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Abstract
Raw mortality data often exhibit irregular patterns due to randomness. Graduation refers to the act of
smoothing crude mortality rates. In this paper, we propose a flexible and robust methodology for grad-
uating mortality rates using adaptive P-splines. Since the observed data at high ages are often sparse and
unreliable, we use an exponentially increasing penalty. We use mortality data of England and Wales and
model male and female mortality rates jointly by means of penalties, achieving borrowing of information
between the two sexes.
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1. Introduction
Crude mortality rates often exhibits natural randomness and irregular patterns. Graduation or
modelling of mortality rates refers to the act of smoothing crude mortality rates. Sometimes
extrapolation to higher ages is also performed during the process since the usual assumed maxi-
mum lifespan of humans (e.g. 125) is often beyond the range of available data. Mortality rates are
usually expressed in the form of life tables, which contains the number of expected lives and deaths
at different ages. Life tables are widely used in the insurance sector as there are many insurance
products related to mortality.

Several methods have been proposed in the past, however, due to the peculiar shape of the
human mortality curve (e.g. accident hump in late teens, very high infant mortality rates), these
methods often involve relatively complicated mathematical functions. It is only recently that
non-parametric smoothing techniques have become popular and are employed in graduation of
mortality rates. These non-parametric methods are more flexible and they do not assume any
particular decomposition of the mortality schedule.

Mortality graduation models, sometimes also called “laws of mortality”, have become more
sophisticated over time. One of the earliest models, Gompertz law of mortality (1825), states that
the mortality rates is an exponential function of age, i.e. the log of mortality rates is linear in
age. The law is then extended by Makeham in 1860 to the Gompertz–Makeham law where he
proposed the addition of a constant, which captures mortality due to age-independent accidents.
In spite of the simple and interpretable functions, these laws provide adequate fit to only limited
age range, say 30–90, where the log-linearity assumption seems appropriate. The constant rate of
increase (i.e. the log-linearity) in mortality rates might not be suitable at the very old ages. In fact,
a decelerating rate of increase is often observed at these ages (Carriere, 1992). Perks (1932), Beard
(1959) and Thatcher (1999) suggested to use logistic functions so that the mortality rates tend to
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an asymptote. At younger ages where mortality rates are lower, the logistic curve behaves similarly
to the Gompertz or Gompertz–Makeham laws. Lindbergson (2001) suggested a piecewise model
such that for ages less than a cut-off age the mortality rates follow the Gompertz–Makeham law,
while after the cut-off age they are modelled by a linear function. Saikia & Borah (2014) did a
comparative study on models for the oldest ages and showed that the logistic model is the most
reasonable choice amongst the laws mentioned above. More recently, Pitacco (2016) provides a
comprehensive review of old age models.

The models discussed so far are only applicable to the adult ages. Several more complicated
mathematical functions have been proposed in an attempt to model mortality rates for the entire
age range. Heligman & Pollard (1980) proposed the eight parameters Heligman–Pollard Model.
Carriere (1992) modelled the survival function and viewed it as a mixture of infant, young adult
and adult survival functions. Despite the ability to model mortality rates of the whole age range
with interpretable parameters, these models are often difficult to fit in practice, due to the high
correlation in the estimated parameters. The high correlation also compromises interpretability.

Recently more flexible, non-parametric smoothing approaches are used to model mortality.
These methods are used to produce the English Life Tables (ELTs), decennial life tables published
by the Office for National Statistics (ONS) in every 10 years after every census. Since the 13th
English Life Table (ELT13), subsequent ELTs are all produced using spline-based methods. In
ELT14, a variable knot cubic spline is adopted and the optimal number and location of knots
are estimated. In ELT15, a weighted least squares smoothing spline is used, with a modification
that the user specifies a set of weights based on their judgment in respect of the regions where the
closest fit should be expected. In addition, some data at the highest ages are discarded to maintain
a monotonic (upward) progression in the graduated mortality rates. In ELT16, a Geometrically
Designed variable knot regression spline (Kaishev et al., 2006) is used. This is a two-stage method
where they first fit a variable knots linear spline, and then estimate the optimal control polygon of
higher order splines, resulting in estimates of the optimal knot sequence, the order of the spline
and the spline coefficients all together. Detailed information on methods used in the production
of ELTs can be found in Gallop (2002). In the latest English Life Table, ELT17, Dodd et al. (2018)
suggest to use a hybrid function for graduation. Specifically, mortality rates before some cut-off
age are modelled using splines while mortality rates after the cut-off age are modelled using a
parametric model (log-linear or logistic). At younger ages, there is sufficiently dense data, there-
fore, the flexibility of splines makes it a very effective tool in graduating mortality rates at these
ages, whereas at the oldest ages, a parametric function helps produce more robust estimates and
extrapolation. The final graduation combines different threshold ages with weights determined by
cross-validation error. This requires multiple fits and the transition from spline to the parametric
model is not guaranteed to be smooth.

We extend the approach presented in Dodd et al. (2018) by using adaptive splines. Under this
approach, instead of splitting the age into non-parametric and parametric regions, a P-spline is
used for the whole age range with adaptive penalty. Contrary to traditional P-splines, instead of
having a single smoothing parameter governing the overall smoothness, adaptive splines allow
varying smoothness over the domain, hence enhancing flexibility and giving better fit to func-
tions with changing smoothness. Ruppert & Carroll (2000) showed that even when the true
underlying function is uniformly smooth, adaptive splines perform at least as well as traditional
splines in terms of model fit. Different approaches have been suggested to estimate the vary-
ing smoothness penalty. Pintore et al. (2006) and Liu & Guo (2010) used piecewise constant
functions for the varying penalty. Ruppert & Carroll (2000) and Krivobokova et al. (2008) pro-
posed to use a second layer of spline for the penalty. Storlie et al. (2010) suggested to estimate
the changing smoothness from an initial fit with an ordinary spline while Yang & Hong (2017)
recommended to weight the penalty inversely to the volatility of the data in proximity. Bayesian
adaptive splines have also been investigated (see Baladandayuthapani et al. (2005), Crainiceanu
et al. (2007), Jullion & Lambert (2007) and Scheipl & Kneib (2009)). In addition to smoothness,
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shape-constrained splines have also been proposed so that the resulting estimated splines sat-
isfy some presumed functional form. Pya & Wood (2015) demonstrated how to achieve different
shape constraints by re-parameterisation of the spline coefficients while Bollaerts et al. (2006)
controlled the shape through iteratively adding asymmetric penalties. Camarda et al. (2016) pro-
posed a sums of smooth exponentials model and demonstrated it for mortality graduation using
shape-constrained P-splines. Camarda (2019) applied shape constraints in the context of mortality
forecasting.

The English Life Tables present smooth mortality rates for males and females. Although male
and female mortality rates show similar patterns, male mortality rates are expected to be higher
than female mortality rates at any age. When males and female mortality rates are modelled sep-
arately, problems may arise such as crossing-over rates at very high ages, where data are sparse,
or a decreasing mortality trend in age. In the previous ELTs, these problems are addressed using
rather ad hoc approaches. For example, in ELT14, an arbitrary value is chosen as the mortality rate
at the closing age, while in ELT15, the data at the highest ages are discarded as it would produce
downwards mortality profile otherwise. In ELT17, the male and female mortality rates are calcu-
lated as the weighted average of the respective graduated mortality rates starting at the age where
they cross-over.

Variousmulti-populationmodels have been proposed in the context of coherentmortality fore-
casting. Many of these concern the correlation between the period effects of different populations,
for example, the common factor model by Li & Lee (2005) assumed that different populations
share the same age-period effect, who further proposed the augmented common factor model
where additional population specific age-period terms are included for a better fit, which are
mean reverting in the long run. Cairns et al. (2011) modelled mortality for two populations and
assumed that the spread between the period effects (and cohort effects) of the two populations
are mean reverting. Dowd et al. (2011) also proposed a similar model where in addition to having
mean-reverting spread between the time series, the period effect (and cohort effect) of a smaller
population is actually being “pulled” towards that of the larger population, hence in the long run
the projected mortality rates converge.

Another class of models is the relational models where usually a reference mortality schedule
is first modelled and then the spread/ratio between another population of interest and the refer-
ence schedule. For example, Hyndman et al. (2013) proposed the Product-Ratio Model where
the geometric mean of the populations are modelled as the reference schedule and the ratios
are assumed to follow stationary processes so as to produce non-divergent forecasts. Villegas &
Haberman (2014) modelled the mortality of different socio-economic subpopulations. Jarner &
Kryger (2011) proposed the SAINT model, where they model the ratio between the mortality
rates of a subpopulation to the reference using some orthogonal regressors. Biatat & Currie (2010)
extended the 2D spline model by Currie et al. (2004) to a joint model by adding another 2D spline
for the spread of a population to a reference population.

Limited focus has been placed on the convergence of the age patterns of male and female
mortality. Plat (2009) modelled the ratio between a subpopulation and a main population and
assumed the ratio to be one after a certain age, this is because the difference between the subpop-
ulation mortality and main population mortality is expected to diminish at higher ages. Hilton et
al. (2019), on the other hand, used a logit link and assumed a common asymptote for males and
females. In this paper, we propose a coherent method for jointly smoothing male and female mor-
tality rates. Our method allows us to borrow information, especially in areas where data are scarce
and unreliable. The convergence of the male and female mortality curves is achieved by means of
penalty.

In this paper, we propose a model for mortality graduation using adaptive splines. This model
is able to produce smooth mortality schedules for the entire age range and it is robust at the oldest
ages where data are sparse. We also model male and female mortality rates together as modelling
them independently causes inconsistencies such as divergent or intersecting trends, especially
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at the oldest ages. This is often addressed using ad hoc methods (e.g. see previous ELTs). The
joint model proposed in this paper does not require such interventions and is able to produce
non-divergent and non-intersecting male and female mortality schedules. It also allows strength
to be borrowed across sexes at the oldest ages which further increases robustness. More details
can be found in Tang (2021).

The rest of the paper is structured as follows: in section 2, the data are described and some
notes on general mortality pattern are discussed. In section 3, we introduce our methodology and
present our results. In section 4, the model is extended to model male and female mortality rates
jointly. Finally, we provide a brief conclusion in section 5.

2. Data
The data we use in this paper contains the number of deaths and mid-year population estimates
by single year of age for males and females in England and Wales from 2010 to 2012 obtained
from the Office for National Statistics (2019). Data by single age is available up to the age of 104
for both males and females, while data at the age of 105 and above are aggregated into one age
group. Typically infant mortality rates are dealt with separately, therefore infant data are excluded,
leaving us with data spanning from ages 1 to 104. The central mortality rate at age x, mx is
defined as

mx = dx
ECx

(1)

where dx and ECx are the number of deaths and central exposure at age [x, x+ 1), respectively. The
crude central mortality rates m̃x are then obtained by approximating the central exposure with the
mid-year population estimates. Furthermore, it is assumed that the number of deaths at each age
follow a Poisson distribution,

dx ∼ Poisson(ECx mx) (2)
Figure 1 shows the crude mortality rates for each year on a logarithmic scale. As expected,

mortality is decreasing at child ages until around mid-teenage, followed by a sudden increase
in mortality rates at late teenage, so-called “accident hump”. Afterwards, the mortality increases
steadily due to senescence. Male mortality rates lie above female mortality rates at almost all ages
and that they are converging at the end. A decreasing rate of increase in mortality also seems to
be taking place at the oldest ages. The crude mortality rates at the youngest and the oldest ages are
more dispersed than those in the middle due to the sparsity of data at these ages.

3. Methodology
In this section, we introduce our proposed model. Before moving onto the model specifics, first,
we shall have a look at the robustness problem when ordinary P-spline smoothing is used. Splines
are piecewise polynomials that are continuous up to certain order of derivatives and P-splines are
one of the most commonly used splines having a B-spline basis with discrete penalties (Eilers &
Marx, 1996). We use ordinary P-splines with 40 basis functions with equally spaced knots, and
males and females have the same basis. The basis dimension is chosen according to preliminary
analysis. The data are fitted with ordinary P-splines of dimension 20, 25, 30, 35, 40, 45, 50, 55,
60, 65 for each sex and the total effective degrees of freedom for males and females is examined.
The total effective degrees of freedom starts to level off at around 40 basis functions for each
sex (80 total dimension), indicating that further increase in the dimension has limited benefits.
Note that there is no unified approach for choosing the dimension since the essence of penalised
splines is that the user constructs a basis that is generous enough to capture the fluctuations of the
underlying function and then penalises the roughness to prevent overfitting.

https://doi.org/10.1017/S1748499521000105 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499521000105


Annals of Actuarial Science 123

Figure 1. Crude mortality rates England and Wales. Blue and red points are the male and female crude mortality rates,
respectively.

Fitting the ordinary P-spline to the mortality data, several problems are revealed. Figure 2 plots
the ordinary P-spline fits to the data. The circles and crosses are the crude mortality rates. The
solid lines are the fits using data from ages 1 to 104, while the dotted lines are the fits using data
only up to the age of 100 (excluding the crosses). From Figure 2, it is clear that the fit to the
oldest ages is not robust, and the yearly variation in mortality pattern is irregular. Comparing
the solid and dotted lines, the exclusion of the last four data points (crosses) changes the shapes
quite drastically, again revealing the lack of robustness. Extrapolation based on these trends is very
sensitive to the unreliable data at the oldest ages. Sometimes an unreasonable mortality schedule
can also be obtained, for instance, the estimated mortality rates for males in 2010 is decreasing at
the oldest ages.

The root cause for the lack of robustness at high ages is that ordinary P-splines have only one
smoothing parameter governing the overall smoothness, hence resulting in either over-smoothed
young mortality rates (less likely due to the much bigger exposures than older ages) or under-
smoothed oldmortality rates.This motivates the use of P-splines with varying smoothness penalty.
Contrary to a global smoothing parameter in ordinary P-spline tuning the overall smoothness,
the smoothness penalty over the domain is allowed to vary. This is sometimes called “adaptive
smoothing” or “adaptive spline”. Ruppert & Carroll (2000) have shown that adaptive smoothing
is more effective and gives better results than ordinary splines especially when the underlying
function has varying smoothness. Here, we suggest using an exponential function for the smooth-
ness penalty. This is because the mortality pattern is expected to be increasingly smooth in age and
having a heavier smoothness penalty at the oldest ages means that more strength is borrowed from
neighbouring ages, therefore improving the robustness. Alternatively, linear or piecewise constant
functions could be used for the smoothness penalty. However, the linear function would not be
as effective as the exponential function here as we require very low penalty at younger ages where
there is plenty of data and significantly higher penalty at the oldest ages where data are sparse. On
the other hand, a piecewise constant function would require estimation of the levels and locations
of the jumps. In our case, we do not believe that this additional computational burden is justified.
Using exponential function for the smoothness penalty we have

dx ∼ Poisson(ECx mx), where log (mx)= b′
x β

with penalty
k∑

i=3
ζ (i)(�2 (βi))2 and ζ (i) = λ1 exp ( λ2 i), λ1 > 0

(3)
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Figure 2. (a) England and Wales males (b) England and Wales females Ordinary P-spline fits extrapolated to the age of 120.
The solid lines are the estimated mortality rates using data from ages 1 to 104, while the dotted lines are the estimated
mortality rates using data only from ages 1 to 100.

Here, �2 is the second difference operator, b′
x is the row corresponding to age x of the design

matrix B of the B-spline basis with the corresponding coefficient vector β , λ1 and λ2 are smooth-
ing parameters and k is the dimension of the basis. The penalty can be written more compactly as
β ′P′�Pβ where P is the second-order difference matrix with appropriate dimensions and � is a
diagonal matrix with �ii = λ1eλ2 i.

When the smoothing parameters λ1 and λ2 are known or specified, the fitting of the spline
coefficients is straightforward by maximising the penalised likelihood. Otherwise, they can be
estimated together with the spline coefficients from the data. Here, we estimate λ1 and λ2 by
minimising the Bayesian Information Criterion (BIC). The Newton–Raphson method can be
used to estimate the optimal smoothing parameters within each working model of the Penalised
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Figure 3. (a) England and Wales males (b)England and Wales females Adaptive exponentially increasing penalty P-spline fit
to the period mortality schedule extrapolated to the age of 120.

Iteratively Re-weighted Least Squares (P-IRLS) iteration, namely the performance iteration (Gu,
1992; Wood, 2006). The relevant gradient and Hessian for the minimisation of BIC can be found
in the Appendix A. The BIC surface is relatively flat at regions with very low or very high penalty,
hence these regions should be avoided as initial estimates. Alternatively, a two-dimensional grid
search could be employed, the gradients and Hessian are prepared for the sake of the joint model
in section 4, which contains six smoothing parameters and hence reduces the efficiency of grid
search.

In Figure 3, we present the fitted mortality rates for our model. Compared to the ordinary P-
spline fit in Figure 2, we can see that the fit is more robust at high ages under the exponentially
increasing penalty. The yearly mortality pattern is more reasonable with less irregular variations.
The spline is also capable of capturing the decreasing rate of increase in the oldest mortality rates.
Figure 4 shows the P-spline fit for males in 2011 and the corresponding estimate of the exponential
penalty. The increase in smoothness takes effect at around the age of 90, which is desirable as this
is the region where the exposures and hence the reliability start to drop.
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Figure 4. P-spline with exponential penalty fit for 2011 England and Wales males and the corresponding adaptive smooth-
ness penalty.

4. Joint Model
We have been modelling male and female data separately. However, jointly modelling male and
female mortality rates has several advantages, such as avoiding cross-over at the highest ages and
allowing borrowing of strength. Male and female mortality rates often display converging trends
at high ages, information could be shared between the two sexes. This will produce coherent
estimates especially at ages with low exposures as we are pooling the two data sets. On top of
the exponential smoothness penalty for males and females, an additional penalty on the differ-
ence between the male and female P-spline coefficients is introduced. As stated before, males and
females have the same P-spline basis.

At earlier ages, the splines shall enjoy more freedom as data at this region is more reliable. It is
also believed that there is genuine difference in the levels and patterns of mortality between male
and femalemortality (especially for the accident hump). At adult ages, the difference betweenmale
and female mortality rates seems to diminish gradually as age increases. Therefore, an exponential
penalty will be used again such that at younger ages the male and female coefficients are expected
to be penalised less. In our applications, it is found that estimation is easier when the differences
between the first few male and female coefficients are left un-penalised. We suspect this is due to
the apparent converging trend at the youngest ages as well. Therefore, we only apply the difference
penalty after a certain basis function. In our experiments, the selection of this coefficient is imma-
terial as long as it excludes childhood mortality. Here, the difference penalty is chosen to start at
the ninth coefficient (around the age of 24, which is just after the accident hump). The model is

log
(
mM(x)
mF(x)

)
=
(
B(x) 0
0 B(x)

)(
βM

βF

)

with the following three penalties
k∑

i=3
ζM(i)(�2 (βM

i ))2

k∑
i=3

ζ F(i)(�2 (βF
i ))

2

k∑
i=9

ζD(i)(βM
i − βF

i )
2

where ζ j( · ) = λ
j
1 exp ( λj2 · ), with λ

j
1 > 0 for j ∈ {M, F,D}. (4)
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Figure 5. (a) Full age range (b) Ages 70–120 P-spline fit with cross-sex penalty extrapolated to the age of 120. The dotted
lines correspond to the fits without the cross-sex penalty (i.e. fitted separately) and the solid lines correspond to the fits with
cross-sex penalty.

The first two penalties relate to the smoothness of male and female mortality rates while the third
penalty corresponds to the difference between male and female mortality rates. The penalties can
be written more compactly as β ′P′Pβ where the overall coefficient vector is β = ( βM βF ) and the

overall penalty matrix is P =
( √

�MPM√
�FPF√
�DPD

)
, PM = ( ∇2 0 ), PF = ( 0 ∇2 ). Here∇2 is the second-order

difference matrix, PD = ( 1 −1 )⊗ I and 0 is simply a null matrix of appropriate dimension.
Figure 5 shows the results of the modelling. When males and females are modelled separately

(dotted lines), the extrapolated trends sometimes diverge, which is not desirable. A clearer exam-
ple would be the year 2007 where the dotted lines drift apart (Figure 6). The difference penalty
prevents divergence and further increases the robustness when extrapolating to higher ages even
without data by learning from the existing data how fast and strongly the two trends should
converge.
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Figure 6. P-spline fit with cross-sex penalty extrapolated to the age of 120 for the year 2007. The dotted lines correspond to
the fits without the cross-sex penalty (i.e. fitted separately) and the solid lines correspond to the fits with cross-sex penalty.

4.1 Preventing cross-over
One final improvement for the model is that, while the difference penalty dictates the convergence
of male an female mortality curves, there is no guarantee that the graduated male mortality rates
will always be higher than the female mortality rates. For instance, in Figure 5(a), the male and
female mortality estimates for 2012 cross-over at around the age of 10. Sometimes this could
also happen at the oldest ages or extrapolated range. To deny the possibility of male and female
mortality rates crossing over, we impose a hard constraint on the coefficients such that the each of
the B-spline coefficients for males are greater than or equal to that for females, i.e. βM ≥ βF . Since
it is assumed that males and females have the same knot sequence, this is a sufficient condition
such that mF(x) ≤ mM(x) ∀x. In other words, the male mortality curve will always be above the
female mortality curve. To do this, we first re-parameterise model 4 to

β∗ =
(

βF

βD

)
=
(

βF

βM − βF

)
=
(
0 I
I -I

) (
βM βF)= Zβ (5)

Therefore, the design matrix and the penalty matrix in equation (4) have to be transformed
accordingly, we have

B∗ = BZ−1 and P∗ = PZ−1 (6)

and the non-negative constraint is applied only to βD. Non-negative least squares is performed
within each P-IRLS iteration using the lsei package in R.

Since now this is not a linear smoother, i.e. we cannot write the general form ŷ=Ay, the gradi-
ent and Hessian for the BIC optimisation cannot be found analytically. In addition to the best of
our knowledge, the effective degrees of freedom of a non-negative least squares procedure is not
known. We believe that adding the non-negative constraints shall not change the overall optimal
smoothness considerably, therefore we use the estimated smoothing parameters from the uncon-
strained model and treat them as known quantities in the constrained model. Figure 7 plots the
graduated mortality rates under the non-negative constraints. As expected, the male mortality
curve now always lies above female mortality curve.
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Figure 7. P-spline fit with difference penalty extrapolated to the age of 120with non-negative constraints on the coefficients.

5. Conclusion
Crude mortality rates often exhibit irregular and wiggly patterns due to natural randomness.
Therefore, the crude rates have to be smoothed, or graduated, before they are used, for example,
in pricing of a life-related insurance product.

In this paper, we propose a non-parametric approach of mortality graduation that is suitable
for the whole age range using P-splines with adaptive penalties. It is assumed that the smoothness
penalty is an exponential function, hence at younger ages where more reliable data are available,
the model enjoys higher freedom (i.e. lower penalty); whereas at the oldest ages where data are
sparse, the heavier penalty improves robustness. Under this penalty, the model benefits from the
flexibility offered by P-splines and is robust at ages with low exposures, making extrapolation to
higher ages more stable.

Modelling male and female mortality rates separately can cause some problems (e.g. crossing
over). These problems are addressed using rather ad hoc methods in previous ELTs. In addition,
at very high ages the data are sparse and unreliable (e.g. in ELT15, the data at the highest ages is
discarded starting at the age that would produce an implausible trend), therefore, a robust model
is needed at these ages. Advantages can be gained from jointly modelling of male and female
mortality rates. Information can be borrowed from each other, which is useful especially for males
at the highest ages since there are usually more female data at these ages compared to males. In
addition, cross-over of male and female mortality rates can be avoided. These are achieved by
introducing an additional penalty for the difference between male and female spline coefficients
and constraining the spline coefficients. The approach described in this paper provides a coherent
way of mortality graduation across the whole age range even for the regions where data are sparse
or non-existent.

One potential drawback of our model is that mortality rates at ages beyond available data are
extrapolated almost linearly, while in the literature, there is some evidence showing a decreasing
increase in the log mortality rates at the highest ages. A remedy would be to use a logistic model
instead of a log-linearmodel, so that an asymptotic limit is introduced. Another possible extension
would be to use a fully Bayesian approach, as this would give us the opportunity to incorpo-
rate prior beliefs of the increasing smoothness and increasing similarity between male and female
mortality rates at the highest ages into the model in a more natural framework. Overdispersion
is usually observed in mortality data and hence the Poisson assumption maybe too restrictive.
A further way in which our model could be enhanced is to introduce a dispersion parameter to
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capture the overdispersion. For example, a standard parameterisation of the dispersion model
conveniently leads to a Negative Binomial, rather than Poisson, distribution for the counts of
deaths, which is also often used to model mortality.
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Appendix A. Gradient and Hessian for the Newton–Raphson for the estimation of
smoothing parameters

Following the notations inWood (2006), for linear splinemodels, letX =QR be the QR decompo-
sition of the design matrix and

[ R√
�P
]=UDV’ be the SVD decomposition. Any rank deficiency

is detected at this stage and removed by deleting the corresponding columns from the matrices U
and V . Let U1 be the submatrix of U such that R=U1DV’ . X’X + P′�P =VD2V ′ and hence the
hat matrix

A= X(X’X + P′�P)−1X’ =QU1DV’(VD−2V ′)VDU1′Q′ =QU1U1′Q′.
To guarantee that λ1 is positive, we parameterise λ1 = eρ1 . Let G= X’X + P′�P, we have

∂G−1

∂ρ1
= −G−1 ∂G

∂ρ1
G−1

= −G−1P’
∂�

∂ρ1
PG−1

= −G−1P′�PG−1

= −VD−2V’P’�PVD−2V’ (A.1)
and

∂G−1

∂λ2
= −G−1 ∂G

∂λ2
G−1

= −G−1P’
∂�

∂λ2
PG−1

= −G−1P’N�PG−1

= −VD−2V’P’N�PVD−2V’ (A.2)
where N is a diagonal matrix with entries N ii = i. In practice we scale the entries N ii to 0–1 to
prevent overflow when λ2 gets huge, as well as the corresponding entries �ii.
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We then have
∂A
∂ρ1

= ∂XG−1X’
∂ρ1

= −X
∂G−1

∂ρ1
X’

= −XVD−2V’P’�PVD−2V’X’

= −QU−2
1DV’VDV

′P′�PVD−2V’VDU1′Q′

= −QU1 D−1V’P’�PVD−1︸ ︷︷ ︸
M

U1′Q′

= −QU1MU1′Q′ (A.3)

and
∂A
∂λ2

= ∂XG−1X′

∂λ2

= −QU1 D−1V’P’N�PVD−1︸ ︷︷ ︸
M∗

U1′Q′

= −QU1M∗U1′Q′ (A.4)

Moving on to the Hessian, first we find

∂2G
∂ρ1 2 = ∂

∂ρ1

(
∂G
∂ρ1

)

= ∂P’�P
∂ρ1

= P’�P (A.5)

so
∂2G−1

∂ρ1 2 = 2G−1 ∂G
∂ρ1

G−1 ∂G
∂ρ1

G−1 −G−1 ∂2G
∂ρ1 2G

−1

= 2VD−2V’P’�PVD−2V’P’�PVD−2V’−VD−2V’P’�PVD−2V’ (A.6)

∂2G
∂λ2 2 = ∂

∂λ2

(
∂G
∂λ2

)

= ∂P’N�P
∂λ2

= P’N�NP (A.7)

so
∂2G−1

∂λ2 2 = 2G−1 ∂G
∂λ2

G−1 ∂G
∂λ2

G−1 −G−1 ∂2G
∂λ2 2G

−1

= 2VD−2V’P’N�PVD−2V’P’N�PVD−2V ′

−VD−2V’P’N�NPVD−2V ′ (A.8)
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∂2G
∂ρ1∂λ2

= ∂

∂λ2

(
∂G
∂ρ1

)

= ∂P′�P
∂λ2

= P’N�P (A.9)

so

∂2G−1

∂ρ1∂λ2
=G−1 ∂G

∂ρ1
G−1 ∂G

∂λ2
G−1 +G−1 ∂G

∂λ2
G−1 ∂G

∂ρ1
G−1 −G−1 ∂2G

∂ρ1∂λ2
G−1

=VD−2V’P’�PVD−2V’P’N�PVD−2V’

+VD−2V’P’N�PVD−2V’P’�PVD−2V’−VD−2V’P’N�PVD−2V’ (A.10)

Therefore,

∂2A
∂ρ1 2 = X

∂2G−1

∂ρ1 2 X’

=QU1DV’(2VD−2V’P’�PVD−2V’P’�PVD−2V ′

−VD−2V’P’�PVD−2V’)VDU1′Q′

= 2QU1MMU1′Q′ −QU1MU1′Q′

= 2QU1MMU1′Q′ + ∂A
∂ρ1

(A.11)

∂2A
∂λ2 2 = X

∂2G−1

∂λ2 2 X’

=QU1DV ′(2VD−2V’P’N�PVD−2V’P’N�PVD−2V’

−VD−2V’P’N�NPVD−2V’)VDU1′Q′

= 2QU1M∗M∗U1′Q′ −QU1 D−1V’P’N�NPVD−1︸ ︷︷ ︸
M∗∗

U1′Q′

= 2QU1M∗M∗U1′Q′ −QU1M∗∗U1′Q′ (A.12)

and

∂2A
∂ρ1∂λ2

= X
∂2G−1

∂ρ1∂λ2
X’

=QU1MM∗U1′Q′ +QU1M∗MU1′Q′ −QU1M∗U1′Q′

=QU1MM∗U1′Q′ +QU1M∗MU1′Q′ + ∂A
∂λ2

(A.13)

Finally, the BIC for is −2 log (L)+ log (n) rm(A), where L is the maximum likelihood.

∂σ̃ 2

∂ρ1
= −2

n
(y−Ay)′ ∂A

∂ρ1
y and

∂σ̃ 2

∂λ2
= −2

n
(y−Ay)′ ∂A

∂λ2
y (A.14)
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∂2σ̃ 2

∂ρ1 2 = −2
n

[
(y−Ay)′ ∂2A

∂ρ1 2 y− y′
(

∂A
∂ρ1

)(
∂A
∂ρ1

)
y
]

∂2σ̃ 2

∂λ2 2 = −2
n

[
(y−Ay)′ ∂2A

∂λ2 2 y− y′
(

∂A
∂λ2

)(
∂A
∂λ2

)
y
]

and

∂2σ̃ 2

∂ρ1∂λ2
= −2

n

[
(y−Ay)′ ∂2A

∂ρ1∂λ2
y− y′

(
∂A
∂ρ1

)(
∂A
∂λ2

)
y
]

(A.15)

∂BIC
∂ρ1

= n
σ̃ 2

∂σ̃ 2

∂ρ1
+ log (n)rm

(
∂A
∂ρ1

)
(A.16)

Similarly,

∂BIC
∂λ2

= n
σ̃ 2

∂σ̃ 2

∂λ2
+ log (n)rm

(
∂A
∂λ2

)
(A.17)

∂2BIC
∂ρ1 2 = n

[
1
σ̃ 2

∂2σ̃ 2

∂ρ1 2 − 1
σ̃ 4

(
∂σ̃ 2

∂ρ1

)2]
+ log (n) rm

(
∂2A
∂ρ1 2

)
(A.18)

∂2BIC
∂λ2 2 = n

[
1
σ̃ 2

∂2σ̃ 2

∂λ2 2 − 1
σ̃ 4

(
∂σ̃ 2

∂λ2

)2]
+ log (n) rm

(
∂2A
∂λ2 2

)
(A.19)

and
∂2BIC
∂ρ1∂λ2

= n
[
1
σ̃ 2

∂2σ̃ 2

∂ρ1∂λ2
− 1

σ̃ 4

(
∂σ̃ 2

∂ρ1

)(
∂σ̃ 2

∂λ2

)]
+ log (n) rm

(
∂2A

∂ρ1∂λ2

)
(A.20)

As mentioned, for non-Gaussian data, optimisation can be performed within each P-IRLS iter-
ation and is done simply by replacing the design matrix and data with

√
WX and

√
Wz,

respectively, whereW is a diagonal matrix with the current working weights and z is the vector of
working pseudo-data.

Appendix B. Gradient and Hessian for the Newton–Raphson of the Joint Model

Recall that the penalty matrix for the joint model is
( √

�MPM√
�FPF√
�DPD

)
. Similarly to constraint λM1 , λF1

and λD1 to be strictly positive, they are re-parameterised to λ
j
1 = e ρ

j
1 and the gradients with respect

to (ρj
1) are simply found by replacing P and � in derivatives equations (A.1)–(A.20) by the

corresponding Pj and �j. For example,
∂A
∂ρM

1
= −QU1MMU ′

1Q′ and
∂A
∂ρD

1
= −QU1MDU1′Q′

whereMj =D−1V ′Pj′�jPjVD−1 (B.1)

The Hessian requires a little more attention and slight adjustments have to be made. We have,

∂2A
∂ρi

1∂ρ
j
1

=QU1MiMjU ′
1Q′ +QU1MjMiU ′

1Q′ − δij QU1MjU ′
1Q′

=QU1MiMjU ′
1Q′ +QU1MjMiU ′

1Q′ + δij
∂A
∂ρ

j
1

(B.2)
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∂2A
∂λi2∂λ

j
2

=QU1M∗iM∗jU ′
1Q′ +QU1M∗jM∗iU ′

1Q′ − δij QU1M∗∗jU ′
1Q′ (B.3)

∂2A
∂ρi

1∂λ
j
2

=QU1MiM∗jU ′
1Q′ +QU1M∗jMiU ′

1Q′ − δij QU1M∗jU ′
1Q′

=QU1MiM∗jU ′
1Q′ +QU1M∗jMiU ′

1Q′ + δij
∂A
∂λ

j
2

(B.4)

where δij is the Kronecker delta function.
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