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RIGIDITY FOR ELLIPTIC ISOMETRIC IMBEDDINGS

NOBORU TANAKA

Introduction

The main purpose of the present paper is to give the details of the
results announced in the P. J. A. note [11], establishing some global
theorems on rigidity for a certain class of isometric imbeddings.

We first introduce the notion of an elliptic imbedding: An im-
bedding / of a manifold I in a Euclidean space Rm is called elliptic if
it is generic in a suitable sense and if the second fundamental form
corresponding to any normal vector Φ 0 of the imbedding has at least
two eigenvalues of the same sign. We then prove a rigidity theorem
(Theorem 2.4) which may be roughly stated as follows: Let /0 be an
imbedding of M in Rm. Assume that 1) f0 is elliptic, 2) it is "infini-
tesimally rigid" and 3) M is compact. If two imbeddings / and / ' of
M in Rm lie both near to /0 with respect to the C3-topology and if they
induce the same Riemannian metric on M, then there is a unique Eucli-
dean transformation a of Rm such that f = af. Moreover we apply
Theorem 2.4 to the canonical isometric imbedding /0 of a compact her-
mitian symmetric space M = G/H in the Euclidean space Rm, where
m = dim G. In fact it is shown that the imbedding fQ satisfies the
conditions 1), 2) and 3) stated above (Proposition 3.3 and Theorem 3.4).
Thus we obtain a rigidity theorem (Theorem 3.5) for imbeddings around
/0, which turns out to be a partial generalization of the famous theorem
of Cohn-Vossen.

In § 1 we first define an important differential operator L = If,
which is associated with every imbedding / of M in Rm satisfying con-
dition (C), where "condition (Q" is the very generality condition to impose
on an elliptic imbedding. It is shown that the operator L is, in a
suitable sense, equivalent to the differential operator Φ*f, "the operator
of infinitesimal isometric deformations" of / (Theorem 1.2). We then

Received December 25, 1972.

137

https://doi.org/10.1017/S0027763000015774 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015774


138 N. TANAKA

proceed to the definition of an elliptic imbedding and find that an im-
bedding / is elliptic if and only if the operator L is elliptic.

In § 2 we prove Theorem 2.4. The proof heavily depends on Theorem
2.3 which is the principle of upper semi-continuity concerning the oper-
ators U parametrized by the elliptic imbeddings / and which is analogous
to Theorem 4 in Kodaira-Spencer [4]. Finally § 3 is devoted to the proof
of Theorem 3.4, which needs some calculations on the Laplacian Δ of
the hermitian symmetric space M = G/H.

Preliminary remark

Throughout the present paper we shall always assume the differ-
entiability of class C°°.

Let E be a differentiate vector bundle over a differentiate manifold
M. Ev will denote the fibre of E over a point p e l . Γ(E) will denote
the vector space of differentiate cross sections on M. An inner product
<, > in E is an assignment which assigns to every point p e l a n inner
product < , > in the fibre Ep and which is differentiate in an appropriate
sense.

§1. Elliptic imbeddings

1.1. The differential operator φ*f. Let M be a connected differentiate
manifold. T denotes the tangent bundle of M and T* its dual. S2T*
denotes the vector bundle of symmetric tensors of type (°) on M. For
a,βeT*, a β denotes the symmetric product of a and β, being an ele-
ment of S2T*.

Let Rm be the space of m real variables and x19 , xm the canonical
coordinates of it. As usual Rm is an m-dimensional Euclidean space
(flat Riemannian manifold) with respect to the Riemannian metric ds2 =
Σi dx\. Rm is also considered as an m-dimensional Euclidean vector
space with respect to the inner product < , > defined as follows: (a, b} =
Σ* afiu where a = (a19 , αTO), b = φ19 , bm) e Rm.

Let a = (a19 ,αrTO) and β = (β19 -9βm) be i?m-valued 1-forms on M
and let / = C/Ί, ,/m) be an i?w-valued function on M. <α,/9> denotes
the cross section of S2T* defined by <α, β) = Σ< aφi or

, Y) = i«

for all X,Y eTp and p e l , </,α> denotes the 1-form on ilί defined by
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</, «> = Σ< /<«< o r </> OL)(X) = </, α(Z)>. d/ denotes the exterior deriva-

tive of f:df=(dfu.>.,dfj..

Let Γ(M, m) be the vector space of differentiable maps of M to Rm>

which may be regarded as the vector space of 2?TO-valued differentiable

functions on M. Let @(ilί, m) be the subset of Γ(M, m) consisting of all

the imbeddings of M in Rm. We assume @(M,m) Φ φ. For /e@(M, m),

we denote by Φ(/) the Riemannian metric /*cis2 on M which is induced

from efe2 by the imbedding / ; We have

Given a Riemannian metric v on M, /e(δ(M, m) is called cm isometric

imbedding of the Riemannian manifold (M, v) in the Euclidean space Rm

if Φ(/) coincides with the given v.

The assignment f-*Φ(f) gives a map Φ of the set ®(M,m) to the

set Dΐ(M) of Riemannian metrics on M. For /e©(M,m), we define a

differential operator Φ#f of Γ(M,m) to Γ(S2Γ*), ίfee differential of the

map Φ at /, by

for all ueΓ(M,m).

1.2. The second fundamental forms. Let / be an imbedding of M in

Rm. Let T be the vector bundle on M which is induced from the tan-

gent bundle T(Rm) of Rm by the imbedding /. The Riemannian metric

ds2 on Rm induces an inner product in the vector bundle T and the

tangent bundle T of M may be identified with a subbundle of T\ This

being said, the normal bundle N of / is the orthogonal complement of

T in T with respect to the inner product in T: T — T®N. T being

a trivial bundle in a canonical manner, every fibre Tf

v of I" may be

identified with the Euclidean vector space Rm and hence a cross section

of Tf may be regarded as an i?m-valued function on M and vice versa.

Let F be the covariant differentiation (Riemannian connection) as-

sociated with the Riemannian metric v — Φ(/). Given an i?m-valued

tensor field a = (a19 - -, am) of type (°) on M, we define the covariant

derivative Fa of a in an obvious manner: Fa = (Fa19 ,ΓαTO). Note

that Fxw = diiCX) = Z« for all I e Γ p and #w-valued functions u on M.

The following proposition is known.
υ As for the covariant differentiation V, we use the same notations as in [3],
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140 N. TANAKA

PROPOSITION 1.1. For all X, YeTp, the vectors VΣVγf are in the
fibre Np of the normal bundle N.

Proof. We have <Fγf,Fzf> = v(Y,Z) for all Γ, ZeTpy whence

<FxFγf,Fzf> + <VYf,VxVz/y = (Fxv)(Y,Z) = 0

For al! X e Tp. Hence we have

<yxvΣf,vγfy + <yΣf,vxvγfy = o

for all X, YeTp. Since FxFγf=FγFxf and since Tp is composed of
the vectors Fγf(YeTp), we have FxFxfe Np and hence FxFγfeNp, prov-
ing our assertion.

Let us now consider the following condition (C)2) for the imbedding
/ : At each peM, the fibre Np of N is spanned by the vectors of the
form FxFγf, where X, YeTp.

For ae Nv, we define an element θa of S2T* by

which is usually called the second fundamental form of / corresponding
to the normal vector a. Then we see that / satisfies condition (C) if
and only if the map θ: N 3 a —» θa e S2T* is injective.

1.3. The differential operator L. In what follows we assume that
the imbedding / satisfies condition (C). By the above remark the image
N of N by θ forms a subbundle of S2T*, which will be called the bundle
of second fundamental forms of /.

We define a differential operator D of Γ(Γ*) to Γ(S2Γ*) by

(Dφ)(X, Y) = (Fxφ)(Y) + (Fγφ)(X)

for all φ e Γ(Γ*) and X, Y e Tp, and denote by π the projection of S2T*
onto the factor bundle S2T* /N. Then the composition L — πoD is a
differential operator of Γ(Γ*) to Γ(S2T*/N).

THEOREM 1.2. Let / be an imbedding of M in Rm satisfying con-
dition (C) and let aeΓ{S2T*). Then the solutions u of the equation

2) This is equivalent to the condition that, at each p e ikf, the vector space Rm is
spanned by the vectors of the form (df/dXiXp), (d2f/dXidXj)(p), where xίf , xn is a co-
ordinate system of M at p.
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Φ^f(u) = a are in a one-to-one correspondence with the solutions ψ of

the equation Lφ = πa, and the correspondence u —> φ is given by the

relation φ — ζu, df}.

Proof. Let u e Γ(M9 m). Put φ = (u, d/> and denote by X the vector

field on M which is dual to the 1-form ψ with respect to the Riemannian

metric v. Put

(1.1) V = u-Xf.

Then we have

<i;,d/(Γ)> - <u,df(Y)> - <df(X),df(Y)>

= ψ{Y) - v(X, Y) - 0

for all Y eTp, showing that v may be regarded as a cross section of

N. Furthermore from (1.1) we get

(1.2) FYu - FTΌ + VYVxf + (VγX)f

for all YeTp. Since <ι;,Fz/> = 0 for all ZeTp, we have <Fγv,Fzf} =

-(O,VYVzf> for all Y, ZeTp. Therefore it follows from (1.2) and

Proposition 1.1 that

and hence

<VYu, Fzf> = (VYΨ){Z) - ΘV{Y, Z),

where θυ is the cross section of N defined by (θυ)p = θ(v(p)). Commuting

Y and Z in the above equality, we also obtain

φ ΘV(Z,

Therefore from these two equalities we get

(1.3)

Now suppose that u is a solution of the equation Φ*f(u) = a. θv being

a cross section of N, we know from (1.3) that ψ is a solution of the

equation Lφ — πa. Conversely let φ be a solution of the equation Lφ —

πa. Since Dφ — a is a cross section of N and since θ: N —> N is an

isomorphism, there is a unique cross section v of N such that Dφ — a

— 2ΘΌ. If we put u = v + Xf,X being the dual to φ, then we can see
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142 N. TANAKA

from the above argument that (11, df) — φ and that a is a solution of
the equation Φ*f(u) = a. We have thereby proved Theorem 1.2.

1.4. An elliptic imbedding. Let / be an imbedding of M in Rm

satisfying condition (C). Let ξ be any covector at any point p e l ,
i.e., ξeT*. The symbol σ(ξ) of the operator L at ξ is a linear map of
T* to S2T*/NP defined as follows: Take a function f on M such that
f(p) = 0 and dfp = £ and, for any ]yeΓJ, take p e Γ(T*) such that ^p = ??.
Then σ(f)^ = L(/0P. We have

D(fΨ)(X, Y) = Vxf-ψ{Y) + Fγf φ(X) + fDcpiX, Y)

for all Z, Γe Tp, whence D(fψ)p = 2ξ-η. Therefore we get

(1.4)

The operator L is called elliptic if the symbol σ(ξ) is injective at
any non-zero covector ξ. (For the theory of elliptic linear differential
operators on manifolds, we refer to [10].) Furthermore we shall say
that a subbundle of >S2Γ* is elliptic if it contains no non-zero elements
of the form ξ η, where ξ and η are covectors with the same origin, or
equivalently if every symmetric form (=£ 0) in the subbundle has at least
two eigenvalues of the same sign.

By (1.4) we have the following

PROPOSITION 1.3. The differential operator L associated with f is
elliptic if and only if the bundle N of second fundamental forms of f
is elliptic.

We shall say that an imbedding / of M in Rm is elliptic if it satisfies
-condition (C) and if the bundle N is elliptic.

PROPOSITION 1.4. Let f be an imbedding of M in Rm. We assume
that f is elliptic and that M is compact. Then the solution space of the
equation Φ*f(ti) — 0 is finite dimensional.

This follows immediately from Theorem 1.2 and a well known theo-
rem on elliptic operators.

§2. A rigidity theorem for elliptic imbeddings

2.1. Imbeddings and Euclidean transformations. Let O(m) be the or-
thogonal group of degree m. A Euclidean transformation of Rm is a
transformation a of the form:
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ax = bx + c (xe Rm) ,

where b e O(m) and c e Rm. The set E(m) of Euclidean transformations

forms a Lie group.

Let o(m) be the Lie algebra of skew-symmetric matrices of degree

m, being the Lie algebra of O(m). An infinitesimal Euclidean transfor-

mation of Rm is a map A of Rm to itself of the form:

Ax = Bx + c (xeRm) ,

where B e o(m) and c e Rm. The set e(m) of infinitesimal Euclidean

transformations forms a Lie algebra, being the Lie algebra of E(m).

Let M and Rm be as in §1. For fe ©(M, m) and aeE(m)9 we have

afe(£(M,m) and

Thus the group ϋ7(m) acts on ©(M, m) as a transformation group and

the map Φ is an invariant. It is clear that E(m) leaves invariant the

subset ©o of ©(Λf, m) composed of all the imbeddings satisfying condition

(C) as well as the subset ©x of ©(M, m) composed of all the elliptic

imbeddings.

PROPOSITION 2.1. 27&e group E(m) freely acts on the subset ©0 of

Proof. Suppose that af = f, where aeE(m) and/e© 0. Then bf +

c=f, whence bFzf= Vxf and bPxFγf= VxVγf for all X, Y e Tp. Since

the vectors Vxf, VxVγf span the vector space Rm, we have b = e, the

identity, and c = 0, proving our assertion.

PROPOSITION 2.2. Lβ£ / &e an imbedding of M in Rm.

(1) For all Aee(m), Af is a solution of the equation Φ*f(u) 0.

(2) // / satisfies condition (C), then the map e(m) 9 A -» A/e Γ(M, m)

is ίnjectίve.

This is clear from the invariance of Φ and Proposition 2.1.

Let p(f) denote the dimension of the solution space of the equation

φ^.f(u) = 0, which is also the dimension of the solution space of the

equation Lψ = 0 by Theorem 1.2. Then Proposition 2.2 implies

p(f) ^ dim E(m) = \m(m + 1),

provided that / satisfies condition (C).
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2.2. Upper semi-continuity of the dimension ρ(f). Let us introduce
the Cr-topology in the set Γ(M,m). (Let Jr be the vector bundle on M
consisting of all the r-jets of local differentiable maps of M in Rm.
For κeΓ(I ,m), let jr

pu denote the r-jet of u at p e M. Then the as-
signment p -> jr

pu gives a cross section jru of J\ and the map j r : Γ(M, m)
3 u —> jru e Γ(Jr) is injective. This being said, the Cr-topology in Γ(M, m)

is the topology in Γ(M,m) which is induced from the compact-open
topology in Γ(Jr) by the injective map jr.) We denote by <&(M,m)cr the
subset &(M,m) of Γ(M,m) equipped with the Cr-topology.

We shall prove the following

THEOREM 2.3 (cf. [4], Theorem 4). Let fQ be an imbedding of M in
Rm. We assume that f0 is elliptic and that M is compact. Then there
is a neighborhood Uι(f0) of f0 in ®(M,m)cs such that p(f) ̂  p(f0) for
every fe Uλ(f0).

In what follows, Vf,Nf,U with respectively mean the covariant
differentiation F, the bundle N, the operator L which correspond to an
imbedding fe @(M, m).

The Riemannian metric v = Φ(f) differentiably depends on the 1-jet
ff of /, that is, the components gtj of v with respect to a coordinate
system x19 , xn of M are diff erentiable functions of jιf: v = Σitj gijdXidXj
and gi3 = Gijoff, where Gtj are differentiate functions defined on an
open set of J1.

(2.1) It follows that the covariant differentiation V = Vf differenti-
ably depends on the 2-jet ff of /, that is, the Riemann-Christoffel
symbols Γ)k associated with giά are differentiable functions of ff in an
analogous sense to the above.

(2.2) Hence the derivative VVf differentiably depends on ff, that is,
the components of VVf with respect to the coordinate system xu , xn

are differentiable functions of ff

We choose once for all a subbundle F of S2T* complementary to
Nf\ By (2.2) we know that there is a neighborhood V(f0) of /0 in
®(M,m)Ci such that every fe V(f0) is elliptic. If we choose V(f0) suffi-
ciently small, we also find that S2T* = NfφF for every fe 7(/0). Hence
the operator Z/(/e V(f0)) may be regarded as an operator of Γ(T*) to
Γ(F). From (2.1) we infer that the operator U differentiably depends
on the 2-jet ff of /. Namely let xί9 , xn be a coordinate system of
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M at any point p0 and let ax, , at be a moving frame of F defined on
a neighborhood of p0. Then we have

where φ e Γ(T*) and φ = J]ί Uidxi9 and the components α*y, b\ are diίfer-
entiable functions of pf.

We are now able to prove Theorem 2.3 in a standard fashion by
using some basic facts in the theory of elliptic operators. For com-
pleteness we shall accomplish the proof in Appendix.

2.3. A rigidity theorem for elliptic imbeddings.

THEOREM 2.4. Let /0 be an imbedding of M in Rm. We assume
that /0 is elliptic, p(f0) — \m{m + 1) and that M is compact. Then there
is a neighborhood U(f0) off0in @(Jlί,m)σ3 having the following property:
If /> f £ U(f0) and if Φ(f) = Φ(f), there is a unique Euclidean transfor-
mation a of Rm such that f = α/.

Proof. For /, / ' e @(M, m), we put u = / ' - / and h = f + \u. Then
we can find a neighborhood J7(/o) of /0 in (£(M, m)C3 such that, for any
/, f'eUifv), h is in ZΛC/o), where Ê C/i) is a neighborhood of /0 in
®(M,m)Ct having the property in Theorem 2.3. Let /, / ' e Z7(/0) be such
that Φ(f) = Φ(/0. This clearly gives Φ*Λ(w) = 2(dh,du} = 0. Since Ae
#i(/o), we have

\m{m + 1) ^ ^(*) ^ p(fo) = Jm(m + 1),

whence (̂A) = \m(τ)i + 1). From these facts and Proposition 2.2 we see
that there are a unique B e o(m) and a unique c e i?m such that

u - BA + c = B(f + in) + c .

We have det (1 — i5) =£ 0, because B is a skew-symmetrix matrix. There-
fore it follows that

and hence

// = (1 + (l _ \BYιB)f + (1 -

An easy calculation shows that 1 + (1 — \B)~ιB is an orthogonal matrix,
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proving the existence part of Theorem 2.4. The uniqueness part follows

from Proposition 2.1.

2.4. Remarks on the operator L. Let / be an imbedding of M in Rm

satisfying condition (C). If we put n = dimM, then we have m = n +

dim N and dim N = dim N ^ dim S2T* = \n{n + 1), where N (resp. N) is

the normal bundle (resp. the bundle of second fundamental forms) of /.

Hence the dimensions n and m must satisfy the inequalities:

n ^ m <Ξ> ^n(w + 3).

We shall now explain (without proof) how the properties of the

operator L associated with / depend on the dimensions n and m and

how the operator is connected with the imbedding problem for Rie-

mannian manifolds.

a) The operator L is over-determined when n <£ m < \n(n + 1).

b) PROPOSITION 2.5. In order that the operator L is elliptic, it is

necessary that3) n <Ξ m < \niyι + 1) or n — 2 and m — 3.

c) The fibre Np of N at p e M, being a subspace of £2Γ*, may be

identified with a vector space of symmetric endomorphisms of the Eu-

clidean vector space Tp (The inner product in Tp is defined by the

Riemannian metric v = Φ(/).). This being said, we define a subspace

QP of Horn (Tp, Tp) by gp = o(Tp) + Np, where o(Γp) is the vector space

of skew-symmetric endomorphisms of Tp. We note that the vector

bundle g = (J gp may be regarded as the symboP of the equation Lψ = 0.

Let g^ be the i-th prolongation55 of the subspace $p of Horn (Tp, Γp).

Then we have dim q^ — n dim N.

We say that the imbedding / is involutive if gp is involutive6) at

every p e l . In order t h a t / i s involutive, it is necessary that \n{n + 1)

<; m <; ^7i(n + 3).

PROPOSITION 2.6. Γ^β imbedding f is involutive if and only if the

equation Lψ — 0 is involutive.

THEOREM 2.7. // / is involutive, then the equation Φ*f(u) = a has

a local solution for any given local cross section a of S2T*, where every-

thing should be considered in the real analytic category.
3) It is easy to show that n ^ m < \n{n + 1) or n is even and m = \n(n + 1). The

second case occurs only when n = 2, which follows immediately from [1], Theorem 1.
4> See [8].
β> and 6) See [9].
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The E. Cartan's result [2] indicates that every Riemannian manifold

M of dimension n can be locally isometrically imbedded in the Euclidean

space of dimension \n(n + 1) by an involutive imbedding, where as above

everything should be considered in the real analytic category.

d) The case where m = \n(yι + 3). Since N = S2T*, the operator L

is reduced to 0 and hence the equation Φ*f(u) — a has a global solution

for any given a e Γ(S2T*), which is a basic fact in the theory of Nash

[6]. An example of such an imbedding is the canonical isometric im-

bedding of the real protective space Pn(R) in the space of symmetric

matrices of degree n + 1 with vanishing trace (cf. 3.1, Example.)

e) The case where n — 2 and m — 3. The imbedding / is always

involutive, and it is elliptic if and only if the second fundamental form

corresponding to any normal vector (=£ 0) is definite. Consider the case

where M = S2, the unit sphere in R\ Then / is elliptic if and only if

the image f(S2) of S2 by / is an ovaloid in R\ and when / is elliptic,

we know the following facts: 1°. p(f) = \m(m + 1) = 6, 2°. the equation

Φ*f(u) = a has a global solution for any given α e Γ(S2Γ*). These facts

play an important role in the solution [7] of the Weyl problem.

f) The case where n ^ 3 and m — n + 1. Consider the case where

the rank of the second fundamental form corresponding to any normal

vector (Φ 0) is at least 3. Then the imbedding / is elliptic, and we can

prove the following facts: 1°. The equation Lψ = 0 is of finite type or

more precisely, dim gp = \n{n — 1) + 1, dim qf = n and Q™ = 0, 2°. the

equation is formally integrable7), 3°. p(f) = \m(rn + 1) without compact-

ness assumption.

§ 3 . Rigidity for some classes of elliptic imbeddings

3.1. The canonical isometric imbedding of a compact hermitian symmetric

space. Let M be a global hermitian symmetric space. (For the theory

of hermitian symmetric spaces, we refer to [3].) Let / and v be the

almost complex structure and the Riemannian metric respectively on M.

Let G be the largest connected group of automorphisms (holomorphic

isometries) of M. The group G transitively acts on M and hence the

space M may be expressed as the homogeneous space G/H, where H is

the isotropy group of G at a fixed point 0 of M. In the following we

assume that G is compact and semi-simple.
7 ) See [8].
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Let g be the Lie algebra of G and B its Killing form. Note that

B is negative definite. Let ή be the Lie algebra of H and m the or-

thogonal complement of ϊj in g with respect to the Killing form B. We

have [ί),m] c m and [m,m] c ϊ). Let π be the projection of G onto M.

Then the linear map m 3 X —* π^Xe e Γ 0 = T(M)Q is an isomorphism, by

which we shall identify the two vector spaces m and To This being

said, we make the second assumption that the Riemannian metric v is

induced from the Killing form B, that is,

v(X,Y) = -B{XyY)

for all X,Ye TQ.

It is well known that there is a unique element ZQ in the centre of

£> such that IX = [Zo, X] for all X eT0 and such that H is the centralizer

of ZQ in G, i.e., H = {ae G|adαZ0 = Zo}. (See [3], Theorem 9.6.) By the

second property of ZQ, we see that the map G 3 a —> ad aZ0 e g induces a

map / of M to g. Furthermore we see that / is an imbedding and that

i t is equivariant, i.e.,

f(ap) = ad af(p)

for all aeG and p e l ,

Let us now define an inner product < , > in g as follows :

<X, Γ> = -B(X, Y)

for all X, Y e g. Thus if we put m = dim g, g may be regarded as the

m-dimensional Euclidean space Rm with respect to a fixed orthonormal

base X19 , Xm of g. Note that ad a: g —• g is an orthogonal transfor-

mation for all aeG. Let V be the covariant differentiation associated

with the Riemannian metric v and R its curvature.

PROPOSITION 3.1. (1) / is an isometric imbedding of the hermίtίan

.symmetric space M in the Euclidean space g = Rm ([5]).

(2) / satisfies condition (C).

(3) VzVxVYf={R{IX,Y)IZ)f

for all X,Y,Ze Tp and peM.

First we shall prove the following.

LEMMA 3.2. For all X, Y e To = m, we have:
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(1) Xf=-IX.

(2) FxFγf = [IX, Y] = - [X, IYl

Proof. If we put u(t) = ττ(exp tX), we have

= ad(exp tX)ZQ = Σ -£-(ad

We have (du/dt)(O) = π*X = Z and hence

Z / = ad XZ0 = [Z, Zo] = - / Z ,

proving (1). Let X be the vector field on M induced by the 1-parameter

group of transformations: R x M 3 (ί, p) -> (exp iX)p e M. Then (d2fou/

dt2)(O) = ZX/ and hence

- (ad Z ) % - [Z, [Z, Zol] = [/Z, Z] .

On the other hand

XXf=VxVxf+(VxX)f.

u(t) is an integral curve of X and at the same time a geodesic, whence

VXX = 0. Therefore F ^ / ^ [7Z,Z]. Since VzVγf= VγVxf and since

[7Z, Y] + [X,IY] = [Zo, [Z, Y]] = 0, it follows that F X F F / - [7Z, Y], prov-

ing (2).

Proof of Proposition 3.1. By Lemma 3.2, (1) we have (Xf,Y/y =

-B{IXJY) = - β ( Z , Y) = KZ, Y) for all Z, Y e Γo. Since / is equivari-

ant, it follows that <Z/, Y/> = v{Xy Y) for all X,YeTp and p e l ,

proving (1). We have § = [m,m]. Hence (2) follows from Lemma 3.2,

(2) and the equivariance of /. By Lemma 3.2 and the equivariance of

/, we have

for all X,Y eTp and p eM. Therefore by using VI = 0, we have, for

all Z e Tp,

VzVxVγf= [PzFIxf,VYf] + Wiχf,VzVγf\

= XWizf,Vlxf\VYf\ + Wixf,Wizf,VYf~W

Considering the case where p — 0 and using Lemma 3.2, (1), we have
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VzVxVYf= -[Z,[

for all X,Y,Z e To. Since

R(IX,Y)IZ = -[[/X,

it follows that

VzVχVYf= -iUX, Y],Z] = (R(IX, Y)IZ)J .

Now (3) follows from this equality and the equivariance of /.

We denote by E the subbundle of S2T* which consists of all the
hermitian forms (e ST*) with respect to the almost complex structure
I. As is easily observed, E is elliptic.

PROPOSITION 3.3. The bundle N of second fundamental forms of f
is a subbundle of the bundle E of hermitian forms. In particular the
imbedding f is elliptic.

Proof. By Lemma 3.2, (2) and the equivariance of /, we have

VχVγf=VτxVIγf

for all X,YeTp. Proposition 3.3 is immediate from this fact.

EXAMPLE. Let us consider the case where the hermitian symmetric
space M = G/H is the ^-dimensional complex protective space Pn(C).
We have

G=U(n + ΐ)/C and H = £7(1) X U(n)/C,

where C is the centre of U(n + 1) and the isotropy group H is con-
sidered at the point 0 = (1,0, , 0). Hence g ^ %n(n + 1) and dim g =
n2 + 2n. Let zQ, - —,zn be the homogeneous coordinates of Pn(C). Then
the imbedding / = f{n) is given by

Γn)((z0, , *„)) - V^=T l-h— - ψΛ (e $u(n + I)),
\n + 1 \z\2 I

where \z\2 = J]k \zk\
2. Finally we note that the two bundles N and E

just coincide.

3.2. A rigidity theorem associated with the isometric imbedding / : Λf —> g.

In the next paragraph we shall prove the following

THEOREM 3.4. Let f be the isometric imbedding of the compact
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hermitίan symmetric space M in the Euclidean space g = Rm defined in
3.1. Then we have p(f) = \m(m + 1).

By Proposition 3.3, Theorems 2.4 and 3.4 we have the following

THEOREM 3.5. Let f be as in Theorem 3.4. Then there is a neigh-
borhood U(f) of f in ®(M,m)CΛ having the following property: If f\f"
e U(f) and if Φ(f') = Φ(f"), there is a unique Euclidean transformation
a of g such that f" — aff.

Remark 1. Consider the isometric imbedding fω of P\C) in §u(2)

= R\ (See 3.1, Example.) P\C) is isomorphic with the sphere S2(V~2~)

of radius 7 2 in i?3 as Riemannian manifolds. Therefore Theorem 3.5

is a partial generalization of the theorem of Cohn-Vossen.

Remark 2. It is well known that the sphere S2(V 2) in Rz or the
isometric imbedding fω is locally deformable. (For example, see [2].)
Therefore the isometric imbedding / of the hermitian symmetric space
M in g is locally deformable, provided that P\C) appears in the de Rham
decomposition of M. We shall see in the proof of Theorem 3.4 that the
equation Lψ — 0 associated with the isometric imbedding fin) of Pn(C) in
$u(n + 1) is of infinite type, which suggests that f{n) is locally deform-
able. However the problem to examine it seems to be rather complicated
and difficult.

3.3. Proof of Theorem 3.4. The proof is devided into several steps.
I. I is a Kahlerian manifold: VI = 0 and M is also a symmetric

space: VR — 0. Since the Riemannian metric v is induced from the
Killing form B of g, we know that M is an Einstein space ([3], Propo-
sition 9.7):

Σ R(X, edβi = - i Σ R(Iei9 et)IX - \X .
ί i

(In the following X,Y,Z will denote any vectors at any point p e l and

eι, - , e2n any orthogonal frame at the point p, where n = dim^ M.)

For a,βe Γ(®p Γ*) we define a function <α, /3> by

<α, j8> = - ί - Σ a^iχ, , eip)β(eil9 , e ip)
p ! ίi, ,ίp

and put
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a,β) = ί <a,β}dv ,
J M

0

the inner product of a and β, where dv is the volume element of the
oriented Riemannian manifold M.

Let δ be the adjoint operator of the exterior differentiation d of
Γ(ApT*) to Γ(ΛP+1T*) with respect to the inner products (,). Then the
operator Δ — 3d + dδ is the so called Laplacian. In terms of F, we have:

..., x p + ι ) = Σ (-iy-ι(FXiφ)(x^ . . . , £ * , . . . , x p + o ,
i

(δφ)(Xu • • •, Xp) = -Σ (FtιφXet, XU" , Xp).

We have

i

for a function / and

for a 1-form^.
II. Let Έ' be the subbundle of AS2Γ* which consists of all the anti-

hermitian forms (e S2Γ*) with respect to /: S2Γ* = E®E'. (ae S2T* is
anti-hermitian if a(IX,IY) = —a(X, Y).) We define a differential operator
Lo of Γ(T*) to ΓCJSΌ by

(LoΨ)(X, Y) = \{{Dψ){X, Y) - (Dφ)(IXJY))

for all ^>eΓ(T*), i.e., LQφ is the anti-hermitian part of Dφ. N is a
subbundle of £7 by Proposition 3.3 and hence a solution of the equation
Lφ = 0 is necessarily a solution of the equation Lô ) = 0.

Remark, Let ^ be a local 1-form on M and X the vector field dual
to φ with respect to v. The fact that φ is a solution of the equation
LQφ = 0 means that D^ = Lxy, Lx being the Lie derivation, is hermitian.
Hence if X is an analytic vector field, then φ is a solution of the equa-
tion LQφ = 0. It follows that the equation Loφ = 0 is of infinite type.
In particular consider the case where M = Pn(C). Then N — E and
hence L may be identified with Lo. Consequently the equation Lφ — 0
is of infinite type.

Let Lf be the adjoint operator of Lo with respect to the inner pro-
ducts (,). In terms of F, Lo* may be expressed as follows:
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for all <xeΓ(E'). Indeed we have, for all

<L0£>, a} = Σ {Ve.φ){ej)a{eu eά)

= Σ (FJKeJ -
i

u e,),

where β is the 1-form defined by β(X) = Σ J φ(e3)a(X, eά). Since the inte-

gral of δβ-dv over ikf is 0, we obtain the desired formula.

For φeΓ(T*) we define φl e Γ(T*) by (φI)(X) - φ(IX).

LEMMA

Proof.

Hence

(3.1)

We have:

3.6.

We

ΣC7

2L*Loφ =

have:

•ttΌφ)(βuX)

' eV χψ)(βι) —

Σ (Feβφ)(.β
i

Δφ + dδφ — (

= Σ (VJHΨ)(

i

( — dδφ + \φ)\

' • X ) = { - Δ ψ

dδ(φl))l - 2φ .

X) + Σ (VeiVzφ){ei

) -Σφ(R(et,X)et)
i

— dδφ + φ)(X) .

= Σ (FeiFIeiΨ)(IX) +

Σ

Σ
i

Hence

(3.2)

= - Σ (Fe/
i i

= (-(dδ(φl))l - \ψ)(X).

Uiφ){IX) = -%φ(X) and

Σ WtPφ)(!et, IX) = (-(dδ(φl))l - ψ)(X).
ί

Lemma 3.6 is immediate from (3.1) and (3.2).

III. By Lemma 3.6, every solution of the equation LQφ = 0 is a

solution of the equation:

https://doi.org/10.1017/S0027763000015774 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015774


154 N. TANAKA

(3.3) Δψ = -dδφ + (dδ{φl))l + 2ψ

and the converse is also true. Let us now consider the following equa-

tion:

(3.4) Δf = f,

f being functions.

LEMMA 3.7. (1) // / is a solution of equation (3.4), then df is a

solution of equation (3.3).

(2) Every solution φ of equation (3.3) can be uniquely written as

φ = df + φ19

where f is a solution of equation (3.4) and φx is a solution of equation

(3.3) combined with the equation δφ = 0.

Proof. This lemma is easy from the following facts: dΔ = Δd,

δΔ = Δδ and δ((df)I) = 0 for any function / .

A 1-form φ on M is called a Killing form if the vector field X dual

to ψ with respect to v is a Killing vector field, i.e., Lxv = Dφ = 0.

LEMMA 3.8. The solutions f of equation (3.4) are in a one-to-one

correspondence with the Killing forms ψ and the correspondence f —> φ

is given by the relation φ = (df)I. In particular the solutions of equa-

tion (3.4) form a vector space of dimension m(= dimg).

This fact is well known. (For example, see [12], Chapter IV.) The

next lemma is also known.

LEMMA 3.9. // we put f= (f19 , / J , i.e., / = Σιifiχt> t h e n t h e

functions f19 ,/ m form a base of the solution space of equation (3.4).

Proof. Let e19 , e2n be an orthonormal base of m = To. Then we

have

- Σ lUei9 e j , X\ = Σ RU<*i> ei)χ = IX = IZO, X]
i i

for all XeT0, whence Σ*t^ e *> e J = ~"^o Therefore by Lemma 3.2, (2),

we have

Σ Fβ 4Γβ </= Σ Ueif e j - -ZQ = - / ( 0 ) .
i i
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This together with the equivariance of / yields Δf = f. Hence f19 ,/ m

are solutions of equation (3.4). Lemma 3.9 now follows from Lemma 3.8.

LEMMA 3.10. // / is a solution of equation (3.4), then df is a

solution of the equation Lψ = 0.

Proof. By Lemma 3.9, it is sufficient to prove this for / = ft. We

have Ddfi = 2FFfi9 and FFft = (Xίy FFf} is a cross section of N. Hence

we obtain Ldft = 0.

Remark. It can be proved that the dimension of the solution space

of the equation Loφ = 0 is equal to I + 2m, where I is the dimension of

the solution space of the equation Δψ = 2<p, φ being 1-forms. Conse-

quently in the case where M — Pn(C), our problem is reduced to the

problem to find the dimension I.

IV. Let u be a solution of the equation Φ*f(u) = 0. By Theorem

1.2 there corresponds to u a solution ψ of the equation Lψ = 0. Since

ψ = (u, dfy, we have

and hence

<FzU,Vyf> + <u,FxFYfy = (Fxφ)(Y) .

We have Φ*f(u) = 2(df, diΐ) = 0, meaning that (Fxu, Fγf} is skew-sym-

metric with respect to X and Y. Furthermore (u,FxFγfy is symmetric

with respect to X and Y. Therefore we obtain:

(3.5) <«, FxFγf} = l{Dψ){X, Y) ,

(3.6) <yxιι, FYf) = i(ώpXX, Y) .

LEMMA 3.11. (1) <ZJM - u,Fxf} = -(dδφ)(X).

(2) (Δu - ii, FxFYf> = QDΔφ - Dφ){X, Y) + Σ (LoΨ)(R(eίf Y)X, e<) .
i

Proo/. By (3.5) and (3.6) we have

Σ <Fei«, Fe/χ/> + Σ <u, VJJzf> - I Σ (FetDφXei9 X),
ί i i

Σ (feFefi,Pχf> + Σ '<yuu,VetVΣf) = | 2 ] (Fβfd?))(et,Z).
i i ί

By Proposition 3.1, (3) we have

https://doi.org/10.1017/S0027763000015774 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015774


156 N # TANAKA

Σ <«, VJJxf> = Σ <u, (Rile,, X)Iet)f>

-Ku,xf> = -MX)

Hence we obtain

<JH - u, Fxf} = | ( - Δψ - dδφ + φ)(X)

+ i(δdφ)(X) -

= -(dδφXX),

proving (1).

By (3.5) and Proposition 3.1, (3) we have

xVYfy + φ(R(IX, Y)IZ) = ί(FzDΨXX, Y) .

It follows that

Σ <vjetu, vxvγfy + Σ <ye(U, veyΣvγfy
1 i

+ Σ VΉφKWX, Y)Ied = iΣ {VeiVHDψXX, Y).

Therefore from (3.5), (3.6) and Proposition 3.1, (3) we obtain

Y) + iΣ (dφ)(eoR{IX,
* ί

+ Σ (FHφ)ίR(IX, YyieJ - i-(DφXX, Y).

We have

Σ {vjeiDΨχx, Y)

= DiΣ VeFetφ)(X, Y) + \{ΌψXX, Y) + 2 Σ (DφXR(X, edY, e{)
1 i

= -ΦΔφXX, Y) + (DφXX, Y) + 2 Σ (DφXR(X, et)Y, e,)

Thus we have proved the equality:

= \{DΔψXX, Y) - (DφXX, Y) + \ Σ (dφXe^RUX, Y)Iβi)

+ Σ (VeiΨXR(IX, Y)iet) - Σ (DφXR(X, ez)Y, et).
i ί

Since A = R(IX, Y)I is symmetric with respect to v, we have
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ύ - Σ (Dφ)(R(X, eύY, et)
i

u R(IX, Y)Iet) - Σ (Dφ)(R(X, eJY, ed .
i i

By Lemma 3.12 below the right hand side of the last equality is equal
to -Σ(Lo0(β(Y,β,)X,e,). We have thereby proved (2).

i

LEMMA 3.12. For θeΓ(S2T*) we have the equality:

Σ Θ(R(IX, Y)Iet, e4) - 2 Σ Θ(R(X, eJY, e<)

= 2 Σ θ'{R{eu Y)X, ed ,
i

where θr is the anti-hermίtian part of θ.

This is a lemma in general Kahlerian manifolds generalizing Propo-
sition 4.5 in [3] and can be proved just in the same way as that propo-
sition.

V. We know that a solusion of the equation Lψ — 0 is also a solution
of the equation LQφ = 0. Hence by Lemmas 3.7 and 3.10 every solution
φ of the equation Lψ = 0 can be uniquely written as

φ = df + φ19

where / is a solution of equation (3.4) and ψγ is a solution of the
equations

(3.7) Lφ = δφ = 0.

Therefore by Theorem 1.2, Proposition 2.2 and Lemma 3.8 we arrive
at the following conclusion: In order to prove p(f) = \m{m + 1), it is
sufficient to show that, for any solution ψ of equations (3.7), there is
A e o(m) such that ψ = (Af, df}.

This being said, let ψ be a solution of equations (3.7) and u the
corresponding solution of the equation Φ*f(u) = 0. (The correspondence
is given by Theorem 1.2.) Then our task is to show that there is
A e o(ra) such that u = Af.

L E M M A 3.13. // we put u = (uί9 , u m ) then the functions u19- -,um

are solutions of equation (3.4).

Proof. By Lemma 3.11, (1) and the fact that δψ = 0, we obtain

(3.8) (Δu-u,Vxfy = 0.
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Since ψ satisfies equation (3.3), we have

(3.9) Δψ = (dδ(φl))l + 2φ .

Since Δ(φl) = (Δφ)I, it follows that Δ(φl) = — dδ(φl) + 2<pl and hence that

f = δ(φl) is a solution of equation (3.4). Therefore (df)I is a Killing

form by Lemma 3.8 and hence from (3.9) we get DΔφ = 2Dφ. Conse-

quently by Lemma 3.11, (2) we obtain

(3.10) <J« - u,FxFyf} = 0.

Since, at each p eM, the vectors VΣf, VxVγf(X, Y e Tp) span the vector

space g, it follows from (3.8) and (3.10) that Δu — u, proving Lemma

3.13.

By Lemmas 3.9 and 3.13 we see that ut are linear combinations of

/i> ,fm Therefore there is a matrix A of degree m such that u — Af.

LEMMA 3.14. A is a skew-symmetric matrix i.e., A e o(m).

Proof. If we put u! — —ιAf, then we have

meaning that uf is a solution of the equation Φ*f(u) = 0. We now show

that the solution u! just corresponds to the given solution ψ of the equa-

tion Lψ = 0. Indeed by (3.5) and Lemma 3.9 we have <«,/> = ζu,Δ/y

— δψ = 0. Hence we have

i.e., (u',df} = 9, proving our assertion. Therefore we have υ! — u and

hence (A + ιA)f = 0, from which follows that A + Ά = 0 (cf. Proof of

Proposition 2.1).

We have thus completed proof of Theorem 3.4.

APPENDIX

In this appendix we shall accomplish the proof of Theorem 2.3, as

we promised.
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We first introduce inner products <, > in the vector bundles T* and

F. We define an inner product ( ,) in Γ(T*) by

(φ, ψf) = I <<p, φ'}dv
JM

for all φ, φf e Γ(T*), where dv is the volume density associated with some

Riemannian metric on M, and define a norm || || in Γ(T*) by \\φ\\2 — (φ,φ).

In the same way we define an inner product ( ,) and a norm || || in Γ(F).

We also introduce a Sobolev norm || ^ in Γ(T*).

For fe V(f0), let Lf* be the adjoint operator of U with respect to

the inner products ( , ) . Since U differentiably depends on ff, it follows

that the operator Π f = U*U differentiably depends on the 3-jet ff of

/ in an analogous sense. We also note that Π f is strongly elliptic, be-

cause U is elliptic.

LEMMA A. There is a neighborhood VΊ(/0) of f0 in &(M,m)c* such

that

\\φ\\l£C(\\I/φ\\2 + \\φ\\*)

for all φeΓ(T*) and fe Vi(/0), where C is a positive constant independent

of φ and /.

Proof. Since Π\fo is strongly elliptic, we have the Garding inequality:

\\φ\\l£C(\\I/'φ\\2

for all φ e Γ{T*)9 where C is a positive constant independent of φ. Since

U differentiably depends on ff, we have: For any ε > 0, there is a

neighborhood V'(fQ) of fQ in @(M, m)C2 such that

\\I/φ - L'°φ\\ ^ εWφl

for all φ e Γ(T*) a n d / e Vε(f0). Lemma A follows easily from these facts.

We are now in position to prove Theorem 2.3. Suppose that Theorem

2.3 is not true. Then there is a sequence ft (i = 1,2, •) of elements in

@(M,m) such that ft —> f0 in @(M, m)^ and pif) > p(f0). Hence, for each

i, we can find k = p(f0) + 1 elements φ¥\ ••-fφίί) in Γ(Γ*) such that

L ^ i ^ = 0 and {φ^,φf) = dλμ. By Lemma A we have ||pjf)||? ^ C. There-

fore by the Rellich lemma, we may assume that, for each λ, the sequence

φ\» (ί = 1,2, •) converges to an element φλ in the completion of Γ(T*)
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with respect to the norm || ||. For every ψ e Γ(Γ*), we have (^i i },D f ίψ)

= (D f yf ,Ψ) = 0. Since ΓΎ differentiably depends on ff, | |D f iΨ - D f oψ||

-> 0. It follows that (φi9 \Jfoψ) = 0. Therefore by the hypoellipticity of

Π f o , ψλ e Γ(T*) and U*φλ = 0. Since (φi9 φμ) = δiμ, we have p(f0) ^k =

p(fo) + 1> which is a contradiction. We have thus completed proof of

Theorem 2.3.
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