ON DIAGRAMS OF VECTOR SPACES

SHEILA BRENNER and M. C. R. BUTLER (Received 19 September 1967)

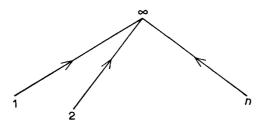
We record here two further remarks about the systems, studied in [1] and [2], consisting of a vector space U and a set K of subspaces of U. In § 1, we show that such a system may be viewed as a module over a suitable artinian ring; the results of [1] and [2] thus serve to illustrate the complexity of structure of these modules. The main idea, a little wider than one introduced by Mitchell in Chapter IX of [3], is to view a diagram of vector spaces, with a small category as the scheme of the diagram, as a module over the 'category ring' of the category.

In § 2, we answer negatively the question, raised in [1], as to whether each associative algebra E with identity, over a field $\boldsymbol{\Phi}$, can be represented as the endomorphism algebra of a $\boldsymbol{\Phi}$ -vector space system U, \boldsymbol{K} with $|\boldsymbol{K}| = 4$. Specifically, we show that the ring Δ_n of 'hollow triangular *n*-th order matrices over $\boldsymbol{\Phi}$ ' is so representable if and only if $n \leq 5$.

1. Vector space systems as modules

Let Σ be a small category, Φ an associative ring with identity, and \mathscr{M}_{Φ} the category of right Φ -modules. A covariant functor $D: \Sigma \to \mathscr{M}_{\Phi}$ will be called a Σ -diagram of Φ -modules. These diagrams are the objects of a category $\mathscr{D} = \mathscr{D}(\Sigma, \Phi)$, the morphisms of \mathscr{D} being the natural transformations between diagrams. Since \mathscr{M}_{Φ} is abelian, so also is \mathscr{D} .

Consider the category Σ_{n+1} associated in the normal way with the partially ordered set depicted in the figure



Thus Σ_{n+1} has n+1 objects $1, 2, \dots, n, \infty$, and morphisms $e_{ii}: i \to i$, $e_{\infty\infty}: \infty \to \infty$, and $e_{i,\infty}: i \to \infty$ for $1 \leq i \leq n$. Let Φ be a field. Then a

445

diagram $D: \Sigma_{n+1} \to \mathcal{M}_{\Phi}$ in which each $D(e_{i,\infty})$ is injective may be regarded as a vector space $U = D(\infty)$ and an indexed family $\mathbf{K} = \{ \text{Im } D(e_{i,\infty}) \}$ of *n* subspaces of *U*. In particular, End *D* is just the endomorphism algebra, in the sense of [1], of the system *U*, **K**.

In [3, Chapter IX], Mitchell shows that the category $\mathscr{D} = \mathscr{D}(\Sigma, \Phi)$ is equivalent to the category $\mathscr{M}_{\Phi(\Sigma)}$, where Σ is the category associated with a finite partially ordered set, and $\Phi(\Sigma)$ is a suitable ring of matrices over Φ . This identification may be made for any small category Σ . Let I be its object set and M its morphism set. The appropriate ring $\Phi(\Sigma)$ may be taken to be the Φ -algebra having M as a free basis, the multiplication of basis elements e, e' being defined by the rule

 $ee' = \begin{cases} \text{their product in } \Sigma, \text{ if defined,} \\ 0 \text{ otherwise.} \end{cases}$

This construction thus generalises that of the group ring of a group. Notice that each object *i* determines an idempotent e_{ii} in $\boldsymbol{\Phi}(\boldsymbol{\Sigma})$, and that $\boldsymbol{\Phi}(\boldsymbol{\Sigma})$ has an identity, namely $\sum_{i \in I} e_{ii}$, if and only if *I* is finite. It is easy to describe Mitchell's identification of \mathscr{D} with $\mathscr{M}_{\boldsymbol{\Phi}(\boldsymbol{\Sigma})}$. Let $D \in \mathscr{D}$; define $M(D) = \bigoplus_{i \in I} D(i)$ and, for $e: j \to k$, define the action of *e* on M(D) to be 0 on summands D(i) with $i \neq j$, and D(e) on the summand D(j). This yields a functor from \mathscr{D} to $\mathscr{M}_{\boldsymbol{\Phi}(\boldsymbol{\Sigma})}$. Conversely, for each $\boldsymbol{\Phi}(\boldsymbol{\Sigma})$ -module M, define $D: \boldsymbol{\Sigma} \to \mathscr{M}_{\boldsymbol{\Phi}}$ to be the diagram with values $D(i) = Me_{ii}(i \in I)$, and $D(e): D(j) \to D(k)$ to be the map induced by right multiplication by $e: j \to k$. These two functors give the required equivalence of categories.

In the case of the category Σ_{n+1} depicted above, $\boldsymbol{\Phi}(\Sigma_{n+1})$ is generated by the 2n+1 morphisms e_{ij} , and these satisfy the usual matrix identities $e_{ij}e_{kl} = \delta_{jk}e_{il}$. We call $\boldsymbol{\Phi}(\Sigma_{n+1})$ the ring $\Lambda_{n+1} = \Lambda_{n+1}(\boldsymbol{\Phi})$ of open hollow triangular (n+1)-th order matrices over $\boldsymbol{\Phi}$.

Let $\boldsymbol{\Phi}$ be a field. Then Λ_{n+1} is artinian, and of quite simple type. The results of [1] may be interpreted as statements about Λ_{n+1} -modules in which all the morphisms in the associated vector space diagrams are injective. In fact, it is easy to see that each Λ_{n+1} -module is the direct sum of one of this type and of an injective module.

We draw attention to the module versions of two results in [1] and [2].

(1) Let $n \ge 5$. Each associative Φ -algebra E with identity may be represented as the endomorphism ring of a $\Lambda_{n+1}(\Phi)$ -module, of Φ -dimension at most $7(\dim E)^2$.

(2) Let $n \geq 5$, and let *c* be any finite or infinite cardinal. There is a $\Lambda_{n+1}(\Phi)$ -module of Φ -dimension greater than or equal to *c* with endomorphism ring isomorphic to Φ .

We show in § 2 that (1) fails for n = 4. The Λ_2 , Λ_3 , Λ_4 , and Λ_5 -modules of finite Φ -dimension and endomorphism ring Φ are listed (in vector space

form) in [1]. We do not know whether Φ can be realised as endomorphism ring of a Λ_5 -module of *infinite* dimension.

A modification of (2) may be obtained for an arbitrary ring $\boldsymbol{\Phi}$, in the following form. Let c be a finite (countable) cardinal, and $n \geq 4$ $(n \geq 5)$. Then, there exists a $\Lambda_{n+1}(\boldsymbol{\Phi})$ -module which has the opposite ring of $\boldsymbol{\Phi}$ as endomorphism ring, and is free as a $\boldsymbol{\Phi}$ -module, on a basis of cardinality $\geq c$. Indeed, we can give an explicit presentation of such a module, or more conveniently, of the corresponding $\boldsymbol{\Phi}$ -module system U, \boldsymbol{K} . If c is countable, take U, K_1, \dots, K_5 to be the free $\boldsymbol{\Phi}$ -modules on the following bases:

 $\begin{array}{l} U \text{ has basis } \{x_r\}_{r \ge 1} \bigcup \{y_r\}_{r \ge 1} \\ K_1 \text{ has basis } \{x_r\}_{r \ge 1} \\ K_2 \text{ has basis } \{y_r\}_{r \ge 1} \\ K_3 \text{ has basis } \{x_r+y_r\}_{r \ge 1} \\ K_4 \text{ has basis } \{x_r+y_{r+1}\}_{r \ge 1} \\ K_5 \text{ has basis } \{x_1\}. \end{array}$

A very easy computation shows that the endomorphisms of U, K are induced by maps of the form $x_r \to x_r \phi$, $y_r \to y_r \phi$ ($r \ge 1$), for $\phi \in \Phi$; so the endomorphism ring of U, K is isomorphic to the opposite ring of Φ . For c finite, similar presentations of suitable systems U, K, with |K| = 4, are contained in the Appendix to [1]. One of their essential features is that the matrices expressing the given bases of the submodules K_i in terms of the given basis of U contain zeros and ones only.

2. Non-representability of some algebras

As in [1], let $\mathscr{E}(U, \mathbf{K})$ denote the ring of all endomorphisms of the $\boldsymbol{\Phi}$ -vector space U which leave invariant each member of the set \mathbf{K} of subspaces of U. It was shown in [1] that, if $|\mathbf{K}| = 5$, and E is any associative $\boldsymbol{\Phi}$ -algebra with identity, of finite $\boldsymbol{\Phi}$ -dimension, then there exist a finite dimensional space U, and \mathbf{K} , such that $\mathscr{E}(U, \mathbf{K}) \cong E$. In case $|\mathbf{K}| = 4$, it was shown that this result could fail for some basefields $\boldsymbol{\Phi}$. We shall now show that it fails for any field $\boldsymbol{\Phi}$.

By a hollow triangular n-th order matrix over the field Φ , we mean an *n*-th order matrix (ϕ_{ij}) with entries in Φ such that $\phi_{ij} = 0$ unless either i = j, or i = 1, or j = n. The set of all such matrices forms a ring Δ_n . We assert that

there exists a pair U, K with dim U finite, |K| = 4, and $\mathscr{E}(U, K) \cong \Delta_n$ if and only if $n \leq 5$.

Nevertheless, if $\boldsymbol{\Phi}$ is infinite, it may be shown that, for all n, Δ_n can be represented as the endomorphism ring of some Λ_5 -module; of course, for n > 5, such a module cannot correspond to a pair U, K. However, a modification of the argument below shows that the ring direct sum of Δ_6 and $\boldsymbol{\Phi}$ cannot be the endomorphism ring of a Λ_5 -module.

The proof of the assertion above involves much tedious and elementary case checking, and we merely outline it. Let U be a Φ -space and K a set of subspaces of U such that $\mathscr{E}(U, \mathbf{K}) \cong \Delta_n$. Let d_{rs} be the element of $\mathscr{E}(U, \mathbf{K})$ corresponding to the matrix in Δ_n with 1 at the place (r, s) and 0 elsewhere (r = s, or r = 1, or s = n). The elements d_{rs} form a Φ -basis of $\mathscr{E}(U, \mathbf{K})$, and $d_{rs}d_{tu} = \delta_{st}d_{ru}$.

Write $U_r = Ud_{rr}$ and $K_r = \{Kd_{rr} : K \in K\}$. Then K_r is a set of subspaces of U_r , and $U = \bigoplus_{r=1}^n U_r$. Let

$$\begin{aligned} H_{rs} &= \operatorname{Hom} \left((U_r, K_r), (U_s, K_s) \right) \\ &= \{ h \in \operatorname{Hom} \left(U_r, U_s \right) : \forall K \in K, Kd_{rr} h \subseteq Kd_{ss} \}. \end{aligned}$$

Each element h of H_{rs} may be extended to an element of $\mathscr{E}(U, \mathbf{K})$ by defining it to be 0 on U_t , for $t \neq r$. However, the only element of $\mathscr{E}(U, \mathbf{K})$ which maps U_r into U_s is 0 unless r = s, or r = 1, or s = n, in which cases it must be a scalar multiple of d_{rs} . Hence

(*) dim
$$H_{rs} = \begin{cases} 1 \text{ if } r = s, \text{ or } r = 1, \text{ or } s = n, \\ 0 \text{ otherwise.} \end{cases}$$

In particular, $H_{rr} = \mathscr{E}(U_r, K_r) \cong \Phi$.

Now let dim U be finite and $|\mathbf{K}| = 4$. The possible systems U_r , K_r with $H_{rr} \cong \Phi$ are listed in the Appendix to [1], and an examination of the homomorphisms between them shows that the conditions (*) cannot be satisfied if n > 5. On the other hand, for $n \leq 5$, the conditions (*) may be satisfied in such a way that there exist $h_{rs} \in H_{rs}$ such that $h_{rs}h_{tu} = \delta_{st}h_{ru}$. So \mathcal{L}_n is representable in the form $\mathscr{E}(U, \mathbf{K})$ provided $n \leq 5$.

The condition that dim U be finite could be omitted if it is true that $\mathscr{E}(V, L) \cong \Phi$ and |L| = 4 implies that dim V is finite.

References

- Sheila Brenner, 'Endomorphism algebras of vector spaces with distinguished sets of subspaces', J. Algebra, 6, (1967) 100-114.
- [2] A. L. S. Corner, 'Endomorphism algebras of large modules with distinguished submodules', J. Algebra (to appear).
- [3] B. Mitchell, Theory of Categories (Academic Press, 1965).

Department of Mathematics, Monash University Departments of Mathematics, University of Liverpool