, we need to first determine the [ different colours involved in the
I-cycle, and there are at most k' different I-cycles; we then need to choose [ vertices to change colours,
and there are at most n’ choices. It is straightforward to check that if o satisfies (17), then

(I4o(1)A2m .
8 2] represents that we changed along 2-cycles m, times, the factor

(1+0(1)A3m3 .
8 represents that we changed along 3-cycles mj times, and so on. Moreover, each

. _ (+e(1pA
lim nke g =0.
n—o0
Therefore, we have
o0
Z( k)mll _(]+o(1))Alm, 1
n e g < ;
- 1 _ elogk-%—logn—(Hﬂél))A ’

my=0

when 7 is sufficiently large and ¢ is sufficiently small. Let

k 0
(S )

=2 \m=0

Since log (1 4+ x) < x for x > 0, we have

0=logw = ZM%HXNWﬂng

my=1

o0
[ (=d)amm
SHUTEE

=2 m=1

k (nke’%)l
% - (ke
(n e (H)A)z
1= () | [1 = ()]

0<1lim I, < lim €% — 1 =0. (71)

n—00 n—00

IA

—0

IA

El

as n — o0o. Then

Then the proposition follows from (67) and (71).

6. Community detection on hypergraphs with fixed number of vertices in each community

In this section, we study community detection on hypergraphs under the assumption that the number of
vertices in each community is known and fixed. We shall prove a condition when exact recovery does
not occur.

Recall that y € 2, _,, is the true community assignment mapping.

Proof of Theorem 2.10. When y“” € Q,, . is defined by (23):

?x"f'b>(a),y<a>(y(ub)’ ¥) — 1 =t @503 Y) = by (0, ) =0
By sy 0 ¥) 1= tyy00 (9, ¥) = 1y

fy(ab>(b),y(b>(y(ah)’ »—1= ty(a),)'(h)(y(nb)5 Y) = I =tww(y) =0
f,v(cz),y(u)(y(“b)’ V) + I =ty Y) = ya-
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and

1,0, ) = 1,00, Y (0,.)) € (kP \ {()(a), (@), (W(a), y(b)), (v(b), y(@)), (y(b), y(b))})
Note that

1= p(; 0) = Pr (Usseyamn FO) —f() < 0)
since any of the event (f(y?) — f(y) < 0) implies y #y. By (45), we obtain that f(y?) — f(y) is a
Gaussian random variable with mean value ||® * (A,w — A,)||* and variance 4[| ® * (A — A,)||%. So
1 — p(¥; o) is at least
Pr (Ua,be[n],y(a)#(b) (f(y(ab>) —f < 0))
2(W, @ * (Aywr — A))) - 1)

10 % (A — A

Let H, and H, be given as in the assumptions of the proposition. Then
2(W, @ * (Aywy — A))) 1>
[P * (A —A)||?

> Pr <maxa,he[nJ,y(a)¢y(h>

1- PG’, G) = Pr (maxaeHl ,beH;

Let (2, %, Z) be a partition of [n]* defined by:
X={a=(a,00,...,a,)€nl’:se{s,si+1,...,8}L{a,...,0}N(H, UH,) =0}
W={a=(a,t,...,a,)€nl’:se{s,si1+1,...,n}hL|relsl:a. € (H UH,)| =1}
F={a=(a;,00,...,a,)€nl’':se{s,si+1,...,8}L|rels]:a €(H, UH,)| > 2}

For n e {Z, %; #}, define a random tensor W, from the entries of W as follows:

0 if (ar,....a)¢n
‘Rl(a1 ag)s 1f (al, ) sax) € 77

Way.ap = {
Foreachu e H, and v € H,, let
Zw=(Wa, ®x(Ayw — A)))
%y = (Wa, ® % (Ayw —A)))
Zw=(Wa, ®x (A — A)))
Lemma 6.1. The followings are true:
1. Z,=0forueH, andv € H,.

2. Foreachu € H, and v € H,, the variables %,, and %, are independent.

3. Each %,, can be decomposed into Y, + Y, where {Y,},cn, U{Y, }ren, is a collection of i.i.d. Gaussian
random variables.

Proof. Note that for J, = (j, j», . . ., Js) € [1]’,

(A)-(W) - A",-)js (72)
_ ¢(y(uv)0'1)’ y<W)(iZ)’ vee ’y(uV)(i.Y)) - ¢(y01)’ y(jZ)’ s ’y(lr)) lf {av b} N {jlv B ’js} 7& V)
o otherwise.

It is straightforward to check (1). (2) holds because #N Z'=¢.
For g € Hy U H,, let %, C % 'be defined by:

%y ={a=(a),0,...,0) e Zgeio, ..., ol
Note that for g, g, € H, U H, and g, # g», %, N %,, = ¥. Moreover, %= U,cy,un, & Therefore,

Y=Y (Wa, ®x(Aw —A)

geH|UH,
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Note also that (Wy,, @ * (Ayw — A,)) =0, if g ¢ {a, b}. Hence,

W), - {(Ajwn — A,
%}, — Z ( )oz {( ylab) ))ot}
aeX,U, Ou

So, we can define

Y,:=

Z (W)a : {(A)'(”b) - Ay)a}

(o}
e, o

By (72), we obtain
Z (W)a . {(Ay(“”) - Ay)m}

Oy

Y, =

ac¥,

52 s 1
22 > ——
s=51 = (i B (nINH Uyl el 1l ends)

{@OG), .. .Y @), ... y() = dOG), - - @, YA Wi i)}
Similarly, define

Y[,: — Z (W)a : {(A,\'(”h) - Ay)oz}

(o}
o€ o

-y X

i1 =1 1y T e\ Uyt D)
{(¢()’(i1), cees y“’”)(b), oY1) — o), . y(b), . ay(is)))(w)(il,,.4,1',-,],b,sz],,..,ix)}

Then %, =Y, + Y, and {Y, } ;cu,un, is a collection of independent Gaussian random variables. Moreover,
the variance of Y, is

Y Y o

o2 .. )
=51 J=1 (i i) €N H UH = (Lol 180 1)

@OG), -, ¥(B), ., ¥0)) = PO, .., ¥(@), - ., ¥

By Assumption (6) of the proposition, this is independent of g. O
By Lemma 6.1, we obtain

(W’ D % (Ay(”h) - Ay)) =Y, +Y+ %b

Moreover,
max Yu+Yv+%vZ max (Yu+Yv)_ max (_%v)
ueH|,veHy ueH|,veH, ueH) ,veHy
=maxY,+maxY, — max (—2Z,)
ueH, veH, ueHy ,veH,

By Lemma A.1, we obtain that when ¢, A satisfy (A1) with N replaced by 4, each one of the following
two events

Y, . Var(Y,)
F,:= {max > —-¢e),/2logh -min ———
uety || P (Ayn — A2 uety (Lo (y™V, y))?

Y, . Var(Y,)
F, := {max >({1—e¢)/2logh-min ———
vety || @ % (Ayun — A2 vet (Lo (Y™, y))?
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¥ Moreover, the event

foe | ma % e /() nax L}

has probability at least 1 — e~

X
uetyvety || % (A — A2~ uetivetly (Lo(y*™, y))?
occurs with probability at least 1 — 272, Then by Assumption (4) of the proposition, we have
VarZ,, = ||® * (Ayw — A,)||*> — Var(Y,) — Var(Y,)

= Ld)(y(”")’ y) _ (1 + 0(1))Lq>(y(”"), y)
=o(1 )Lq,(y(“v)’ ).

By Assumption (5) of the proposition, for any u € H, and v € H,, we have
Var(Y,) = Var(Y,).
Moreover, by Assumption (4) of the proposition,
Var(Y,) + Var(Y,) = (1 + o(1))Le (3", y).
Hence, the probability of the event

(W, D x (Ayar — A,)) (1—¢e)y2logh
F:={ max >
actybetly || P x (A,\'("”) - Ax) 2 max,eq, veH, L, (y(”"’), y)

< \/an Var(Y,) + \/an Var(Y,) — (14 o(1)) / max Var(Zm.)>}

W’q) Avﬂ _AV 2 l_ 1 l’l
| max W Px@en —A)) 24 ZeViosh g,
acHibety || @ * (Ayan — A2 \/maxueHweHz Lo(y®, y)
is at least
Pr(F\NF, N F;) = 1 = Pr((F1)" U (F) U (F5))
> 1 —=Pr((F,)) — Pr((F>)) — Pr((F3)")
>1—2e" —h%.
When (25) holds, we have

2(W, @ * (Aywn —A)))
1® Ay — A)I?

Pr (maxa’he[,l],y(a)#)-(h) > 1)) Z PI'(F) — 1,

as n — 00. Then the proposition follows.

7. An example

Assume n vertices are divided into group I and group II such that group I contains |an| vertices
and group II contains n — |an]| vertices, where « € (0, 1). Let y: [n] — [2] be the true community
assignment mapping. For any x € €2, define

1 ifx()=x(G)=1

(A= 10 if x()) # x()

2 ifx()=x(G)=2

and
0 =140 if y(i) #y())
& ify()=y()=2.
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Then
1
Loxy) =) ) —IAJ, — AT
icln] jen] U
[P [ )P 200 Yha(x, ) n 201,16 Y61 (X, Y)
Y 82 8 8
8t1,(x, V), (x, 8t 1(x, V)2, (x,
i 12 y)zz,z( y)+ 2.1 y)zz.z( y)
85 85
Assume

a+4(1—a)_a 4(1—a)._
8 & 8 &
Note that (73) holds whenever §, = 8, = §,, which corresponds to the case when the Gaussian pertur-
bations for each pair of vertices are i.i.d.; however, (73) may also holds even when &y, é;, §, are not all

(73)

equ\?\}ﬁen (73) holds, one may check that Assumption 2.4 holds with
A =2nQ
and Assumption 2.3 holds with
R(n) =2Qsn*

We obtain that if
0> 4(146)logn
n
then a.s. exact recovery occurs; if
0-< 4(1 —46)logn
n
Then a.s. exact recovery does not occur by Theorem 2.9.
In the following tables, we let (n,, n,) = (10, 6), n = 16 and o = 0.625. In this case, we have
4logn

=log (2) ~ 0.6931

For each triple (8, 8,, 8,) satisfying (73), we perform the MLE for m = 200 times to compute y, and
let m, be the number of experiments with y = y. The values “* are shown in the following tables.

(80,81,8,) (1,1,1) (1.2,1.2,1.2) (1.26,1.26,1.26) (1.3,1.3,1.3) (1.5,1.5,1.5) (1.6,1.6,1.6) (1.7,1.7,1.7)

Q 2.125 1.4757 1.3385 1.2574 0.9444 0.8301 0.7353
41%; 3.0657  2.1290 1.9310 1.8140 1.3625 1.1975 1.0608
= 1 1 1 0.995 0.960 0.955 0.930

m

(50, 81,8,)  (1.8,1.8,1.8)  (222) (252525 (333) (555 (117 (88.8)

Q 0.6559 0.5313 0.4390 0.2361 0.0850  0.0434  0.0332
41%—2” 0.9462 0.7664 0.6334 0.3406  0.1226  0.0626 0.0479
= 0.910 0.810 0.660 0.395 0.06 0 0

m
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(80,81, 82) (0.6769,1.2,0.8) (0.8069,2,1) (1.0938,2,1.3) (1.3016,3,1.6)
Q 3.7078 2.4598 1.4099 0.9549
= 5.3493 3.5488 2.0341 1.3776
my 1 1 0.995 0.980
(80,81, 82) (1.9997,1.6,1.8) (3.6228,2.5,3) (7.2457,5,6) (12.4864,5,7)
Q 0.6193 0.2143 0.0536 0.0346
= 0.8934 0.3091 0.0773 0.0499
s 0.910 0.270 0.025 0

m
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Appendix

A. Maximum of Gaussian Random Variables

Lemma A.l. Let Gy, ..

., Gy be Gaussian random variables with mean 0. Let ¢ € (0, 1). Then

Pr (max G >0+ 8)\/2 m[a)]( Var(G,) log N) <N
ie[N

i=1,....N
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and moreover, if G;’s are independent, and e, N satisfy

N(1 — g)/2TogN

Al
V27 (1 4 2(1 — &)2 log N) (A

Then

Pr (rrllaxN G, <(1—y¢) 2mllN1J1 Var(G;) log N) <exp(—N%)
JE

i=

Proof. It is known that for a Gaussian random variable G; and x > 0,

2

xe T G; e
<Pr : >x)<—— (A2)
V2 (1 + x?) <«/VaI(G,-) ) x/2m
Let Gy, ..., Gy be N Gaussian random variables. Then by (A2), we have

Pr (max G >+ s)\/2 max Var(G;) log N>
i€[N] i€[N]
G
< Pr| ——>(1+¢)y/2logN
=2 (JVar(GT-) =Tzl )

Ne—(1+8)2 log N

<
T 2(1+e)/mlogN
<N°*

If we further assume that G;’s are independent, then

Pr (max G; < (1 —¢) /2 min Var(G)) log N)
i€[N] JEIN]

= 1‘[ Pr <G,- <(1—¢) \/2 giN? Var(G)) log N)

i€[N]

= 1‘[ [1 —Pr <G,« >(1— e)\/z m[gvl} Var(G;) log N)]

i€[N]

G;
SEN[J [1 —Pr (W > (1 —8)«/210gN>i|

By (A2), we obtain

(1—¢)/2logN 1 )”

Pr { max G; < (1 — ¢) /2 min Var(G)) lo N) < <1 —
(iel"’l Je 1708 V2 (14 2(1 —¢)*log N) NO-e?

When (A1) holds, we have

1 NI—&NS .
Pr{max G; < (1 —¢) /2min Var(G;)logN ) <|1— <e™
i€[N] JEIN] les

Then the lemma follows. O
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