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Abstract

We construct a sequence {An} of maximal monotone operators with a common domain and converging,
uniformly on bounded subsets, to another maximal monotone operator A; however, the sequence {t−1

n An}

fails to graph-converge for some null sequence {tn}.
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1. Introduction

It is well known that graph-convergence plays an important role in solving many
nonlinear problems, in particular, those governed by maximal monotone operators
[1, 2]. In this regard, Lions [3] proves a very interesting and useful result which implies
that t−1 A graph-converges as t→ 0 to NA−1(0), where A is a maximal monotone
operator in a Hilbert space H such that A−1(0) := {x ∈ D(A) : 0 ∈ Ax} 6= ∅, and
NK denotes the normal cone associated with a closed convex subset K ⊂ H . This
result has many applications in variational inequalities and fixed points (see, for
example [4, 6]).

On the other hand, since nonlinear problems are usually ill-posed, perturbation
techniques are needed. A natural question thus arises: if {An} is a sequence
of maximal monotone operators which converge (in a certain sense, for instance,
uniform convergence on bounded sets) to another maximal monotone operator A with
A−1(0) 6= ∅, and if {tn} is a null sequence of positive real numbers, does the sequence
{tn An} graph-converge to NA−1(0)? In other words, is Lions’ result stable in terms of
perturbation?

The purpose of this note is to give a negative answer to this question. More
precisely, we will construct a sequence {An} of maximal monotone operators with a
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common domain and which converges to the zero operator uniformly on bounded sets;
however, the sequence {t−1

n An} fails to graph-converge for some null sequence {tn}.

2. Preliminaries

Let H be a real Hilbert space and let A be an operator (possibly multi-valued) with
domain D(A) and range R(A) in H . The graph of A is

Gr(A)= {(x, y) ∈ H × H : x ∈ D(A), y ∈ Ax}.

We say that A is monotone if Gr(A) is a monotone set; that is,

〈x1 − x2, y1 − y2〉 ≥ 0 ∀(xi , yi ) ∈ Gr(A), i = 1, 2.

A monotone operator A is maximal monotone if its graph Gr(A) is not properly
contained in the graph of any other monotone operators. Equivalently, a monotone
operator A is maximal monotone if and only if the following implication holds:

(x, y) ∈ H × H, 〈x − ξ, y − η〉 ≥ 0 ∀(ξ, η) ∈ Gr(A) H⇒ (x, y) ∈ Gr(A).

The resolvent of a monotone operator A is defined as

J A
λ = (I + λA)−1

where λ > 0. Maximal monotonicity can be characterized by the resolvent.

PROPOSITION 2.1 [2]. Let A be an operator in H. The following are equivalent:

(i) A is a maximal monotone operator;
(ii) A is monotone and R(I + λA)= H for all λ > 0;
(iii) for every λ > 0, J A

λ : H → H is nonexpansive.

Monotone operators find many applications in various disciplines. The following
result, due to Lions, is a useful tool in many areas of mathematical analysis, such as
variational calculus and iterative methods for nonexpansive mappings.

PROPOSITION 2.2 [3]. Consider the net (J A
t−1(x + t−1u))0<t<1. Then:

(I) the following properties are equivalent:

(a) u ∈ R(A);
(b) (J A

t−1(x + t−1u))0<t<1 is bounded;
(c) there exists a strictly positive subsequence (tn)n∈N convergent to 0 such

that (J A
t−1
n
(x + t−1

n u))n∈N is bounded;

(d) limt→0+ J A
t−1(x + t−1u) exists;

(II) if any one of these conditions is satisfied, then

lim
t→0+

J A
t−1(x + t−1u)= PA−1(u)(x). (2.1)
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Nonlinear problems are often ill-posed; perturbations are thus needed. This means
that one should consider a sequence of perturbed problems whose solutions would
converge in some sense to a solution of the original problem. Graph-convergence is
usually used.

DEFINITION 2.3 [1]. Let An, A be maximal monotone operators in H . The sequence
(An)n∈N is said to be graph-convergent to A, denoted An→

G A, if, for every (x, y) ∈
Gr(A), there exists a sequence (xn, yn) ∈ Gr(An) such that xn→ x and yn→ y, as
n→∞. Equivalently, An→

G A if and only if

lim sup
n→∞

Gr(An)⊂ Gr(A)⊂ lim inf
n→∞

Gr(An).

The next proposition will be a relevant tool for our purposes.

PROPOSITION 2.4 [1]. Let (An)n∈N, A be maximal monotone operators in H with
An→

G A, as n→∞. Then, for any sequence (wn, zn) ∈ Gr(An) such that wn→ w

and zn ⇀ z, we have (w, z) ∈ Gr(A).

The following proposition shows that graph-convergence is equivalent to resolvent
convergence for maximal monotone operators.

PROPOSITION 2.5 [1]. Let An and A be maximal monotone operators in H. The
following are equivalent:

(i) An→
G A;

(ii) J An
λ → J A

λ for every λ > 0;

(iii) J An
λ0
→ J A

λ0
for some λ0 > 0.

Recall now that the metric projection PC : H → C from H onto a closed convex
subset C ⊂ H is the mapping which assigns to each x ∈ H the only point PC x in C
with the property

‖x − PC x‖ = inf
y∈C
‖x − y‖.

The following is a characterization of PC .

LEMMA 2.6. Given x ∈ H and z ∈ C, then z = PC x if and only if

〈x − z, y − z〉 ≤ 0 ∀y ∈ C. (2.2)

REMARK 2.7. For every y ∈ H , A−1(y) is a closed and convex subset of H .

REMARK 2.8. It follows from (2.2) that

PA−1(u) = J
NA−1(u)

1

where NA−1(u) : H → P(H) is the normal cone to A−1(u), that is,

NA−1(u) : x 7→

{
{v ∈ H : 〈y − x, v〉 ≤ 0 ∀y ∈ A−1(u)}, x ∈ A−1(u),

∅, otherwise.
(2.3)
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Moreover observing that J A
t−1 = J t−1 A

1 , (2.1) becomes

lim
t→0+

J t−1 A
1 (x + t−1u)= J

NA−1(u)
1 (x). (2.4)

The aim of this paper is to demonstrate that Lions’ conclusion in Proposition 2.2(II)
is optimal in the sense that if {An} is a sequence of maximal monotone operators An
with a common domain and uniformly convergent on the bounded subsets of the
common domain to another maximal monotone operator A, then it is not necessary
true that limn→∞ J An

t−1
n
(x + t−1

n u)= PA−1(u)(x) for all null sequences {tn} of positive

numbers.
It is worth of noting that in the special case of u = 0, (2.4) is reduced to the

following result.

PROPOSITION 2.9 [4, 6]. Let A be a maximal monotone operator on H such that
A−1(0) 6= ∅. Then t−1 A→G NA−1(0) as t→ 0.

Finally, we need the following useful lemma.

LEMMA 2.10 [7]. Suppose that a positive sequence {an} satisfies the condition

an+1 ≤ (1− σn)an + σnδn, n ≥ 0,

where {σn} is a sequence in [0, 1] such that
∑
∞

n=1 σn =∞ and {δn} is a sequence such
that lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.

3. A counterexample

PROPOSITION 3.1. Let H be a Hilbert space and D a nonempty closed convex subset
of H containing more than one point. Then there exist maximal monotone operators
An, A : D→ H for n ≥ 1 such that An→ A uniformly on bounded subsets of D.
However, t−1

n An 6→
G NA−1(0), where {tn} is some null sequence of positive numbers.

PROOF. Take d0, d1 ∈ D such that d0 6= d1. Let A be the zero operator (that is,
Ax ≡ 0 for all x ∈ D). For each n ≥ 1, set

sn =
1

(n + 1)α
, tn =

1
(n + 1)β

, 0< α < β ≤ 1.

Define An by

Anx :=
sn

1− sn
(x − d1), x ∈ D.

Then it is easy to see that each An is maximal monotone operator defined on D;
moreover, An tends as n→∞ to A uniformly on bounded subsets of D. We will
prove that {t−1

n An} does not graph-converge to NA−1(0). To this end we use Mann’s
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iteration method. Define a sequence {xn} as follows:{
x0 ∈ D,

xn+1 = snd1 + (1− sn)[tnd0 + (1− tn)xn].
(3.1)

We next discuss some properties of {xn}.

Fact 1. (xn)n∈N is bounded. Indeed, by (3.1),

xn+1 = (1− tn)(1− sn)xn + tn(1− sn)d0 + snd1

is a convex combination of {xn, d0, d1}. Hence,

‖xn+1‖ ≤ (1− tn)(1− sn)‖xn‖ + tn(1− sn)‖d0‖ + sn‖d1‖

≤ max{‖xn‖, ‖d0‖, ‖d1‖}.

Now, by induction, it follows that

‖xn − x0‖ ≤max{‖x0‖, ‖d0‖, ‖d1‖}

for all n ≥ 0, and (xn) is bounded.

Fact 2. The following relation holds:

‖xn+1 − xn‖ = o

(
1

nγ

)
as n→∞, where 0< γ < 1− α. (3.2)

Indeed, some manipulations give

xn+1 − xn = (1− sn)(1− tn)(xn − xn−1)+ (sn − sn−1)(d1 − xn−1)

+ [(1− sn)(tn − tn−1)− (sn − sn−1)tn−1](d0 − xn−1).

Since {xn} is bounded, it turns out that, for a constant

M > 2 max
{

1, ‖d0‖, ‖d1‖, sup
n≥0
‖xn‖

}
,

we have

‖xn+1 − xn‖ ≤ (1− sn)(1− tn)‖xn − xn−1‖ + M(|tn − tn−1| + |sn − sn−1|).

By multiplying both sides by nγ , we obtain

nγ ‖xn+1 − xn‖ ≤ (1− sn)(1− tn)n
γ
‖xn − xn−1‖

+ Mnγ (|tn − tn−1| + |sn − sn−1|)

= (1− sn)(1− tn)(n − 1)γ ‖xn − xn−1‖

+ (1− sn)(1− tn)[n
γ
− (n − 1)γ ]‖xn − xn−1‖

+ Mnγ (|tn − tn−1| + |sn − sn−1|).
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Setting an = (n − 1)γ ‖xn − xn−1‖, σn = sn + tn − sntn , and

δn =
M

σn
{[nγ − (n − 1)γ ] + nγ (|tn − tn−1| + |sn − sn−1|)},

we obtain
an+1 ≤ (1− σn)an + σnδn. (3.3)

Since, as n→∞,

nγ − (n − 1)γ = O

(
1

n1−γ

)
, |sn − sn−1| = O

(
1

n1+α

)
,

|tn − tn−1| = O

(
1

n1+β

)
, σn = O

(
1

nα

)
,

we see that (as 0< γ < 1− α)

δn ≈
1

n1−γ +
1

n1−γ−α +
1

n1+β−α−γ → 0.

Since we also have
∑
∞

n=1 σn =∞, we can apply Lemma 2.10 to (3.3) to conclude that
limn→∞ nγ ‖xn+1 − xn‖ = 0.

Suppose now that {t−1
n An} graph-converged to NA−1(0); we would then get a

contradiction as shown in Facts 3 and 4 below.

Fact 3. The sequence (xn) is weakly convergent to d0. Indeed, let p ∈ ωw(xn). It
suffices to show that

〈p − d0, x − p〉 ≥ 0, ∀x ∈ D,

or equivalently (see [4, 6])

0 ∈ (I − V )p + ND p, (3.4)

where V is the constant mapping V x ≡ d0. As a matter of fact, the definition of xn+1
implies that

1
tn(1− sn)

(xn − xn+1)=
sn(xn − d1)

tn(1− sn)
+ xn − d0 =

1
tn

Anxn + xn − d0. (3.5)

Notice that (3.5) can be rewritten as (note β ≤ γ )(
(I − V )+

1
tn

An

)
xn =

nβ

1− sn
(xn − xn+1)→ 0 due to (3.2). (3.6)

Since we also have (I − V )+ t−1
n An→

G (I − V )+ ND as n→∞, it turns out
from (3.6) that 0 ∈ (I − V )p + ND p. This is (3.4).
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Fact 4. xn→ d0 as n→∞.

Indeed,

‖xn+1 − d0‖
2
= ‖sn(d1 − d0)+ (1− sn)(1− tn)(xn − d0)‖

2

≤ (1− sn)
2(1− tn)

2
‖xn − d0‖

2
+ 2sn〈d1 − d0, xn+1 − d0〉

≤ (1− sn)‖xn − d0‖
2
+ snδn,

where
δn = 2〈d1 − d0, xn+1 − d0〉 → 0 as xn→ d0

weakly. By Lemma 2.10, we obtain that ‖xn − d0‖→ 0.

Fact 5. Consider now the sequence zn defined by{
z0 = x0,

zn+1 = snd1 + (1− sn)zn.
(3.7)

Then zn→ d1. Indeed, this is a very particular case of the algorithm introduced in [5].
So we get zn→ d1.

Fact 6. ‖xn − zn‖→ 0. Indeed,

‖xn+1 − zn+1‖ = ‖(1− sn)[(1− tn)(xn − zn)+ tn(d0 − zn)]‖

≤ (1− sn)‖xn − zn‖ + γ tn,

where γ > 0 is a constant such that γ > sup{‖d0 − zn‖ : n ≥ 0}. Noticing that

tn
sn
=

1
(n + 1)β−α

→ 0,

we can apply Lemma 2.10 to conclude that ‖xn − zn‖→ 0.

Therefore, the sequences (xn) and (zn) converge to the same limit which contradicts
the fact that xn→ d0 (Fact 4) and zn→ d1 (Fact 5). 2
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