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1. Introduction

The asymptotic behaviour, for large real positive values of the independent
variable /, of solutions of the ordinary differential equation

(1) y + t~l ysmat = 0

is considered. (The dots denote differentiation with respect to t.) It is shown that
this asymptotic behaviour can be obtained by comparison with the differential
equation

(2) y+y(2a2t2)-1 = 0.

For both equations when a2 < 2 the solutions are unbounded oscillatory
functions but when a2 > 2 the solutions are essentially monotone. The critical
case a2 = 2 has not been investigated here although the present results suggest
that the solutions are probably monotone. The asymptotic estimates of the solu-
tions of equation (1) are first obtained by heuristic means commonly used by
Applied Mathematicians working on singular perturbation problems. A basis for
a formal expansion is obtained in terms of a recurrence relation and the first
few terms are displayed explicitly. These formal expansion estimates are used to
guide a rigorous analysis which is essentially an extension of the techniques used
in validating solutions obtained by the Langer related equation technique. For the
oscillatory case, a pair of Volterra integral equations is used to justify the asymp-
totic representations for an arbitrary large interval for / but not including the
point at infinity.

For the monotone case, a pair of Fredholm integral equations are used to justify
the asymptotic representations in a neighbourhood of infinity. A brief discussion
is given as to how the arguments can be applied to other powers than t ~1 and to
more general periodic functions than sin at that occur in equation (1).
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2. Heuristic and formal determination of asymptotic behaviour

The question of determining whether solutions of differential equations,
such as

y + t~ly sin t = 0,

had oscillatory or monotone solutions for t real large positive was brought to
the author s attention by Dr. J. Wong. For the inferential methods often used in
settling such questions it is convenient to have an informed guess as to the answer
so as to direct the line of the argument. The above equation seemed rather a sen-
sitive case and the author tried using the method of multiple scales (vide Cole
(1)) in a somewhat unusual fashion. This method is used when there are two in-
teracting scales of action differing by a small parametric factor. The analysis
revealed that the more general equation (1) could be studied by the same means
and that there was a startling dichotomy for a2 greater than or less than 2. It may
be noted that a scale change of t introduces a factor multiplying the coefficient
of y so that equation (1) may be regarded as a reduced form for a broader class of
equations.

In the present problem the variable t ~l can be used as a measure of smallness
to replace the small numerical parameter on which the method of multiple scales
is worked. The differential equation (1) implies that / also has a role in which the
scale is set by sin at and this must be reflected in the solution.

But since for large t, t'1 sin at has a small mean value there will also be a
longer scale over which y and the mean of yt~l sin at strike some form of balance.
The first step is to determine the scale of this balance. If the formally smaller order
term is neglected the differential equation has as its first approximation y = 0.
Because the differential equation is linear the scale of y is unimportant so that the
first approximation is yo(t) where z is the unknown slow time scale and y0 also
remains undetermined. An improvement of this follows from the first iterate

y+yoi)*'1 sin a? = 0.

Integration of this and approximating the integrals involved, while maintaining
T constant, suggest that

is a better approximation. At this stage no balance on the scale oft has been needed
to keep the approximation appearing satisfactory. However the next stage the ap-
proximation becomes

2t)~l sinaf}*"1 sin a? = 0

and for the first time the integration of a trigonometric function of non-zero mean
occurs. If this mean were accepted and the T scale still be considered unimportant
y would grow as In t and the perturbation method fail. It must be then that the
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[3] Asymptotic results for a differential equation 149

scale oft is such as to balance this mean which is \yo(at) ~2. The work of Fowkes
(2) has shown the way to cope with such a term is to re-order the calculation
procedure by rewriting the equation (1) as

( 3 ) L{y) = y + Xat)-2y = {^af)"2-'"1 sin at}y

and now to dominate the equation by the operator on the left hand side. Fowkes'
work, in a different context, suggests that the above form is the way to apply the
Langer related equation technique to the differential equation (1).

The solutions of the dominating equation L (y) = 0 take the form {'• where
k is either root of

(4) A2-^ + ia~2 = 0 .

When a2 > 2 the roots are real, distinct and lie in the interval (0, 1) so that
solutions of the dominating equation are monotone. The sum of the roots is
unity but in this section m will be used to denote either rather than take advantage
of this special property. When a2 < 2 the roots of equation (4) are conjugate
complex and the nature of the solutions is most clearly conveyed by writing the
solutions of the dominating equation in the form

(5) t* cos (pint) and t* sin (pint) where /? = |{2a~ 2 - l}*.

in this case the dominating equation possesses solutions which are both unbounded
and oscillatory and the slow scale in t is apparent. For the monotone case there
is no slow scale involved.

Formal solutions can now be obtained by substitution of expansions suggested
by the above considerations. When the solutions are expected to be monotone
(i.e. a2 > 2) one tries expansions of the form

(6) y~hm~TM*)
r = 0

wherein it is to be required that the functions Ar(t) should be uniformly bounded
for large values of t. Substitution of this into equation (1) and the equating of
the coefficients of powers of t to zero lead to the set of equations

Ao = 0 Ax = -sin a?

A + 2 ( l ) A + ( ) ( l ) A + A 1 s i n a t = 0 , r ^ 0 .

Without loss of generality the solution of the first equation may be taken as
Ao = 1 and then the second equation has bounded solutions of the form

A1 = a~2 sin at+Cl

where Cx is an as yet undetermined constant. When the equation for determining
A2 is considered the only trigonometric term which leads to unbounded terms
in A2 is A t sin at. This has a mean value \a~2 but there are additional constant
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terms, which come from Ao, leading to a total mean (m2-m+ia~2) and this
vanishes by equation (4). This is not accidental but a demonstration of the ap-
propriate choice of dominating equation. The remaining terms in the equation
determining A2 yield

A2 = 2(m-l)a~3 cosat-(2a)~3 cos2at + C2

where C2 along with Ct remains an undetermined constant. In the equation
for A 3, A 2 sin at has zero means so that A3 will remain bounded provided Ct is
chosen to be zero. The solution for A3 involves only sine and no cosine functions.
The equation for A4 thus has a contribution to the mean from A3 sin at but there
is an available the constant C2 which can be chosen so that AA is bounded. It is
now apparent that odd numbered coefficients consist solely of sines, the even
numbered of cosines plus a constant of integration which is determined so that
a later coefficient will remain bounded. The above formal procedure can be con-
tinued in this pattern ad infinitum.

For the oscillatory case the form of solutions of the dominating equation
suggests attempting a formal asymptotic expression,

(8) y = t* t t"{Mt) cos (fi In t) + Br(t) sin (fi In 0}
r = O

wherein, as before, the Ar and Br are to be required to be uniformly bounded for
large values of t and also not to be slowly varying as is cos(/J In t). With this case
the calculation difficulties are greater than for the monotone case. The same type
of general arguments can be applied so that the function An and Bn and these
arguments may be necessary for some of the more general equations considered
in the final section of this paper. However in the present context we can take
advantage of the calculations for the monotone case by taking real and imaginary
parts of the complex-valued solution of equation (6) arising because m is complex.
One solution has the first two terms given by

y = t*{cos (fi\nt) + a~h~lsm(fi\nt)sm at}l-tyf*)

For guidance in later work it is useful to note that the largest term in y is slowly
varying. Further the largest term in y, though smaller by 0(f~x) than y, contains
both slowly and rapidly varying functions. It is the derivative of these rapidly
varying functions which makes y the same order as y and which permit the balance
to be struck between j ; and t~iy sin at.

3. Proof of the asymptotic nature of the oscillatory solution

The basis of the proof to be given is really an adaption of the Langer related
equation technique. Because the solutions are unbounded and oscillatory it does
not appear feasible to establish the validity of the asymptotic representation in the
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neighbourhood of infinity. Such proof requires precise evaluation of the phase and
mathematical tools to cope with such a problem are sadly lacking. Thus one seems
forced to consider behaviour of the representation in an interval (T, 7") where T
is to be chosen sufficiently large and one tries to make T', which depends on T,
as\arge as possible and certainty \arge enough 5or the s\ow osciWations to have been
demonstrated as being a real phenomenon. As is standard practice in the Langer
related equation theory the differential equation is written in the form

(9) y + {2a2t2yly = {(2a2t2yl-r1 sin at}y

and converted into an integral equation. For reasons given above it is assumed
that the problem is to be treated as an initial value problem with initial data given
at / = T. It follows, by the method of variation of parameters, that the appropriate
integral equation is.

(10) y = t*{A cos (P In t) + B sin (P In t)}+p~l | {(2a2s)~1-sin as}y(s)(t/s)i

JT
sin [P In (t/s)] ds

where A and B are constants specifying a particular solution. It is convenient to
introduce a new variable defined by

(11) y = t*Y(0

so that Y satisfies

Y = Acos(p\n

l I {(2a2s)'1 -sin as}Y(s) sin [fi ln(tjs)]ds
JT

As it stands iteration of this Volterra integral equation will give useful results
only for (t-T) In (t/T) small and this is an insufficient range. However a more
useful form can be obtained by integrating by parts. If the more rapidly varying
sin as is integrated and the more slowly varying part Y(s) sin [/? In (t/s)] is dif-
ferentiated the integrand will be reduced by a factor O^"1). It is possible to in-
clude the contribution from t = T within the general constants A and B. The
modified equation thus obtained is

Y(i) = A cos (P In t) + B sin (p In t) + P~l \ (2a2s)~1Y(s) sin [/? In (f/s)] ds
JT

-(ocpy1 fcos as{Y(s) sin [fi In (t/s)] -/?s~x Y(0) cos [0 In (t/s)]} ds.

While this is no longer an integral equation the formal estimates of section 2
agree with the first iterate of the right hand side. Moreover the iterate should
be useful as long as (t-T)/T is small. But further improvement is necessary if
one is to cover an interval containing many zeros of cos (/? In /). The second
integral may be integrated by parts to yield
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Y(t){l - a21'1 sin at} = A cos (/? In t) + B sin (/? In t)

+ p~l f(2a2s)~1 Y(s) sin [ft In (t/s)] ds

+ (<T2/T1) sin as{[y-j82s~2y(s)] sin [0 In (f/s)]

+ |>~ 2 y ( s ) -2^s" ' ?(s)] cos [j8 In (t/s)]}ds.

The only term in the second integral which is not O(s~2) is the term involving
y. If y is eliminated using the differential equation (1) and the definition y in
equation (11) the only term which is not 0(.s~2) is — a2f}~1s~1Ysin2as. The more
rapidly oscillitary part has a non-zero mean which can be derived through sin2 as =
i(l —cos 2as). It is immediately apparent that the first integral in equation (12)
is cancelled by the contribution of the mean. This should not be surprising
because the above calculations are really only a development of the heuristic
arguments which led to the dominating equation. There remains however one
term in the integrand, namely ^a2p~ 1s~lYcos 2as sin [/? In t/s] which is not
as small as s~2 but this may be removed by a further integration by parts. The
resulting equation after all these calculations is

Y(t){\ - {a21)-1 sin at} = A cos (/Sin t) + B sin (jSln t)

^^ + ['s'2Y(s)Kl(s, t)ds +\'s~l Y(s)K2(s, t)ds

where K1 and K2 are the uniformly continuous functions

Kt(s, t) = a-2^1 sin as {$ cos fj8 In (t/s)]-(p2~l) sin [fi In (t/s)]}

+ i a r 1 sin las {sin [/? hi(t/s)] + P cos [p In (t/s)]} and
(14)

K2(s, t) = -a~2p-x sin as{P cos [fi In (t/s)]+ sin {fi In (t/s)]}

+ ia"3/?"1 sin 2a^ sin [0 In (//*)].

The formal expansions suggest that yis 0(?"1) so that a new variable Z, expected
to be of unit order, is introduced by

(15) t=t~lZ.

Differentiation of equation (13) together with some rearrangement leads to the
equation

Z(t) - Y(t) a cos at = -0A sin (/} In /) + ft B cos (P In t)

+ s~2Y(s)K3(s, t)ds+ s~2Z(s)K4(s,t)ds
JT JT

where
K3(0, t) = tKlt(s, t) and K4(s, t) = tK2,(s, t)
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and these are uniformly bounded, continuous for large values of t. Together with
the modified form of equation (13)

Y{\-a'2t~1 sinat} = A cos (/? In t) + B sin (/? In t)
(16b)

C C
+ s~2Y(s)K1(s,t)ds + s~2Z(s)K2(s,t)ds

JT JT

this forms a pair of coupled Volterra integral equations for Y and Z. By restricting
t to a range in which T~2(t— T) is suitably small it is possible to obtain bounds on
the maximum values of Y and Z in the interval (T, t) for in this range the integrals
contribute only small multiples of Max Y and Max Z. The resulting bounds
being independent of T, then permits equations (16b) to be interpreted as

a"2f-1 sin at}'1 +0

so that the leading term provides an asymptotic representation for Y in an interval
(T, T+T") where 0 < \i < 2. Further higher order expansions are available by
iterating the coupled integral equations before performing the inequality arguments.
It should be noted that the additional terms do not extend the range over which
the asymptotic representation is valid but merely increase the accuracy of the
representation. The limit on the domain of validity arises from the need to establish
bounds on Y and Z and in essence this hinges crucially on the argument

m» I s-2Y(s)K1(s,t)ds
JT

where Y is an unknown function and this places an overall restriction on the extent
of the range. The estimates of the various terms are rather crude and probably
the representation is valid over a larger range of t but there appears to be no way
of establishing this.

4. Validity of the expansion for the monotone case

In the case of slowly oscillating solutions it is acceptable to have a representa-
tion valid over an arbitrarily large number of oscillations even if it does not in-
clude the point at infinity. Such a localized solution for the apparently monotone
case would not be acceptable for the solutions might be oscillatory on a longer
time scale. Merely repeating a discussion similar to the oscillating case is therefore
inadequate. Thus once monotone solutions are suspected it appears essential to
establish the validity of the asymptotic representation in a neighbourhood of the
point at infinity. However, this presents much greater difficulties because for the
initial value problem considered in the previous section there are known existence
theorems. For a neighbourhood of infinity, existence of solutions has not been
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established for equation (1). It will therefore be necessary to establish the exist-
ence of solutions of the required form as well as to show that the series are valid
approximations to the actual solutions.

There will be further technical difficulties in using an integral equation ap-
proach because of the uncertainty that the integrals involved converge. The
dominating equation has solutions tm and t" where m and n are denned so that
0 < m < n < 1. In an endeavour to minimize these technical difficulties it was
decided to seek the solution for which tm was the leading term in the asymptotic
representation. Again equation (9) is solved by variation of parameters and it is
found that if one wishes the integrals involved to be convergent (assuming the
behaviour of the formal representation applies) the boundary conditions must be
applied in such a way as to lead to the Fredholm integral equation

y = tm-(n-my iIt") [^^"' - s ina^s""^
(17) l Jt

r , _, )
+ tm [(2a2 s) -sinasljMs mds)

JT J
the /" term disappears in the limit t tending to infinity and the first integral is
convergent assuming y(s) is O(sm). A procedure similar to that used in section 3,
may be applied to reduce systematically the size of the integrands. Again the terms
(2a2.?)"1 disappear, being cancelled by the mean of the sin2 as which arises after
two integration by parts. After extensive calculations one obtains

(18) y(t)h(t) = tm+\ s~2y(s)L1(s,t)ds+ s-'y^L^s, t)ds
JT JT

where

(19a) Li(s, t) = (n — m) { _

and
, M , , _ , ,_2 \\_2na~2 sin as + ia~3 sin 2as](f/.s)" s>t

\[2ma sin as + ̂ a sin 2as](s/t)m s < t
and

(19c) h(t) = {1-a"2 /"1 sinaf)-

The kernels Lt and L2 are bounded, independent of t in (!T, oo). Again it is neces-
sary to construct a second integral relation which can be obtained by differentiating
equation (18) with respect to t. The result may be written in the form

(20) yg.it) = yr1g2{t)+mf-1+\ S-
3y(s)L3(s,t)ds+ \ s'2y(s)LA(s, t)ds

JT JT
where

(21a) g^t) = \+a~2t~l sinat + a~3rx sin2at.
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(21b) gz(t) = a'1 cos at + (m+n)a~2t~l sinat+a~3r2 sinat

and

(21c) L3(s,t)
1 ) a 2 sin as+ i(n + l)fl 3 sin 2as](f/s)n \ s>t

\ - m[m(m + l)a ~2 sin as + ̂ (m + l)a~3 sin 2as](s/f)m~1, s < t

V ' V 7 1 r « - 2 „ ; „ „ „ , i - - 3

-! fn[2na 2 sin as + ̂ a 3 sin 2as](«/s)" x, s

-m[2ma~2 sin as + ^a~3 sin 2as](s/«)m~1, s

Again the kernels L3 and L4 are bounded, independent of both t and T. Consider
the iterative scheme

yo{t)h(t) = tm

Jo(O0i(O = yoity

and for

= s-2yr(s)Ll(s, t)ds+ s-'yis)^, t)ds
JT JT

'"I02(O+ S " 3 ^ ) ^ , 0^S+ S~2 yr(s)L4(s, t) ds.
JT JT

For sufficiently large values of T such that both h and #t are greater than \, there
exists a constant i?0 such that

It is therefore possible to show inductively

(22a) | y r ( 0 l < ^ T m - r

(22b) \yr(t)\ < BrT
m—1

where

A, < [Max {l//i(0}] {[Max Lt]i4r_! +[Max L2]Br_!}

Br < [Max {l/ffl(0}]

and one can eliminate ^ r from the equation for Br using the first equation of this
pair. It is thus possible to show that there exists an M such that

and hence that both Ar and Br are less than CM" for some constant C. It thus
follows that

r=0 r=0
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are uniformly convergent in [T, oo) provided T > (1/M) and also meets all the
earlier constraints. The iteration therefore converges to a function pair y(t),
y(t) and the function y{t) may be shown to satisfy the differential equation (1).
Further equations (22) imply that £JL 0 yr is an asymptotic representation of this
solution for large enough T. The monotone nature of one solution is thus estab-
lished and the standard theorems on interlacing of zero simply that any other
solution is monotone. If we denote the above solution by Z then a further solution
obtained by reduction of order is,

y = z\ [z(s)]-^s.

To demonstrate the asymptotic behaviour of this solution one notes that

and hence
y = -zt(2m~l)l(2m~

and in essence this is the leading term for the formal asymptotic expansion of the
larger solution, thus verifying to leading order the formal series. The formal
expansions were uniquely determined by the requirements of having the given form
and satisfying the differential equation. Thus the formal series expansion must be a
valid asymptotic representation since it takes the same form as the result of
iterating the integral equation.

5. Some extensions of the analysis

The methods employed in this paper are applicable to a much broader class
of problems than merely the original differential equation (1). It is a trivial exten-
sion to apply the method to any equation of the form

00

y + {r x sin at+ £ brt~
r}y = 0.

r=2

Obviously the solutions are monotone provided 4{b2 + (2a2)~1} is less than one
and oscillatory if it is greater than one. The same type of arguments may be applied
to the equation

y + yt~k sin at = 0

where 0 < k < 1, the dominating equation is

(23) y + (2a2y1r2ky = 0

and the asymptotic behaviour of the solution is given by
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so that the solutions are unbounded and oscillatory. When k is greater than one
the solutions are monotone since the comparison differential equation (23) has
infinity as a regular point

Perhaps the most interesting extension of equation (1) is

(24)

where p(t) is a periodic function of zero mean and period x. Let p(t) be represented
by its Fourier series

00

p(t) = £ {ar cos (2nr f/T) + br sin (2rcr i/r)} .

In repeating the argument of section 2 an appropriate two-fold integral of p(t) is
00

-(T/2TT)2 £ r"2{aP cos (2?ir t/x)+br sin (2?rr (/T)}
r = l

and the coefficient, which is obtained by averaging the product p(t) with this
integral, of the comparison equation is given by

00

r = l

This sum can be converted in terms of integrals ofp(t) as follows

f' / T \ °°
p(s)ds = I —I Y,r~1{ar sin(2Ttrtlx)-brcos(2nrtlx)+br}.

Jo Ylnl r=i

Now Y br/r is the mean value of J'o p(s)ds(2n/x) over the period T SO that

r=l JoJo

= 2nx~2 \ (x-s)p(s)ds
Jo

= —2nx~2 sp(s)ds
Jo

since p has zero mean. Hence

(26) I p(s)ds + x~l f s p ( s ) d s = (—) £ r~l{ar sin (2nrtjx)- br cos (2nr tjx)}.
Jo Jo \2n) r=i

If one introduces the notation

(27) a = T"1 \\p{s)ds
Jo

then squaring equation (26) and integrating over the period yields
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Joio yJo i \inl r = i

Thus equation (24) has as its dominating equation

y+yt~2y = o
where

It may be noted that only weak conditions on the regularity of/? are required.
Obviously this last case can be extended to treat an equation in which t'k,

0 < k < 1, replaces t~l in equation 24. Additionally the discussion can be ex-
tended to a variety of cases in which the forms considered here are merely the
leading terms in an asymptotic expansion of the coefficient of y.

Acknowledgement

Part of this work was done whilst the author was on leave at the Mathematics
Research Center, University of Wisconsin. He wishes to acknowledge the hospi-
tality of the Center and support by the United States Army under contract number
D. A.-31 -124-ARO-D-462.

References

[1] J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, 1968).
[2] N. D. Fowkes, 'A singular perturbation method. Part. I', Quart. App. Maths. 27 (1968)

57—69.

Department of Mathematics
University of Western Australia

https://doi.org/10.1017/S1446788700011216 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011216

