THE THIRD TERM OF THE LOWER CENTRAL SERIES OF A FREE GROUP AS A SUBGROUP OF THE SECOND

Dedicated to the memory of Hanna Neumann

MARTIN WARD

(Received 7 March 1972) Communicated by M. F. Newman

1. Introduction

In this paper the following notation will be used: for any group G, positive integer c and non-negative integer n, G_c is the cth term of the lower central series of G and $\delta^n G_c$ is the nth term of the derived series of G_c .

In a free group F, the subgroup F_2 is itself a free group which contains F_3 as a subgroup. The question arises: how nicely is F_3 situated in F_2 ?

In a free metabelian group G, the subgroups G_2 and G_3 are free abelian and it is easy to see that G_3 is a direct summand of G_2 , since G_2/G_3 is also free abelian. Returning to the absolutely free group F, the simplest analogue of this result, that F_3 is a free factor of F_2 , is just as easily seen to be false provided that the rank of F is at least 2, for then $\delta F_2 \leq F_3$. On the other hand, it is possible to find free generating sets for F_2 and F_3 which have a large number of elements in common. The question now becomes: how close does F_3 come to being a free factor of F_2 ?

To answer this question one looks at members of the free generating set for F_3 that are not free generators for F_2 and, as would be expected, these all turn out to lie in δF_2 . Suprisingly, they are contained in a free generating set for δF_2 and those members of this free generating set for δF_2 which are not free generators for F_3 turn out, in turn, to be contained in a free generating set for δF_3 . This process continues ad infinitum through free generating sets for the subgroups $\delta^n F_2$ and $\delta^n F_3$ and results in the following theorem; the remainder of this paper will be devoted to the details of its proof.

THEOREM. In an absolutely free group F of arbitrary rank there exist subgroups A_n and B_n $(n = 0, 1, 2, \dots)$ such that, for each non-negative integer n, $\delta^n F_2$ is the free product of A_n and B_n and $\delta^n F_3$ is the free product of B_n and A_{n+1} .

2. Free generating sets for certain subgroups of F

For the remainder of this paper F will be a given absolutely free group of arbitrary rank with a well-ordered free generating set G in terms of which all definitions will be made. A generator of F is to be understood as a member of G. The usual notation for commutators in F will be employed: $[x, y] = x^{-1}y^{-1}xy$. The element

$$[b, m_1a_1, m_2a_2, \cdots, m_ra_r],$$

where r and each m_i are non-negative integers and b and each a_i are members of F, is defined inductively. If r = 0 this is the element b, if $r \ge 1$ and $m_r = 0$ it is the same as the element

$$[b, m_1a_1, m_2a_2, \cdots, m_{r-1}a_{r-1}]$$

and if $r \ge 1$ and $m_r \ge 1$ it is the element

$$[[b, m_1a_1, m_2a_2, \cdots, m_{r-1}a_{r-1}, (m_r-1)a_r], a_r].$$

It will be necessary to refer several times to elements of the general form

$$\begin{bmatrix} b, m_1 a_1^{\varepsilon_1}, m_2 a_2^{\varepsilon_2}, \cdots, m_r a_r^{\varepsilon_r} \end{bmatrix}$$

where r and each m_i are positive integers, each $\varepsilon_i = \pm 1$, b and each a_i are members of F which have previously been ordered in some way, $b > a_1 < a_2 < \cdots < a_r$ and, if $b = [b_1, b_2]$ then $b_2 \leq a_1$. This will be called the *standard form* and in its various manifestations further restrictions will be placed upon b and the a_i .

A free generating set for F_2 was first given by Grunberg in [1], Theorem 5.2, however it will be necessary to use here the slightly different one given in [2] together with a free generating set for F_3 ; these emerge as special cases of Lemma 8 of that paper upon putting $k_1 = 2$ or 3 (for free generating sets for F_2 or F_3 respectively) and $k_i=2$ for all $i \ge 2$ in the sequence K of the introduction. For the reader's convenience these free generating sets are described explicitly as the first lemma below. In this lemma, a *basic commutator of weight two* means as usual an element of the form [b, a] where a and b are generators and a < b. Such elements are distinct as written and distinct from the generators. They will be considered to be ordered lexicographically: $[b_1, a_1] < [b_2, a_2]$ if and only if either $b_1 < b_2$ or $b_1 = b_2$ and $a_1 < a_2$. The orderings of the generators and of the basic commutators of weight two individually are extended to encompass both by specifying that generators always precede commutators.

LEMMA 1. (i) The elements of the standard form, where b and each a_i are generators, are distinct as written and form a free generating set for F_2 .

(ii) The elements of the standard form, where b is a basic commutator of weight two and each a_i is either a generator or a basic commutator of weight two, are distinct as written and form a free generating set for F_3 .

LEMMA 2. The elements of the form

(1)
$$[b_1, b_2, m_1 a_1^{e_1}, m_2 a_2^{e_2}, \cdots, m_r a_r^{e_r}]$$

where r is a non-negative integer, each m_i is a positive integer, each $\varepsilon_i = \pm 1$, b_1 , b_2 and each a_i are generators and $b_1 > b_2 \leq a_1 < a_2 < \cdots < a_r$, are distinct as written and form a free generating set for F_2 .

Note that elements of the form (1) may alternatively be described as elements of the standard form except that r may possibly be zero, where b is a basic commutator of weight two and each a_i is a generator.

PROOF OF LEMMA 2. (I am indebted to Professor Gruenberg for suggesting this proof, which in much more satisfactory than my own.) Let S be the free generating set for F_2 given in Lemma 1 (i) and let T be the putative free generating set for F_2 given in the statement of Lemma 2. An endomorphism θ of F_2 is now defined by prescribing its action on S. Let

(2)
$$x = \begin{bmatrix} b_1, m_1 a_1^{\epsilon_1}, m_2 a_2^{\epsilon_2}, \cdots, m_r a_r^{\epsilon_r} \end{bmatrix}$$

be an arbitrary member of S; then set

(3)
$$x\theta = x \qquad \text{if } \varepsilon_1 = +1 \\ = [b_1, a_1, m_1 a_1^{-1}, m_2 a_2^{\varepsilon_2}, \cdots, m_r a_r^{\varepsilon_r}] \quad \text{if } \varepsilon_1 = -1).$$

It is easy to see that θ maps S one-to-one onto T. It is now sufficient to show that that θ is an automorphism of F_2 .

We now prove, by induction over m, that for any $m \ge 1$, $[b, a, ma^{-1}]$ can be written as a product of elements of the forms [b, a] and $[b, la^{-1}]$ $(1 \le l \le m)$ in which the factor $[b, ma^{-1}]$ appears exactly once and that with exponent ± 1 . The initial case (m = 1) is verified by exhibiting the well known law

 $[b, a, a^{-1}] = [b, a]^{-1}[b, a^{-1}]^{-1}.$

Assuming now that $[b, a, ma^{-1}]$ can be written in the required form, consider

$$\begin{bmatrix} b, a, (m+1)a^{-1} \end{bmatrix} = \begin{bmatrix} b, a, ma^{-1}, a^{-1} \end{bmatrix} \\ = \begin{bmatrix} b, a, ma^{-1} \end{bmatrix}^{-1} \begin{bmatrix} b, a, ma^{-1} \end{bmatrix}^{a^{-1}}.$$

The first term here, by the inductive hypothesis, can be written as a product of elements of the forms [b, a] and $[b, la^{-1}]$ $(1 \le l \le m)$, all of which are of the required form; note that $[b, (m + 1)a^{-1}]$ does not appear as a factor in this product. The second term can be written as another such product conjugated by a^{-1} and thus as a product of elements of the forms $[b, a]^{a^{-1}}$ and $[b, la^{-1}]^{a^{-1}}$ $(1 \le l \le m)$ in which the factor $[b, ma^{-1}]^{a^{-1}}$ appears exactly once and that with exponent ± 1 . Since

$$[b,a]^{a^{-1}} = [b,a^{-1}]^{-1}$$

and

$$[b, la^{-1}]^{a^{-1}} = [b, la^{-1}][b, (l+1)a^{-1}]$$

the statement is proved.

A similar argument now shows, this time by induction over r, that for any $m \ge 1$ and $r \ge 0$,

$$[b,a,ma^{-1},c_1,c_2,\cdots,c_r]$$

can be written as a product of elements of the forms

$$[b, a, c_1, c_2, \cdots, c_q] \qquad (0 \le q \le r)$$

and

$$[b, la^{-1}, c_1, c_2, \cdots, c_q] \qquad (0 \leq q \leq r, \ 1 \leq l \leq m)$$

in which the factor $[b, ma^{-1}, c_1, c_2, \dots, c_r]$ appears exactly once and that with exponent ± 1 .

Let us consider S to be well-ordered in such a way as to preserve weight and so that

$$[b, m_1 a_1^{+1}, m_2 a_2^{\varepsilon_2}, \cdots, m_r a_r^{\varepsilon_r}] < [b, m_1 a_1^{-1}, m_2 a_2^{\varepsilon_2}, \cdots, m_r a_r^{\varepsilon_r}]$$

Then S is a well-ordered free generating set for F_2 and θ is an endomorphism of F_2 with the property that, for each member x of S, $x\theta$ can be written as a product of members of S none of which exceed x itself and which contains x as a factor exactly once and that with exponent ± 1 : if x is of the form (2) and $\varepsilon_1 = +1$, then $x\theta = x$ and this result is trivially true. If $\varepsilon_1 = -1$ then $x\theta$ is given by (3) and the result has been established by the second inductive proof above.

It follows that θ is an automorphism of F_2 , as required.

LEMMA 3. Let H be a subgroup of F with a well-ordered free generating set which is the disjoint union of two subsets X and Y such that every element of X precedes every element of Y. Let X' be the set of all elements of the standard form with $b \in X \cup Y$ and each $a_i \in X$ and let Y' be the set of all elements of the standard form with $b \in Y \cup X'$ and each $a_i \in Y$. Then the members of $X' \cup Y'$ are distinct as written and form a free generating set for the derived group of H.

PROOF. Writing Z for the set of all elements of the standard form where b and each a_i belong to $X \cup Y$, it follows from Lemma 1 (i) that the elements of Z are distinct as written and freely generate the derived group of H; it remains to prove that $X' \cup Y' = Z$.

An element x of $X' \cup Y'$ is of the standard form

$$x = [b, m_1 a_1^{\varepsilon_1}, m_2 a_2^{\varepsilon_2}, \cdots, m_r a_r^{\varepsilon_r}]$$

where either $b \in X \cup Y$ and each $a_i \in X$ or $b \in Y \cup X'$ and each $a_i \in Y$. Then x is obviously a member of Z unless $b \in X'$ and each $a_i \in Y$; but then b is itself of standard form,

[4]

M. Ward

$$b = \begin{bmatrix} d, n_1 c_1^{\delta_1}, n_2 c_2^{\delta_2}, \cdots, n_s c_s^{\delta_s} \end{bmatrix}$$

say, where $d \in X \cup Y$ and each $c_i \in X$. Thus

$$x = \left[d, n_1 c_1^{\delta_1}, n_2 c_2^{\delta_2}, \cdots, n_s c_s^{\delta_s}, m_1 a_1^{\epsilon_1}, m_2 a_2^{\epsilon_2}, \cdots, m_r a_r^{\epsilon_r}\right]$$

and, since $c_s \in X$ and $a_1 \in Y$, $c_s < a_1$ so this is also standard form and again $x \in Z$. This proves that $X' \cup Y' \subseteq Z$. Conversely, any element x of z is of the standard form (4) where b and each b_i belong to $X \cup Y$. If all the a_i belong to X then $x \in X'$ and if all the b_i belong to Y then so does b, since $b > a_1$, and thus $x \in Y'$. It remains to consider the case where some of the a_i belong to X and some belong to Y. Since members of X precede those of Y, there is an integer k $(1 \le k < r)$ such that $a_1, a_2, \dots, a_k \in X$ and $a_{k+1}, a_{k+2}, \dots, a_r \in Y$. Then writing

$$c = [b, m_1 a_1^{\varepsilon_1}, m_2 a_2^{\varepsilon_2}, \cdots, m_k a_k^{\varepsilon_k}],$$

 $c \in X'$ and

$$x = [c, m_{k+1}a_{k+1}^{\varepsilon_{k+1}}, m_{k+2}a_{k+2}^{\varepsilon_{k+2}}, \cdots, m_{r}a_{r}^{\varepsilon_{r}}]$$

is thus a member of Y'. Hence $Z \subseteq X' \cup Y'$ and the lemma is proved.

3. Proof of the theorem

Let X_0 be the subset of F consisting of all basic commutators of weight two, that is, all elements of the form (1) with r = 0; let Y_0 be the subset of F consisting of all elements of the form (1) with $r \ge 1$. By Lemma 2, the elements of $X_0 \cup Y_0$ are distinct as written and freely generate F_2 ; we will assume them to be wellordered in any way which preserves weight. Under this order, elements of X_0 precede those of Y_0 .

Subsets X_n and Y_n of F are now defined inductively for all positive integers n: assuming that the subsets X_{n-1} and Y_{n-1} have already been defined and wellordered in such a way that element of X_{n-1} precede those of Y_{n-1} and that the members of $X_{n-1} \cup Y_{n-1}$ are distinct as written and freely generate $\delta^{n-1}F_2$, let X_n be the set of all elements of the standard form with $b \in X_{n-1} \cup Y_{n-1}$ and each $a_i \in X_{n-1}$ and let Y_n be the set of all elements of the standard form with $b \in Y_{n-1} \cup X_n$ and each $a_i \in Y_{n-1}$. It follows from Lemma 3 that the elements of $X_n \cup Y_n$ are distinct as written and freely generate $\delta^n F_2$. Well-order $X_n \cup Y_n$ in any way such that elements of X_n precede those of Y_n .

Defining, for each non-negative integer n, A_n and B_n to be the subgroups of F generated by X_n and Y_n respectively, it follows that $\delta^n F_2$ is the free product of A_n and B_n .

It is now clear that, in the union of all the sets $X_n \cup Y_n$, elements are distinct as written. The orders defined, for each individual *n*, on the sets $X_n \cup Y_n$ may now be extended to their union by specifying that whenever m < n, elements of $X_m \cup Y_m$

[5]

precede those of $X_n \cup Y_n$. In particular, elements of B_n precede those of A_{n+1} .

An argument similar to the proof of Lemma 3 yields the fact that the free generating set for F_3 given in Lemma 1 (i) is just $Y_0 \cup X_1$. Lemma 3 then shows by induction that, for any non-negative integer n, $\delta^n F_3$ is freely generated by $Y_n \cup X_{n+1}$. It follows that $\delta^n F_3$ is the free product of B_n and A_{n+1} .

References

- K. W. Gruenberg, 'Residual Properties of Infinite Soluble Groups', Proc. London Math. Soc. Ser. 3. 7 (1957), 29-62.
- [2] Martin Ward, 'Bases for Polynilpotent Groups', Proc. London Math. Soc. Ser. (3) 24 (1972), 409-431.

York University 4700 Keele Street Downsview 463 Ontario, Canada

Present address

Department of Pure Mathematics Australian National University Canberra