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REDUCTION OF DIMENSION OF
APPROXIMATE INTERTIAL MANIFOLDS BY SYMMETRY

ANIBAL RODRIGUEZ-BERNAL AND BIXIANG WANG

In this paper, we study approximate inertial manifolds for nonlinear evolution partial
differential equations which possess symmetry. The relationship between symmetry
and dimensions of approximate inertial manifolds is established. We demonstrate
that symmetry can reduce the dimensions of an approximate inertial manifold. Ap-
plications for concrete evolution equations are given.

1. INTRODUCTION

In this paper, we investigate the effect of symmetry on the asymptotic behaviour
of solutions to nonlinear evolution partial differential equations. It is now well known
that global attractors and inertial manifolds are important concepts in studying the long
time behaviour of evolution equations since they contain all the asymptotyc dynamics of
a system, see Hale [10]; Stuart [3] and Temam [8].

On the other hand, it is often the case that evolution equations possess symmetry
under action of a group, for example, the Kuramoto-Sivashinsky (KS) and Cahn-Hilliard
(CH) equations. In that case, it is interesting to discuss whether the permanent regime
is also symmetric and how the symmetry affects the asymptotic behaviour of solutions.
In this respect, recently it was shown in [5] that the global attractor has the same
symmetry as the evolution equations. There the author also proved that inertial manifolds
constructed by some methods preserve the symmetry, and established the precise relation
between the symmetry and the dimensions of inertial manifolds. Based on this fact, in
[2] the author demonstrated that the Kuramoto-Velarde equation has symmetric inertial
manifolds, and the symmetry can indeed reduce the dimension of inertial manifolds.

On the other hand, approximate inertial manifolds (AIM) are used to approximate
the dynamics on the global attractors and inertial manifolds, see Jolly, Kevrekidis and
Titi [6]; Foias, Jolly, Kevrekidis, Sell and Titi [14]; Sell [9], and the references therein.
Since AIMs approximately describe the asymptotic dynamics of a given system, they are
used both for dynamical studies and computational purposes. We note that AIMs can
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be proved to exist with much fewer restrictions than those required for the existence of
inertial manifolds.

Therefore, in this paper, our goal is to give conditions which imply that AIMs inherit
the symmetries of the equations and, on the other hand, to show that the dynamics of
symmetric solutions can be described by lower dimensional AIMs.

Although most of the arguments can be carried in an abstract setting and for most
known methods of construction of AIMs, for the sake of simplicity, we present here some
results on concrete equations and construction methods.

This paper is organised as follows. In the next Section, we first recall some facts
about groups and we present the functional form of the equation which will be considered
in the paper. Section 3 is devoted to our main results. We show that under some
circumstances AIM's possess the same symmetry as the equation. We also establish the
precise relationship between the symmetry and the dimensions of AIM's. In Section 4,
we apply our abstract results to concrete evolution equations such as the KS equation
and CH equation. There we shall be concerned with AIM's constructed by various well
known methods: the nonlinear Galerkin method, Gamma method, and Euler-Galerkin
method, see [9] for more details.

2. PRELIMINARIES

For later purpose, we first recall some notation of groups. In the sequel, we assume
that H is a topological space and G is a subgroup of the group of homeomorphisms of
H, G <Z Hom(#) .

DEFINITION 2.1:

(i) if A C H, then the isotropy subgroup E.4 of A is defined by

eG: g(A) =

(ii) If E C G, then the fixed points set Fix (£) of E is defined by

F ix (£ ) = {xeH: g{x) = x, Vg e S } .

DEFINITION 2.2: Assume that X and Y are subsets of H, T : X -t Y is a mapping
and g € G. If g(X) C X and goT = TogonX, then we say g and T commute. If g
and T commute for all g € G, we say G and T commute.

Hereafter, we denote by H a Banach space and A : D(A) c H -4 H is a closed
linear operator with dense domain, while P denotes a spectral projection of A. Also we
assume that G is a group of linear isomorphisms of H, that is, a subgroup of lso(H).
With these notations, we recall the following result from [5].

PROPOSITION 2 . 1 . Assume that g and A commute where g € Iso(H). Then
g commutes with every spectral projection P of A, and g 6 Isofi?(P)J.
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In what follows, we consider the semilinear equation in H:

(2.1) ut + Au + f(u) = 0,

(2.2) u(0) = u0 € H,

where / is a nonlinear function in H.

We assume that problem (2.1)-(2.2) is well-posed, that is, for all u0 € H, (2.1)-(2.2)
has a unique solution u(t) defined on K+ such that

u € C([0,oo),H)nC1 ((0,oo),H).

Thus, system (2.1)-(2.2) establishes a dynamical system S(t) : H —» H such that S(t)uQ

= u(t), the solution of (2.1)-(2.2). The following consequence is straightforward, see [5].

PROPOSITION 2 . 2 . Assume that G commutes with A and f. Then we have

(2.3) S(t)og = goS{t), for all t ^ 0 and g 6 G.

In particular, ifH c G, then V = Fix (E) is a positively invariant linear subspace in the
sense that ifu S V, then S(t)u € V for all t ^ 0.

DEFINITION 2.3: If (2.3) is satisfied, then g is called a symmetry of problem (2.1)-
(2.2) and G a group of symmetries.

3. M A I N RESULTS

In this section, we deal with AIM's which possess symmetry. We shall show that
AIM's constructed by standard methods preserve the symmetry of the original evolution
equations. Also we shall establish the relationship between the symmetry and the di-
mensions of AIM's. As a result, we shall see the symmetry can reduce the dimensions of
AIM's for evolution equations.

We first recall from [14, 6, 9] that an AIM, M, is a smooth finite dimensional
manifold such that every solution enters and remains in a thin neighbourhood in a finite
time, more precisely, there exist an integer m and a positive number e such that M is
an m-dimensional manifold and

dist(S(f)u0 ,M) < e, for all t ^ t,

where Tdepends on R when ||uo|| < R and dist# (A,B) = supinf | | a - 6 | | w . In that case,
aeA beB

we call M an e-AIM. Then we start with the following.
THEOREM 3 . 1 . Let M be an m-dimensional e-AIM for problem (2.1)-(2.2), then

for every g € G, g(M) is an m-dimensional e||y||-AJM, where \\g\\ is the norm of g in

C(H).
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P R O O F : For any g € G and bounded set B in H, since g is a bounded linear
isomorphism of H, we have

djst(S(i)B, g(M)) =dist(S(t)g(g-1(B)),g(M))

Z\\g\\dist(S(t)(g-l{B)),M)<e\\g\\,

for all t ^ t(g~l(B)), where we have used (2.3). Hence g(M) is an £-||g||-AIM isomorphic
to M. In particular, g{M) is m-dimensional. The proof is complete. D

Observe that, as in [5], if G is a compact Lie group, by using the Haar measure on
G one can construct an equivalent norm in H such that ||<7|| = 1 for every g € G.

In most methods known so far, see [14, 6, 9], an AIM is constructed as a graph
M. — Graph ($) where <J> : X\ —> Xz is a Lipschitz mapping and X\ and Xi form a
spectral decomposition of H. Moreover, M. satisfies that there exists e > 0 such that

(3.1) dist(S(t)u0, P(S{t)u0) + $(P{S(t)u0))) < e, for all t > t(u0),

where P is the spectral projection from H onto Xx.

We shall see below that if $ commutes with all elements of G, then M is G-

symmetric. More precisely, we have:

THEOREM 3 . 2 . With the notation above, assume that $ : X\ —¥ Xi commutes

with all elements of G. Then the AIM M = Graph ($) is symmetric in the sense that

for every g G G one has

g{M) = M.

P R O O F : Since Xi and X<i are ranges of spectral projections, by Proposition 2.1
we get g(X{) = Xit i = 1,2, for all g € G. Consequently g{M) = Graph (<]/), where
\]> = g<&g~l. Therefore, if $p = g$ then g(M) — M, which proves Theorem 3.2. D

In what follows, we investigate the impact of symmetry on the dimension of AIMs.
Given a subgroup £ C G, let V = Fix(E). As shown in Proposition 2.2, V is invariant
for S(t). So symmetry of the initial data is preserved for positive times. Our main results
are stated in:

THEOREM 3 . 3 .

(i) Let £ C G be a subgroup and V — Fix(£). Assume $ : Xi —> X2

commutes with all elements of G and let M. = Graph ($) = (/ +
be an AIM for (2.1). Then we have

(3.2)

(ii) Assume moreover that $ satisRes (3.1). Then M D V is an e-AIM for the
How on V.
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P R O O F :

(i) Let P : H -* Xx and Q : H -¥ X2 be the spectral projections. Since, by
Proposition 2.2 we know that for any g £ G, Pg = gP, Qg = gQ, then
for every u £ V, Pu and Qu also belong to V. On the other hand, if
u £ M — Graph ($) , then u can be written as u = p + $(p) with p £ XY

and since $ commutes with all elements of G, we have that u £ V if and
only if <?(p) = p for all ff € £ , which completes the proof of (i).

(ii) Since S(t)u0 £ V for any u0 £ V and t ^ 0, we get that P (S( i )u 0 ) €

y n Xj . Hence, by (i) we find that P(S(t)uQ) + $ ( P ( S ( i ) u 0 ) ) 6 M n V .

It follows now from (3.1) that for all UQ £V

d\st(S(t)u0, MC\V) ^ djst(S(t)uo, P(S{t)u0) + $(p(S(t)u0))) ^e,

for all t ^ t(u0) and the proof is finished.

D
We remark that usually Xi is an eigenspace spanned by the eigenfunctions of A

corresponding to a subset o\ of cr(A). In that case, X\ PI V is generated by eigenfunctions
of A with eigenvalue in o\ and with symmetry E. Equation (3.2) shows then in a precise
way how symmetry reduces dimensions of an AIM for symmetric solutions.

Note that the main assumption in the preceding results is the fact that $ commutes
with all the symmetries in the group. In the context of inertial manifolds, it was showed
in [5] that this is actually the case, but the positive invariance of the inertial manifolds
is crucially used for the proof. Therefore, in principle, for AIMs specific proofs of this
fact must be given depending on the method of construction used. In the next section,
rather than working in a general abstract setting, we shall illustrate this question and
the consequences of the theorems above on concrete equations and for some well known
methods of construction of AIMs.

4. APPLICATIONS

In this section, we apply the abstract results in the previous section to the KS
equation and the CH equation. We shall show how the symmetry possessed by these
equations can reduce the dimensions of an AIM. We first consider the KS equation with
an AIM constructed by the nonlinear Galerkin method. Then we present similar results
for the KS equation with an AIM defined by the Gamma method and Euler-Galerkin
method. However, in this case, the precise statements of results will be omitted since
they are similar. Finally, we discuss the same problem for the CH equation. For the
CH model we omit the results similar to the KS equation, and just deal with those
corresponding to extra symmetry possessed only by the CH equation but not by the KS
equation.
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4 .1 . T H E KS EQUATION In this subsection, we consider the following renormalised KS
equation:

du d*u d2u du , ,

v > 0, subject to the periodic condition

u(x,i) = u(x + L, t), L > 0.

In addition, we impose the zero average condition

rL
I u(x, t) dx - 0, for t ^ 0.

Jo

We denote by

H = lu Lfoc{R) : u(x + L)=u(x),

with the usual norm of L2(0, L) and Vk = H^.(R)nH endowed with the norm of Hk(0, L).
In particular, we let Vo = H and V\ = V. It is known that for every u0 € H, there exists
a unique solution u(t) € F4 for all t > 0. Also there exists a constant M such that

\\u{t)\\Hl ^ M, for O *o,

where t0 depends only on R when ||uo|| < R, see [1] and [11]. So the ball

(4.1) B = {ue V: \\u\\ ^ M)

is a bounded absorbing set for the KS equation in V. Note that the KS equation is
equivalent to the functional differential equation, see [8],

^ + Au- A1/2u + f(u) = 0, u € if,
at

where A = v-^ with domain D(A) = V4, and f(u) = F{u,u) where F(u,v) is the
bilinear operator defined by

dv
Flu, v) = u—, for all u, v € V.

ox

It is easy to see that the eigenvalues of A are An = V((2TT/L)TI) , n = 1,2, • • • and the

corresponding eigenfunctions are sin((27r/L)na;) and cosf(27r/L)na;). Let

P = Pm : H —> Span < sin [ -j-x), cos I— xj,- -,sin ( — mxl , cos f — mx\ >

https://doi.org/10.1017/S000497270003642X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003642X


[7] Inertial manifolds 325

be the spectral projection, and Q = Qm = I — Pm.

For r e K, we define gT,g. : H -* H such that for u € H, gT(u)(x) = u(x + T ) . and
gt(u)(x) = —u(—x) with i £ l . Then we see that for all r 6 R, gT and g, commute with
all terms of the KS equation, which means that

G = ({gT,reR}, g.)

is a (noncommutative) group of symmetries of the KS equation. Note that g, is of order
2, and T = {gT, r € R} is a commutative group whose effective action on H is given by
the quotient of T over the set of elements which act trivially on H, that is, the quotient
over To = {gT, r = kL, k € Z} and

which is a compact and commutative Lie group (50(2) is the group of the orthogonal
transformations on the plane which preserve the orientation). Also, let

GO = ( { < 7 T , T € [ O , L ) } , gt).

Then Go « 0(2) , where 0(2) is the orthogonal group of the plane. Note that for r 6 R,
it is easy to see that Fix (gT) consists of the functions in H which are r-periodic, and
Fix(g.) consists of the odd functions in H, and Fix ((<?„, fly)) consists of odd r-periodic
functions. Finally note that all elements in GQ are isometries in the spaces Vk.

In what follows, we first show AIMs constructed by the nonlinear Galerkin method
are Go-symmetric. For this method, see [6], we define $ s : Bm -> B^ with Bm = PmHr\B
and B^ = QH n B, where B is given in (4.1), such that for p € Bm, $s(p) satisfies

(4.2) A&{p) - Al'Ha{p) + Qf(p + $ » ) = 0.

Equation (4.2) is an implicit equation and can be solved by the contraction principle.
More precisely, for each fixed p € Bm, let

Tp(q) = A-l'2q - A~lQf(p + q), for all q G B^.

One can then show that there exists an integer iV such that if m ^ N then Tv maps B^
into itself and is a contraction, see [6]. Thus the contraction principle implies that for
each p € Bm, Tp has a unique fixed point in B^ which is the solution of (4.2). As shown
in [6], Ms = Graph ($s) is a 2m-dimensional AIM satisfying (3.1).

Now we prove that M' has the same symmetry as the KS equation, that is, that
the assumption on Theorem 3.2 holds true. First we have

THEOREM 4 . 1 . The mapping <E>" defined by (4.2) commutes with ail elements of

Go, that is,
g$* = $ s

5 - for every j g ( J 0 .
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PROOF: For every p e Bm and g € Go, by (4.2) we have

(gA*')(p) - (gAl'2V)(p) + (gQ)f(p + $'(p)) = 0.

Since g is linear and commutes with A, Q and / , we have that

A{g{*°(p))) - Al/2(g($'(p)))+Qf(g(p)+g(*'(p))) = 0,

which implies that g($s(p)) is the solution of

(4.3) Az

Therefore, since g(p) € Bm and by the definition of $5, (4.2), we know that $s(g(p)) is
the unique solution of (4.3). So it follows that

</($'(p)) = $s(g(p)), for every p e Bm,

which concludes Theorem 4.1. Q

Now we can apply Theorems 3.1 and 3.2 to get

THEOREM 4 . 2 . The AIM Ms = Graph ($*) with $ s given by (4.2) is Go-
symmetric, that is,

g(M') - Ms, for every g € Go.

The following results are immediate consequences of Theorem 3.3.

THEOREM 4 . 3 . Letrk = L/k, k = 1,2, • • •, Gk = (gTk) and Zk = Fix (Gk) (LIk-
periodic functions). Then M* D Zk is an AIM for the Row on Zk which is a graph over
X\ D Zk, spanned by

(i) {sin(j/c(27]7£)z), cos(jfc(2?r/L)x), jk ^m, j ^ l } , ifk < m,

(ii) |sin(m(27r/L)zV cosfm(27r/L)a;)}, if k = m,

(iii) {0}. ifk > m.

In particular, ifk = m, then Msr\Zm is a two dimensional AIM for the L/m-periodic
solutions; ifk > m, then Ms D Zk = {0} is an AIM for the L/k-periodic solutions.

THEOREM 4 . 4 . Let G. = (g.) and Z. = Fix (G.) (odd functions). Then M"nZ,
is an m-dimensional AIM for the How on Z, which is a graph over Xi n Z., spanned by

{sin(*¥*)' K * < 4
THEOREM 4 . 5 . Let rk = L/k, k = 1,2,---, G.,fc = {g., gTk) and Z.tk =

Fix (G.,fc) (odd L/k-periodic functions). Then Ms n Z.tk is an AIM for the Bow on
Z,,k which is the intersection of the manifolds in Zk and Z. constructed above, and a
graph over Xi n Z,tk, spanned by
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(i) |sinu'A;(27r/L)a;J, jk ^ m, j ^ l | , if k < TO,

(ii) jsin f?n(27r/.L)a;J, }, ifk = m,

(iii) {0}, ifk > m.

In particular, if k — rn, then Ms C\ Zt^m is a one dimensional AIM for the odd L/m-
periodic solutions.

THEOREM 4 . 6 . Let G,o2 = {g, °9L/2) and Zto2 = Fix (G,o2) = {u € H : u(x) =

—u((L/2) — xj\. Then M.s D Zt02 is an m-dimensional AIM for the Bow on Z,O2 which

is a graph over Xi D Z,o2, spanned by

js in \2k-^-xJ, cos ({2j + l )y-a:)> 1 ^ 2fc ^ m, 1 ^ 2j + 1 < m l .

In the sequel, we consider the Gamma method. First note tha t the KS equation is

equivalent to the system

where p = Pmu, q = Qmu.

The idea of the Gamma method is to construct an AIM as an inertial manifold of
the perturbed system

(4.4) g

(4.5) 4l

where 7 > 1, see [14, 9]. By using a variation of the argument in [4] or [7] one concludes
that there are constants Ko and Kx such that if the eigenvalues An and An+i satisfy
•̂ n ^ ^o, together with the gap condition

(4.6) 7An+i -K>

then (4.4)-(4.5) has an inertial manifold of the form

My = Graph (<F),

where <J>7 is a Lipschitz function from PmH to QmH D D(A). It turns out then that M1

is an AIM for the original system.

For the KS equation, since An = u(2nn/L)4, it is easy to verify that (4.6) is sat-
isfied for some m. Then (4.4)-(4.5) has a 2m-dimensional inertial manifold M? =
Graph (<J>7) = (/ + 3>7)(X1), where Xi is spanned by

f. /2ir \ /2?r \ "I
< sin I — nx J, cos I —nx J, 1 ^ n ^ m >.
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From [5], it follows that $ 7 is G-symmetric. So Theorems 3.1 and 3.3 apply to M7 and
similar results to the ones above can also be obtained. Details are omitted here.

We now consider the Euler-Galerkin method. The main step of that method is to
define <£T : Bm -> B^ such that for p e Bm $T(p) is the solution of the equation

(4.7) $T(p) + TA$T (p) — r>l1/2$T(p) + rQfrp + <3>T(p)) = 0

where r > 0 is a constant. Similarly to the nonlinear Galerkin method, using the con-
traction principle one can show that there exists TV such that when m ^ TV, equation
(4.7) has a unique solution $T(p) € B^ for any p e Bm. Setting MT — Graph ($ r ) , then
it follows from [14] and [13] that MT is an AIM for the KS equation. As for Theorem
4.1 we can deduce that <1>T is G-symmetric. And thus all results in Section 3 are valid for
JM T . We omit the details here again.

4.2. T H E CH EQUATION The nonlinear CH equation is a continuous model for the
description of the dynamics of pattern formation in a phase transition, see [12]. This
equation involves an unknown function u : R x R+ —>• E such that

|£ - AtfT(ti) = 0, ( i , t)eRxR+,

2p-l

where K(u) = -vAu + f(u), v > 0, and f(x) — £ aji3, a2p_i > 0. This equation is

supplemented with the boundary and initial conditions

u(x,t) =u(x + L,t), xeR,

u(x,0) = uo(x), x&R.

Here we also impose the zero average condition

f u(x, t) dx = 0, for t Ss 0.
Jo

Obviously, with the same notations as above, the CH equation is equivalent to

- ^ + vAu - AJ{u) = 0, in H.
at

It is known, see [8], that the CH model is dissipative, more precisely, there exists a
constant M such that the ball

V2; ||u||ff» ^ M]

is a bounded absorbing set.

Proceeding as before one can show that M°, M1 and MT constructed as above are
AIM's for the CH equation with B replaced by B.
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Now let g* — -gt, that is, g*{u){x) = u{—x), then we find that g* is also a symmetry
for the CH equation. So now the group of symmetry is

G = ({gT, T G [ 0 , L ) } , g., g').

Hence besides the cases discussed above we see that Z' = Fix (<?*), that is, the set
of even functions in H, is also invariant for the CH equation. Similar results to the KS
equation are not repeated here again, so we restrict ourselves to the new symmetry g*.
For g* we have

THEOREM 4 . 7 . Let Ms is the AIM defined above and G* = (g*), Z* = Fix (G*)
(even functions). Then Ms n Z* is an m-dimensional AIM for the flow on Z* which is a
graph over X\ D Z*, spanned by

I cos ( k—x 1, 1 ̂  k ^ m \.

THEOREM 4 . 8 . Let rk = L/k, k = 1,2, •••, G'k = \g\ gTk) and Z*k = Fix(GJ)
(even LIk-periodic functions). Then Ms D Z*k is an AIM for the Sow on Zk, a graph over
XxV\Z*k. spanned by

(i) {cos(jk(2n/L)x), jk ^ m, j ^ l } , if k < m,

(ii) |cosfm(27r/L)x), }, if k = m,

(iii) {0}, ifk>m.

In particular, ifk — m, then MSC\Z^ is a one dimensional AIM for the even L/m-periodic

solutions.

THEOREM 4 . 9 . Let G'°2 = (g'ogL/2), and Z*°2 = Fix (G*°2) = {ueH: u{x) =

u(L/2 - z)}. Then Ms D Z*°2 is an m-dimensional AIM for the Bow on Z*°2, a graph

over Xi n Z"°2, spanned by

in ({2k + l)y^Y cos hjj-x\ 1 ̂  2A; + 1 ^ m, 2j ^ m\ .
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