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On Localized Unstable K1-groups and
Applications to Self-homotopy Groups
Daisuke Kishimoto, Akira Kono, and Mitsunobu Tsutaya

Abstract. The method for computing the p-localization of the group [X,U(n)], by Hamanaka in 2004,
is revised. As an application, an explicit description of the self-homotopy group of Sp(3) localized at
p ≥ 5 is given and the homotopy nilpotency of Sp(3) localized at p ≥ 5 is determined.

1 Introduction

For a group-like space G, the pointed homotopy set [X,G] can be regarded as a group
by the pointwise multiplication of maps. Over the years, there have been considerable
works on the group [X,G] and its applications. Among these works, Hamanaka and
the second author [HK] developed the computing method for the group [X,U(n)]
when X is a 2n-dimensional CW-complex. Notice that if dim X < 2n, the group
[X,U(n)] is naturally isomorphic to the K1-group of X, and so the result deals with
the first unstable case. In [Ha1], there was an attempt to deal with [X,U(n)] for
(2n + 1)-dimensional X; however things become quite complicated compared to the
2n-dimensional case. So we may not expect to get complete information on [X,U(n)]
for higher dimensional X, and then we should reduce information. One way of this
reduction is the localization in the following sense. Let nil K and cat X denote the
nilpotency class of a group K and the LS-category of a space X, respectively. Then
G. Whitehead [W] proved the inequality

(1.1) nil[X,G] ≤ cat X.

This, in particular, implies that if X is a finite dimensional CW-complex, then [X,G]
is a nilpotent group for which we can consider localization at a prime in the sense of
Hilton, Mislin and Roitberg [HMR]. In [Ha2], Hamanaka gave a p-local analogy of
the computing method for [X,U(n)] with (2n + 2p − 4)-dimensional X, where p is
an odd prime. This result was generalized in [KKT] for (4n − 4)-dimensional X by
assuming that X consists only of even cells. The aim of this paper is twofold. The
first aim is to revise the above p-local analogy of Hamanaka [Ha2] by requiring a
cohomological condition which is much weaker than the one in [KKT].

Let us now specialize X to G in the group [X,G]. The group [G,G] is called the
self-homotopy group of G, and is an interesting object reflecting homotopy theo-
retical properties of G. In particular, when G is a compact, connected Lie group, the
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self-homotopy group of G has been studied extensively. However, an explicit descrip-
tion of the self-homotopy group of G is given only in the case that G is of rank ≤ 2
by a hard homotopy calculation. See [MO], for example. The second aim of this
paper is to give a description of the self-homotopy group of Sp(3) localized at primes
greater than 3. As its consequence, we will observe a relation between nilpotency of
the localized self-homotopy group of Sp(3) and the homotopy nilpotency of localized
Sp(3).

2 Revised Computing Method for Unstable K1-groups

Let us first recall a property of the localization between groups and spaces. Let X be
a finite dimensional CW-complex and let G be a group-like space. Then by (1.1),
the group [X,G] is nilpotent. In [HMR], the localization of nilpotent groups at the
prime p is defined and then we have the p-localization [X,G](p). On the other hand,
since G is simple, the p-localization of G, denoted by G(p), is also defined in [HMR].
These are related by the natural isomorphism of groups

[X,G](p)
∼= [X,G(p)].

If X is further a nilpotent space, we also have the p-localization X(p) and the natural
isomorphism of groups

[X,G(p)] ∼= [X(p),G(p)].

We will use these two natural isomorphisms implicitly.
Put Wn = U(∞)/U(n) and let π : U(∞) → Wn be the projection. Our basic

idea for calculating the group [X,U(n)] is basically the same as in [HK] and [Ha2].
Consider the homotopy fiber sequence

ΩU(∞)
Ωπ
−−→ ΩWn

δ
−→ U(n)

j
−→ U(∞),

in which all arrows are loop maps. Then there is an exact sequence of groups

(2.1) K̃0(X)
Ωπ∗◦β
−−−−→ [X,ΩWn]

δ∗
−→ [X,U(n)]

j∗
−→ K̃−1(X),

where β : K̃0(X)
∼=
−→ K̃−2(X) is the Bott periodicity. When X is finite dimensional,

we can localize this exact sequence at the prime p. Using this exact sequence, we cal-
culate the localized unstable K1-group [X,U(n)](p) by identifying [X,ΩWn](p) with
the cohomology of X.

We set some notation. Let x̄2i−1 ∈ H2i−1
(

U(n); Z(p)

)
be the suspension of the

universal Chern class ci ∈ H2i
(

BU(n); Z(p)

)
, where n can be∞. Then we know that

H∗
(

U(n); Z(p)

)
= Λ(x̄1, x̄3, . . . , x̄2n−1),

and hence by a standard spectral sequence argument, we see that the cohomology
of Wn is given as

(2.2) H∗(Wn; Z(p)) = Λ(x2n+1, x2n+3, . . . ), π∗(x2i−1) = x̄2i−1.
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Since P1ρ(x̄2i−1) = iρ(x̄2i+2p−3), we have

(2.3) P1ρ(x2i−1) = iρ(x2i+2p−3).

Let ρ : K(Z(p), 2i + 1) → K(Z/p, 2i + 1) denote the mod p reduction, and let
β : K(Z/p, 2i + 1) → K(Z(p), 2i + 2) be the Bockstein operation associated with the
short exact sequence

0→ Z(p)

×p
−−→ Z(p) → Z/p → 0.

Define F2i+1 to be the homotopy fiber of the map

βP1ρ : K(Z(p), 2i + 1)→ K(Z(p), 2i + 2p).

Then it follows that

(2.4)
H∗(F2i+1; Z(p)) = Λ(u2i+1, u2i+2p−1),

P1ρ(u2i+1) = ρ(u2i+2p−1) for ∗ ≤ 2i + 4p − 4

where u2i+1 ∈ H2i+1(F2i+1; Z(p)) is identified with the inclusion F2i+1 → K(Z(p), 2i+1)
of the homotopy fiber. We notice that since βP1ρ is a stable operation, F2i+1 is an
infinite loop space. Let

g : Wn →
n+p−2∏

i=n
K(Z(p), 2i + 1)

be the product of x2i+1 for n ≤ i ≤ n + p − 2. Put

F =
n+p−2∏

i=n
F2i+1.

Then for βP1ρ
(

H∗(Wn; Z(p))
)

= 0, g lifts to g̃ : Wn → F. Moreover, it follows
from (2.2), (2.3), and (2.4) that the induced map g̃∗ : H∗(F; Z(p))→ H∗(Wn; Z(p)) is
an isomorphism for ∗ ≤ 2(d n

p e + 1)p− 2, implying that g̃(p) is a
(

2(d n
p e + 1)p− 3

)
-

equivalence, where dxe is the minimum integer greater than or equal to x. Thus we
obtain the following.

Lemma 2.1 Let X be a CW-complex of dimension at most 2(d n
p e+ 1)p− 4. Then the

map
(Ωg̃(p))∗ : [X,ΩWn(p)]→ [X,ΩF]

is an isomorphism of abelian groups.

Using Lemma 2.1, we identify the group [X,ΩWn(p)] with a certain subset of
the cohomology of X. Let a2i ∈ H2i(ΩWn; Z(p)) be the suspension of x2i+1 ∈
H2i+1(Wn; Z(p)). We define a map

Φ : [X,ΩWn(p)]→
(d n

p e+1)p−2⊕
i=n

H2i(X; Z(p)), α 7→
(d n

p e+1)p−2⊕
i=n

α∗(a2i).
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Lemma 2.2 Let X be a CW-complex of dimension at most 2(d n
p e + 1)p − 4. If

H∗(X; Z(p)) is a free Z(p)-module, the map Φ is a monomorphism. Moreover, in di-
mension≤ 2n + 2p − 4, Φ is an isomorphism.

Proof Since a2i is a suspension of x2i+1, it is a loop map, implying that Φ is a homo-
morphism. By definition, there is a homotopy fiber sequence

F

∏n+p−2
i=n u2i+1

−−−−−−−→
n+p−2∏

i=n
K(Z(p), 2i + 1)

βP1ρ
−−−→

n+p−2∏
i=n

K(Z(p), 2i + 2p).

Then since βP1ρ
(

H∗(X; Z(p))
)

= 0, from the associated homotopy exact sequence
we get a short exact sequence of groups

(2.5) 0→
n+p−2⊕

i=n
H2i+2p−2(X; Z(p))→ [X,ΩF]→

n+p−2⊕
i=n

H2i(X; Z(p))→ 0.

Since [X,ΩF] is an abelian group and H∗(X; Z(p)) is a free Z(p)-module, the group
[X,ΩF] is also a free Z(p)-module. Then we obtain that the rationalization r : ΩF →
ΩF(0) induces a monomorphism

r∗ : [X,ΩF]→ [X,ΩF(0)] ∼= [X,ΩF](0).

Put

Φ̂ =
n+2p−3∏

i=n
Ωu2i+1 : ΩF →

n+2p−3∏
i=n

K(Z(p), 2i).

It is obvious that the rationalization Φ̂(0) is a homotopy equivalence and that the
composite

[X,ΩWn](p)

(Ωg̃(p))∗
−−−−→
∼=

[X,ΩF]
Φ̂∗
−−→

n+2p−3⊕
i=n

H2i(X; Z(p))
proj
−−→

(d n
p e+1)p−2⊕

i=n
H2i(X; Z(p))

is equal to the map Φ. There is a commutative diagram

[X,ΩF]
r∗

//

Φ̂∗
��

[X,ΩF](0)

(Φ̂(0))∗∼=
��

n+2p−3⊕
i=n

H2i(X; Z(p)) //
n+2p−3⊕

i=n
H2i(X; Q)

in which the bottom arrow is induced from the inclusion Z(p) → Q . Since r∗ is

injective and Φ̂(0) is an isomorphism as above, we obtain that the left vertical arrow is
injective. Thus we have proved the first assertion. The second assertion follows from
the last arrow in the exact sequence (2.5).
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We have identified [X,ΩWn](p) with Im Φ ⊂ H∗(X; Z(p)) when dim X ≤
2(d n

p e + 1)p − 4 and H∗(X; Z(p)) is a free Z(p)-module. We next analyze the p-
localization of the exact sequence (2.1) together with this identification.

Theorem 2.3 Let X be a CW-complex such that dim X ≤ 2(d n
p e + 1)p − 4 and that

H∗(X; Z(p)) is a free Z(p)-module. Then there is an exact sequence of groups

K̃0(X)(p)
Θ−→ Im Φ

δ̄−→ [X,U(n)](p)
( j∗)(p)−−−→ K̃1(X)(p)

satisfying, for ξ ∈ K̃0(X)(p),

Θ(ξ) =

(d n
p e+1)p−2⊕

i=n

i! chi(ξ),

where chi(ξ) denotes the 2i-dimensional part of the Chern character ch(ξ).

Proof For the cohomology suspension σ, we have(
(Ωπ∗)(p) ◦ β(p)

)∗
(a2k) = β∗(p)

(
σ2(ck+1)

)
= k! chk .

Then if we put Θ = Φ ◦ (Ωπ∗)(p) ◦ β(p) and δ̄ = (δ∗)(p) ◦Φ−1, we obtain the desired
exact sequence by (2.1) and Lemma 2.2.

Let us further investigate the exact sequence in Theorem 2.3. To this end, we recall
a result in [HK]. Let γ : U(n)∧U(n)→ U(n) be the reduced commutator map. Since
U(∞) is homotopy abelian, the composite j ◦ γ is null homotopic, implying there
is a lift γ̃ : U(n) ∧ U(n) → ΩWn of γ through the map δ : ΩWn → U(n). We can
choose a lift γ̃ that behaves well in cohomology as follows.

Lemma 2.4 (Hamanaka and Kono [HK]) There is a lift γ̃ satisfying

γ̃∗(a2k) =
∑

i+ j−1=k
1≤i, j≤n

x2i−1 ⊗ x2 j−1.

The commutators in the group [X,U(n)](p) are described explicitly in the exact
sequence of Theorem 2.3 as follows.

Theorem 2.5 Let X be a CW-complex such that dim X ≤ 2(d n
p e + 1)p − 4 and that

H∗(X; Z(p)) is a free Z(p)-module. Then for λ, µ ∈ [X,U(n)](p), the commutator [λ, µ]
is equal to

δ̄
( (d n

p e+1)p−2⊕
k=n

∑
i+ j−1=k
1≤i, j≤n

λ∗(x2i−1) ∪ µ∗(x2 j−1)
)
.
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Proof By definition, we have

[λ, µ] = γ(p) ◦ (λ ∧ µ) ◦∆

for the reduced diagonal map ∆ : X → X ∧ X. Then the result follows from Theo-
rem 2.3 and Lemma 2.4.

Combining Theorems 2.3 and 2.5, we can thus compute the group [X,U(n)](p)

when X satisfies the conditions in Theorem 2.3. In particular, we have the following
corollaries.

Corollary 2.6 Let X be a CW-complex such that dim X ≤ 2(d n
p e + 1)p − 4 and that

H∗(X; Z(p)) is a free Z(p)-module. Then the short exact sequence

0→ Coker Θ→ [X,U(n)](p) → Im( j∗)(p) → 0

induced from Theorem 2.3 is central.

Proof All we have to show is that for maps λ : X → U(n)(p) and µ : X → (ΩWn)(p),
the commutator [λ, δ(p) ◦µ] in [X,U(n)](p) is trivial. This follows from Theorem 2.5
together with the fact that δ∗(p)(x2i−1) = 0.

Corollary 2.7 Let X be a CW-complex such that dim X ≤ 2(d n
p e + 1)p − 4 and

that H∗(X; Z(p)) is a free Z(p)-module. If H2i−1(X; Z(p)) = 0 for i ≤ n, the group
[X,U(n)](p) is abelian.

Proof By assumption, any map X → U(n)(p) is trivial in cohomology. Then the
proof is completed by Theorem 2.5.

3 The Self-homotopy Group of Sp(3)

In this section, we give an explicit description of the self-homotopy group of Sp(3)
localized at the prime p > 3 as an application of the results in the previous section.
By Corollary 2.6, there is a central extension

(3.1) 0→ Coker Θ→ [Sp(3),U(6)](p) → Im( j∗)(p) → 0

for p > 3. Then we first determine Coker Θ and Im( j∗)(p). We next determine the
commutators in [Sp(3),U(6)](p) using Theorem 2.5 to get an explicit description of
the group [Sp(3),U(6)](p). From this description, we will deduce a description of the
self-homotopy group of Sp(3) localized at p > 3.

We set notation. Let y4i−1 ∈ H4i−1
(

Sp(3); Z
)

be the suspension of the universal

symplectic Pontrjagin class qi ∈ H4i
(

BSp(3); Z
)

for i = 1, 2, 3. Then we have

H∗
(

Sp(3); Z
)

= Λ(y3, y7, y11),

and for the natural inclusion c : Sp(3)→ U(6), there holds

(3.2) c∗(x2i−1) =


−y2i−1 i = 2, 6,

y2i−1 i = 4,

0 otherwise.
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3.1 The Case p = 5

Recall from [MNT] that there is a mod 5 decomposition of Sp(3) as

(3.3) Sp(3)(5) ' B× S7
(5),

where B is the 5-localization of a certain S3-bundle over S11. Using this decomposi-
tion, we define three self-maps of Sp(3)(5). Let λ1 and λ2 be the composites

Sp(3)(5)

proj
−−→ B

incl
−−→ Sp(3)(5) and Sp(3)(5)

proj
−−→ S7

(5)

incl
−−→ Sp(3)(5),

respectively. Let λ3 be the composite

Sp(3)(5)

proj
−−→ B

proj
−−→ S11

(5) → Sp(3)(5),

where the last arrow is the 5-localization of a generator of π11

(
Sp(3)

) ∼= Z.

We determine the image of ( j∗)(5) : [Sp(3),U(6)](5) → K̃−1
(

Sp(3)
)

(5)
. Let λi for

i = 1, 2, 3 be the composite

Sp(3)(5)

λi

−→ Sp(3)(5)

c(5)

−−→ U(6)(5)

j(5)

−−→ U(∞)(5).

Then by definition, the image of ( j∗)(5) : [Sp(3),U(6)](5) → K̃−1
(

Sp(3)
)

(5)
includes

the submodule generated by λi for i = 1, 2, 3. Let λ4 be the composite

Sp(3)(5) → S21
(5) → U(∞)(5),

where the first arrow is the pinch map onto the top cell and the second arrow is
the 5-localization of a generator of π21

(
U(∞)

) ∼= Z. By definition of λi together

with (3.2), we can calculate the Chern character of λi as

ch(λ1) = −Σy3 − 1
5! Σy11, ch(λ2) = 1

3! Σy7,(3.4)

ch(λ3) = Σy11, ch(λ4) = Σy3 y7 y11,

implying that K̃−1
(

Sp(3)
)

(5)
is a free Z(5)-module with a basis {λ1, λ2, λ3, λ4}. Since

the projection π : U(∞)→W6 induces an injection in π21, we obtain the following.

Lemma 3.1 The image of ( j∗)(5) : [Sp(3),U(6)](5) → K̃−1
(

Sp(3)
)

(5)
is a free Z(5)-

module with a basis {λ1, λ2, λ3}.

We next determine Coker Θ in Theorem 2.3 for the group [Sp(3),U(6)](5). By
definition, Im Φ is a subgroup of H14

(
Sp(3); Z(5)

)
⊕ H18

(
Sp(3); Z(5)

)
, and then by

Lemma 2.2, we get

Im Φ = H14
(

Sp(3); Z(5)

)
⊕H18

(
Sp(3); Z(5)

)
= 〈y3 y11, y7 y11〉.
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Put ρ1 = β−1(λ1λ2) and ρ2 = β−1(λ2λ3). We also put ρ3 to be the composite

Sp(3)(5)

proj
−−→ B→ S14

(5) → BU(∞),

where the second arrow pinches onto the top cell and the last arrow is the 5-localiza-
tion of a generator of π14

(
BU(∞)

) ∼= Z. Then it follows from (3.4) that

ch(ρ1) = −y3 y7 + 1
5! y7 y11, ch(ρ2) = y7 y11, ch(ρ3) = y3 y11,

implying that K̃0
(

Sp(3)
)

(5)
is a free Z(5)-module with a basis {ρ1, ρ2, ρ3}. Thus by

Theorem 2.3, we obtain the following.

Lemma 3.2 The cokernel of Θ : K̃0
(

Sp(3)
)

(5)
→ Im Φ is 〈y3 y11〉/〈5y3 y11〉 ∼= Z/5.

Put λ ′i = c(5) ◦λi for i = 1, 2, 3. We finally calculate the commutators of λ ′i in the
group [Sp(3),U(6)](5). By Theorem 2.5, the commutators [λ ′1, λ

′
2], [λ ′2, λ

′
3], [λ ′1, λ

′
3]

are given as
δ̄(x7x11) = 0, δ̄(x7x11) = 0, δ̄(x3x11),

respectively. Combining the above calculation, we obtain the following.

Theorem 3.3 There is a central extension

0→ Z/5→ [Sp(3),U(6)](5)
θ−→ (Z(5))

3 → 0

determined by the following.

(i) θ sends λ ′1, λ
′
2, λ
′
3 to (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively.

(ii) The kernel of θ is generated by [λ ′1, λ
′
3].

(iii) [λ ′1, λ
′
2] = [λ ′2, λ

′
3] = 1.

Remark 3.4. Since [Sp(3),U(6)](5) is 5-local, it follows from the Hall–Witt formula
together with the relation

[
λ ′i , [λ

′
j , λ
′
k]
]

= 1 that

[λ
1
m
i , λ

1
n
j ] = [λi , λ j]

1
mn

for any m, n with 5 - mn. Similar equalities hold in what follows.

Recall that the inclusion c : Sp(3)→ U(6) yields the mod 5 decomposition

U(6)(5) ' Sp(3)(5) × S1
(5) × S5

(5) × S9
(5).

As in [T], we know that πi(S1)(5) = πi(S5)(5) = πi(S9)(5) = 0 for i = 3, 7, 10, 11, 14,
18, 21. Then since Sp(3) consists of cells in dimension 3, 7, 10, 11, 14, 18, 21, we get
that the homotopy set [Sp(3)(5), S1

(5)×S5
(5)×S9

(5)] is trivial, implying that the induced
map

(c∗)(5) : [Sp(3), Sp(3)](5) → [Sp(3),U(6)](5)

is an isomorphism of groups. Therefore we obtain the following.
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Corollary 3.5 There is a central extension

0→ Z/5→ [Sp(3), Sp(3)](5)
θ−→ (Z(5))

3 → 0

determined by the following.

(i) θ sends λ1, λ2, λ3 to (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively.
(ii) The kernel of θ is generated by [λ1, λ3].
(iii) [λ1, λ2] = [λ2, λ3] = 1.

3.2 The Case p > 5

Recall that for p > 5, there is a homotopy equivalence

Sp(3)(p) ' S3
(p) × S7

(p) × S11
(p).

We then define the self-map λi of Sp(3) for i = 1, 2, 3 as the composite

Sp(3)(p)

proj
−−→ S4i−1

(p)

incl
−−→ Sp(3)(p).

Put λ ′i = c(p)◦λi and λi = j(p)◦c(p)◦λi ∈ K̃−1
(

Sp(3)
)

(p)
for i = 1, 2, 3. Quite anal-

ogously to the above calculation, we see that the image of ( j∗)(p) : [Sp(3),U(6)](p) →
K̃−1

(
Sp(3)

)
(p)

is 〈λ1, λ2, λ3〉.
We also have

Im Φ = H14
(

Sp(3); Z(5)

)
⊕H18

(
Sp(3); Z(5)

)
= 〈y3 y11, y7 y11〉

as above. Put ρ1 = β−1(λ1λ2), ρ2 = β−1(λ2λ3) and ρ3 = β−1(λ1λ3). Then
K̃0
(

Sp(3)
)

(p)
is 〈ρ1, ρ2, ρ3〉, and hence we see from Theorem 2.3 that the image of Θ

is generated by
7y3 y11 and 7y7 y11.

Thus Coker Θ is trivial for p > 7 and

Coker Θ = 〈x3x11〉/〈7x3x11〉 ⊕ 〈x7x11〉/〈7x7x11〉 ∼= Z/7⊕ Z/7

for p = 7.
By Theorem 2.5, the commutators [λ ′1, λ

′
2], [λ ′2, λ

′
3], [λ ′1, λ

′
3] are given as

δ̄(x3x7) = 0, δ̄(x7x11), δ̄(x3x11),

respectively. Thus since there is a central extension (3.1), we have established the
following.

Theorem 3.6 For p > 5, we have the following description of [Sp(3),U(6)](p).
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(i) For p = 7, there is a central extension

0→ (Z/7)2 → [Sp(3),U(6)](7)
θ−→ (Z(7))

3 → 0

determined by the following.

(a) θ sends λ ′1, λ
′
2, λ
′
3 to (1, 0, 0), (0, 1, 0), (0, 0, 1).

(b) The kernel of θ is generated by [λ ′1, λ
′
3], [λ ′2, λ

′
3].

(c) [λ ′1, λ
′
2] = 1.

(ii) If p > 7, [Sp(3),U(6)](p) is a free Z(p)-module with a basis {λ ′1, λ ′2, λ ′3}.

As in the above case p = 5, we see that the inclusion c induces an isomorphism of
groups

(c∗)(p) : [Sp(3), Sp(3)](p)

∼=
−→ [Sp(3),U(6)](p),

and thus we obtain the following.

Corollary 3.7 For p > 5, we have the following description of [Sp(3), Sp(3)](p).

(i) For p = 7, there is a central extension

0→ (Z/7)2 → [Sp(3), Sp(3)](7)
θ−→ (Z(7))

3 → 0

determined by the following.

(a) θ sends λ1, λ2, λ3 to (1, 0, 0), (0, 1, 0), (0, 0, 1).
(b) The kernel of θ is generated by [λ1, λ3], [λ2, λ3].
(c) [λ1, λ2] = 1.

(ii) If p > 7, [Sp(3), Sp(3)](p) is a free Z(p)-module with a basis {λ1, λ2, λ3}.

3.3 Nilpotency

For a group K, let γ : K × K → K be the commutator map and put γ0 = 1 and
γn = γ ◦ (γn−1× 1) : Kn+1 → K for n > 1. Recall that the group K is called nilpotent
of class n if γn is the constant map but γn−1 is not. We denote the nilpotency class
of K by nil K. There is a homotopy analog of nilpotency of groups as follows. For
a group-like space G, let γ : G × G → G be the commutator map. Put γ0 = 1 and
γn = γ ◦ (1×γn−1) for n > 1. G is called homotopy nilpotent of class n if γn ' ∗ and
γn−1 6' ∗. We denote the homotopy nilpotency class of G by honil G. Of course, not
every group-like space is homotopy nilpotent, but it is proved in [Ho] that if a group-
like space G is a finite complex with torsion free homology, G is homotopy nilpotent.
Then in particular, compact Lie groups with torsion free homology are known to
be homotopy nilpotent. We are now interested in the homotopy nilpotency class of
localized Lie groups. The homotopy nilpotency class of Lie groups localized at large
primes were determined in [KK] and [K]. However, it is quite hard to determine the
homotopy nilpotency class, in general.

There is the canonical relation between the nilpotency class of the self homotopy
group of a group-like space G and the homotopy nilpotency class of G as

(3.5) nil[G,G] ≤ honil G.
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Let us observe this inequality for G = Sp(3)(p) with p ≥ 5.
By Corollary 3.5 and 3.7, we have the following.

Corollary 3.8

nil[Sp(3), Sp(3)](p) =

{
2 p = 5, 7,

1 p > 7.

When G is a Lie group and G(p) has the homotopy type of a product of p-localized
spheres, the homotopy nilpotency class of G(p) was determined by Kaji and the first
author [KK]. In particular, we have the following.

Proposition 3.9 (Kaji and Kishimoto [KK])

honil Sp(3)(p) =


3 p = 7,

2 p = 11,

1 p > 11.

The only missing case in Proposition 3.9 compared to Corollary 3.8 is p = 5. So
we compute the homotopy nilpotency class of Sp(3)(5). The main idea of computing
the homotopy nilpotency class of a group-like space G in [KK] and [K] is to reduce
the computation to the iterated Samelson products of the inclusions Xi → G when G
has the homotopy type of a product of spaces X1, . . . ,Xn. We now have the mod 5
decomposition of Sp(3)(5) as in (3.3). Let µ1, µ2 denote the inclusions B → Sp(3)(5)

and S7
(5) → Sp(3)(5), respectively. Then we have the following reduction.

Lemma 3.10 (Kaji and Kishimoto [KK]) honil Sp(3)(5) ≤ 2 if and only if the 2-fold
Samelson product

〈
µi , 〈µ j , µk〉

〉
is trivial for (i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 2).

Theorem 3.11 honil Sp(3)(5) = 2.

Proof We first check that all the 2-fold Samelson products in Lemma 3.10 are trivial.
By definition, the composite

Sp(3)(5)

∆
−→ Sp(3)(5) × Sp(3)(5)

π1×π2

−−−→ B× S7
(5) = Sp(3)(5)

is homotopic to the identity map, where ∆ is the diagonal map and π1, π2 are the
projections Sp(3)(5) → B and Sp(3)(5) → S7

(5), respectively. Then the commutator
[λ1, λ2] in the self-homotopy group of Sp(3)(5) is identified with the composite

Sp(3)(5) = B× S7
(5)

µ1×µ2

−−−−→ Sp(3)(5) × Sp(3)(5)

γ
−→ Sp(3)(5),

where γ is the commutator map. Since the pinch map X × X → X ∧ X induces
an injection [X ∧ X,G] → [X × X,G] for a loop space G, triviality of [λ1, λ2] in
Corollary 3.5 implies that of the Samelson product 〈µ1, µ2〉. Thus we obtain that the
2-fold Samelson product

〈
µi , 〈µ j , µk〉

〉
for (i, j, k) = (1, 1, 2), (2, 1, 2) is trivial.
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As in [K], we know π14(B) = 0, implying that the Samelson product 〈µ1, µ2〉 can
be compressed into S7

(5) ⊂ Sp(3)(5). Then we obtain that
〈
µ1, 〈µ2, µ2〉

〉
is trivial by

the above triviality of 〈µ1, µ2〉.
It is proved in [F] that there is a homotopy equivalence BSpin(7)(5) ' BSp(3)(5).

Through this homotopy equivalence, we can identify the inclusion µ1 : B→ Sp(3)(5)

with the 5-localization of the natural inclusion G2 → Spin(5) of a Lie subgroup.
On the other hand, G2(5) is shown to be homotopy commutative in [M]. Thus by
naturality of Samelson products, we obtain that 〈µ1, µ1〉 is trivial, implying that the
2-fold Samelson product

〈
µi , 〈µ j , µk〉

〉
for (i, j, k) = (1, 1, 1), (2, 1, 1) is trivial.

By [T] and [K], we know π21(S7)(5) = 0 and π21(B) = 0, or equivalently,
π21(Sp(3))(5) = 0. Then

〈
µ2, 〈µ2, µ2〉

〉
is trivial.

By the above calculation of Samelson products together with Lemma 3.10, we
have established honil Sp(3)(5) ≤ 2. On the other hand, by Corollary 3.5 and (3.5),
we have honil Sp(3)(5) ≥ 2. Thus the proof of the theorem is completed.

Let G be a compact, simply connected Lie group. As in [MNT], the homotopy
type of the p-localization G(p) becomes simpler as p increases. Then the H-structure
of G(p) might also get simpler as p increases. So one might expect that honil G(p) is a
monotonically decreasing function in p. This is true if G(p) has the homotopy type of
a product of spheres by [M] and [KK]. But in [K], it was shown that this expectation
is negative. Actually, it was shown that for n = 9 and n ≥ 13, honil SU(n)(p) is not
monotonically decreasing in p. By Proposition 3.9 and Theorem 3.11, we see that
Sp(3) also yields a counterexample to the above expectation.

Corollary 3.12 honil Sp(3)(p) is not monotonically decreasing in p.

Differently from honil Sp(3)(p), nil[Sp(3), Sp(3)](p) is monotonically decreasing
in p by Corollary 3.8. In fact, we do not have so far a counterexample to the asser-
tion that nil[G,G](p) is monotonically decreasing in p when G is a simple Lie group.
However, we dare to conjecture the following.

Conjecture 3.13 There exists a simple Lie group G for which nil[G,G](p) is not mono-
tonically decreasing in p.
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