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A FAMILY OF REAL p"-TIC FIELDS

YUAN-YUAN SHEN AND LAWRENCE C. WASHINGTON

ABSTRACT. Let g =pif p is an odd prime, g = 4 if p = 2. Let (, be any primitive
g-th root of unity, and let 0 = Z[{; + 1]. We study the family of polynomials

Pu(X;0) = Ry(X) — =S,(X),
(X; @) = Ru(X) p X

where R,(X) and S,(X) are the polynomials in the expansion

X =Y = Ra(X) — (Su(X),  with R,(X), Sy(X) € O[X].

We show that for fixed n, P,(X; a) is irreducible for all but finitely many a € 0, and for
p = 3, we show that it is irreducible for alla € O. The roots are all real and are permuted
cyclically by a linear fractional transformation defined over the real p”"-th cyclotomic
field. From the roots we obtain a non-maximal set of independent units for the splitting
field. In the last section we briefly treat extensions of our methods to composite p.

1. Introduction. The so-called “simplest” fields of degrees 2, 3, 4, 6 can be con-
structed using appropriate elements of PGL,(Q). In [7], we used elements of PGL,(R) to
construct families of fields of degree 2" for each n > 0. In the present paper we generalize
this construction to obtain one-parameter families of polynomials of degree p”, where
p is prime. However, the polynomials now have coefficients in the p-th real cyclotomic
field Q& + ¢, 1. Using Faltings’ theorem, we show that for each n these polynomials
are irreducible except for finitely many values of the parameter. In the case p = 3, the
polynomials have rational integral coefficients and can be regarded as generalizations
of the “simplest” cubic polynomials of D. Shanks [6]. By determining all solutions of
Y2 = X* — 48 in Z[1/3], we are able to deduce that all of these 3"-tic polynomials are
irreducible.

One of the principal motivations for studying the simplest fields has been to produce
number fields with explicit units. In the present case, the roots of our polynomials yield
large sets of independent units in the splitting fields, and in certain cases we can augment
this set with units from subfields. However, the fact that our polynomials are not in
general Galois prevents us from obtaining a set of units of maximal rank.

In the last section, we indicate how our methods can be modified to allow p to be
composite, and thus we obtain families of fields of degree p over Q({, +¢, h.

2. Construction of the p"-tic polynomials. Let g = p if p is an odd prime, g = 4
if p = 2. Let ¢; be any primitive g-th root of unity, and let 0 = Z[{; + ¢/ ']. Write the
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polynomial (X — )" as a linear combination of 1 and ¢;, say

(1) X =G = RaX0) —§,S,00),  with Ry(X), S,(X) € O[X].

Then Ry(X) = X, and So(X) = 1. Since we can express each CI as a linear combination of
1 and ; over the ring O, we have

{; =r;— s8¢ forsomer;s; € O.
Therefore

Ru(X) — §Su(X) = (X — &Y
==Y
=( n-1(X) = §Su1 (0)

=31y (4] meiciensi e
631 () skizie0s, 00,
We obtain the following recursion formulas:
@ R0 =30 (1) 400,00,

®) 5,00 =217 () 1008, 0.

Clearly, so = s, = 0 and ( ) /p € Zfor 1 <i < p. Thus (3) becomes

500 = pRoc1008,100 S 1) [(7) /] st o0 em,

and hence by induction we obtain
n—1 p—1
R . 1\ p pp—1—i i—1
@ $i0 = p }:I()(R,<X);( 1 [(,.)/p]s,k, s ).

Thus we have the following lemma.
LEMMA 1. The polynomials Ri(X), 0 <j < n divide the polynomial S,(X).

REMARK. One easy way to obtain R,(X) and S,,(X) in equation (1) is as follows: We
may embed the g-th cyclotomic field Q({y) = Q¢ + ¢, 1)(¢,) into Mz(Q((q +¢ 1)) by

the ring homomorphism

(3 arnggh) MeabeRGIGh
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So now, X — ¢, corresponds to the matrix

X 1
-1 X—(G+¢hH)
and therefore (X — Q,)P" corresponds to the matrix
X I P (R SuX)
~1 X—(G+Gh ~S0)  x )
The above matrix multiplication can be done by most of the mathematics software

packages.
We define our p”-tic polynomial to be

) Pa(X;a) = Ry(X) — I%S,,(X), where a € 0.

From (4), P,(X;a) € O[X], and hence the roots are all algebraic integers.
3. Basic properties of the p"-tic polynomials
THEOREM 1. (@) Fora € O, the p"-tic polynomial P,(X; a) has p" distinct real roots.
In particular, R,(X) = P,(X;0) has p" distinct real roots.
(b) Let € be any root of R,—1(X). The matrix M = ( ; c_ (;ch_l)) has order p"
in PGL,(R). The transformation
€ —1
0— ——
I+re— GG
permutes cyclically the roots of P,(X; a).

PROOF. We first show that P,(X; a) has at least one real root. This is obvious if p is
odd, since the degree is odd. If p = 2, the same result holds by an induction argument,
see [7]. In particular, R,—;(X) = P,(X; 0) has a real root, say . Suppose 8 is any real root
of Py(X;a)andlet o = 0 — §, 3 = MO — (. Then

el "R
9+e—(§I+gl)'

Note that (e —(;,)P" = Rn(€)—Sn(€) = Ry(€), because R, (X) divides S,,(X) by Lemma 1.
Therefore (¢ — g)"” is real, and so is the number

B=a

. P
€= (0+e — (gfq+gq—l)) )
We have
Rn(MB) — §;S,(M0) = (MO — Y
=
= co?’
= c0—¢Y
= cRu(8) — ¢ (cSn(0)),
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and hence

Ru(M0) = cR,(0) and S,(MB) = cS,(0)

As a consequence, M4 is also a root of P,(X; a), since
P,(MB;a) =c- P,(0;a) =0.

Therefore the transformation M permutes the roots.
Since M has two distinct eigenvalues € — ¢, and € — (; I, it must be similar to the

diagonal matrix
(e~ & 0 ;
D‘( 0 e—gJ'
Because the matrices M and D have the same order, it suffices to show that D is of
order p". Now for any z

Dz = 6_lez=§z,
=G
where ( = Eé‘}.— Note that e is real and R,,—(¢) = 0. Therefore
(€ =&Y = Rut (&) = &Sn1(6) = —§Su(6),
and hence

€~ &Y = -5Sui() = —¢ ' Sui(o).

Clearly S,_1(¢) # 0, since € # (;. All these yield

-l E—Cq P"il_ —QIS_1(€) )
(6) ¢ ‘(e—g) " e

and thus ¢ is of order p". But Dz = (z, so D is of order p” and the only fixed points
of a non-trivial power of D are 0 and co. Therefore a non-trivial power of M can have
only two fixed points, namely ¢, and ¢, I, both of which are complex. If 4 is a root, the
numbers M*0, 0 < k < p”, must be distinct roots of P,(X;a). This proves the theorem.

REMARK. From the proofofthe above theorem, we know that if € is a root of R, (X)
then the element (e — () /(e — - 1) is a primitive p"-th root of unity.

PROPOSITION 1. If'e is the largest root of R,—1(X) and if € = em’}m’ then

)
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PROOF. Among the (p — 1)p"~! primitive p"-th roots of unity,
2mi 21 L. (27 .
exp(—) = cos(—;) + zsm(—n> and its inverse
r" P P

have the largest real part. We have

( 2k7r

€& €= rootofR,,_l(X)} = { Xp k;éO (modp)}
e— ¢!
(the left side is contained in the right side, and both have (p — 1)p"~! elements) and
%(;—‘_—_ﬁ—%) =1- 2%“;—,{— is the largest if € is the largest root of R,_;(X). Since the
product of the roots of R,, 1(X) is 1, and the number of roots is odd, ¢ must be positive.

2e sin * +sm

Therefore &s‘((‘_‘é, )= > > 0. This proves the proposition.

€2+2€ cos I+]
For each natural number n, we let ¢, be the largest root of the polynomial R,(X). The
case p = 2 was discussed in the 2"-tic paper [7], so let p be an odd prime. We know that
forp=3,

€0 =0, €|=2°°S(g>» 52—2005(27)4'2008(;7)+ZCOS(;7>+ZCOS(;T;)

How are these ¢,,’s related in general? From the above proposition,
€p—
€n—1 _£ ! Q;”’
where {» = exp(27i/p") and £ = exp(@). Solving this equation for €,_;, and

denoting the primitive p-th root of unity exp(%) by ¢, we get (note that the following
argument is not valid for p = 2)

|
|
o

€p—-1 =
_C;ﬁwpn—lgw(cﬁ"“ -1
Q,a —1
= 2 'd,
Pl NP
- _ Z}: g}n( 4
_ ”zcos(z”f”("" 'P"_'))

p’l
) n—

- (T

7(#2'—1)2008((21'—;”21).

J=1

J=1
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We have proved the next proposition (for the case p = 2, see [7]).

PROPOSITION 2. Let €, be the largest root of the polynomial R,(X). Then

cot( %) ifp=2
€n = { ji(f”_l) 2 cos((—z%l,)") if p is an odd prime.
PROPOSITION 3. Let n > 2 and let € be any root of R,—(X). Then
Q(e) = Q&))"

PROOF. Since (¢ — §) /(e — G 1 = ¢, for some primitive p"-th root of unity ¢, we
have € = ¢ ! %i_;f Let 0:¢ +— ¢? be an automorphism of Q(() that fixes the element .
Then i o 5

gd — 4" - gl C‘I — 4
11— 1-¢
We may write this relation in the following form
(M G — WD+ =D+ G~ Y+ G - ¢ =0.

Applying ¢ — ("% for j = 1,2,3 to the relation (7), we obtain three more equations.
Together with (7), they form a system of four linear equations in four unknowns

R A I T BRI o

Writing this system in matrix form, we have

1 C Cd Cd+l X1 0
Lo &ty ¢'ey | [0
Lo ety ety || s [T o

0

Lo¢c? ¢h” ¢ ¢/ \xa
The determinant of the coefficient matrix is equal to

11 1 1
1 I Cdp C(d+l)p
L@y vy @y
L@y ¢y ey
Clearly, our system has nontrivial solution and hence the above Vandermonde determi-
nant is equal to 0. Therefore, the four numbers 1, (7, (7, and (“*' are not distinct. Only
two cases arise:
CASEL. (WP =1=pld+ )= =1=>=¢"

CASE2. (P =@ =pld—1)=> =1 =
From (7), the first case tells us that (¢ = ¢~! and hence

o € Gal(Q(0)/QE)").

The second case implies that (¢ = ¢ and therefore o = id. Since the element - ! %’-__—é €
Q(Q)" is only fixed by {id, o_; }, the proposition is proved.
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4. Irreducibility of the p"-tic polynomials.

THEOREM 2. Fixn > 1. Leta € Z[G+(; '1. Then P,(X; a) is irreducible over the real
g-th cyclotomic field Q((;)" except for finitely many values of a. When p =3, Py(X; a) is
irreducible for all a € Z[(; + N

PROOF. If 6 is a root of P,(X; a), then the p” roots are
{Mo]0<j<p,

€

| —(G_,LC;‘)) and:—:c—% = (,». We know that

where M = (
M=47'DA,

where D = (6 —& 0 _1 |,and one choice for 4 is (1 Hcfl ).ThusM7 =A"'DiA,
0 € —(q 1 —g“q

andhence AM = D/4. Leta = A9 = ;}é‘%, and let 3 = o’ . Calculation shows 3 € Q((,)

as follows: (note P,(0;a) = R,(0) — p“,, S,(0) = 0)

B=o = (9_4‘1)0” — Ry(0) — S(0) _ a—p,
(G_Cq—l)p" Rn(o)—Cq_lS,,(O) a_P"Cq_l

We have the following: (see Lang’s Algebra Section VIII, 9, Theorem 16 [5])

€ Q-

QG 8) = QG §/B) is of degree p" over Q) <= B ¢ QY-
Suppose 3 is a p-th power in Q({+). Then Q({;) C Q()(/B) C Q(ér), and therefore

we have
®) QW) = Q) or Q)

CASE L. p =2. Then g =4 and a € Z. This is the hard case and we proved in [7]
that P,(X; a) is irreducible over Q if and only if a + 4" is not a square in Z. Obviously,
a® + 4" = b? has only 2n — 1 solutions for a € Z. So the theorem is true for p = 2.

CASE II: p > 3 1S AN ODD PRIME. Then g = p. The result in (8) implies that
g= (;’71’, for some x € Z and v € Q(()-

Let © be a prime ideal of Z[(,]. Suppose ® divides both a — p"(, and a — p"(; !. Then P
divides p"(G — ¢ 1), so we have ? = (1 — ¢,). Therefore

(@—-p"G)=(1—-GYP, I= anidealof Q((), y € Z.

Taking norms to Q(¢,)", we obtain

(@2 = PG +G a+p?) = @ — 6 — G yaly.
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Let /), ..., I, be representatives for the elements of order p in the ideal class group
of Q(G)". Then II = al;, some i, some a € Q({)*. Let ' = (§;). Putting everything
together, we have

@ —p' G+ ¢ Na+p? = (unit)2 — G — ¢ 'Y os.

We need only to considery € {0,1,2,...,p— 1}, since we can adjust o#. Because there
are only finitely many numbers é; and finitely many classes of units modulo p-th powers,
we have equations of the form (p, n fixed)

©) @ —p' G+ atp” =ctl, a,beQ@),

where ¢ # 0, ¢ € finite set. When p > 3, such an equation in a, b represents a curve
of genus > 1, so Faltings’ theorem implies that there are only finitely many pairs (a, b)
from Q({,)* which satisfy such an equation. Since there are only finitely many such
equations, there are only finitely many values of a € Z[(,]* for which 3 = p-th power.
This proves the theorem for p > 3.

CASEIIl: p = 3. Then g =3 and a € Z. Since (a — 3"G,a — 3"¢;’") is a power of
v/—3, equation (8) gives us

a—3"G =gV (/=3)" withweZ, m=0,1,2.
Let R=Z[3] and leta, = a/3" € R. We have
a; —G=G7V(V=3)" with 8, € R[G], andm’ =0, 1,2.
Taking norms yields a? + a; + 1 = 3" N3 with N = + Norm 3; € R, therefore
(10) Qa,+1?=4-3"N> -3,
(i) If m’ = 0, equation (10) can be transformed to
(8a; +4)* = (4N)® — 48.

We show below in Proposition 4 that the only R-valued points on the curve y* = x> — 48
are (4, £4), (28, £148),and (73 /9, £595/27). Since y is even in our case, we can ignore
the last pair. The first two yields a; =0, —1, 18, —19.

(ii) If m’ = 1, equation (10) becomes

(24a; + 12)* = (12N)* — 432.

The only rational points on the curve y? = x> — 432 are the point at infinity and (12, 4-36)
(this is the curve A1 of conductor 27 in [1]). We obtain a; = 1, —2.
(iii) If m’ = 2, equation (10) becomes

(72a; + 36)? = (36N)> — 3888.

https://doi.org/10.4153/CJM-1995-034-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-034-4

A FAMILY OF REAL p"-TIC FIELDS 663

The only rational point on the curve y* = x> — 3888 is the point at infinity (this is the
curve B2 of conductor 243 in [1]).
For the values a; = 0,—1, 18, —19, 1, —2, we find that

@=3"G)/(a=3"G")
takes on the values G5, G, GB + G’ /G + G, GG+ G /G + &), —G6, -G,

respectively.
For a; = 0,%1, —2, we therefore have that

QG 0) = QGry VEGY) = Q).

Since Gal(Q(§3m )/ Q) is cyclic of order 2 - 3%, and since the above implies that @ is not
fixed by the subgroup of order 3, we must have [Q(f) : Q] > 3". Therefore P,(X;a) is
irreducible.

Now consider a; = 18, —19. First, we claim that (3 +()/(3 + ') is not a cube in
Q(Gn), forany m > 1. Otherwise its cube root generates a subextension of Q(G)/ Q((3),
hence equals a power of 3 times a cube in Q((3). Since 3+(; and 3+(; ! are non-associated
primes in Z[(3], this is impossible. Therefore

[QGr1,0) : Q1 = [Q(Gm1, "VB+G)/B+E) : Q)] =37

Let P = a? +3"a + 9" and let 4 = } arctan( 33:‘:};_‘) Then over the field Q((3+1), we have
the factorization

an Pa(X; @) = Pyt (X: 3" 0Py (X: 3" ap) Py (X3 3" o),
where ay, a3 = a+/PsinA+V/3Pcos 4 and o = a~213PsinA.

3’!
CLAIM. These three factors are conjugate via Gal(Q(@m )/ Q).

PROOF. Since we are in the cases a; = 18, —19, we have

1 +37
P=9"a}+a, +1)=9"-7%, and A=§arctan(—).

V3

We’ll look at the case for a; = 18 only, because the other one is similar. Calculation shows
that oy = 18+7+/7 sinA+7+/21 cos A ~ 55.0360, a; = 18—14+/7 sind ~ —0.0178465,
and oz = 18+7/7 sind—7+v/21cos A ~ —1.01816. Note that ay, 0y, a3 are independent
of n, since 4 is independent of n.

Let 8 = cos(2m/9). Then 3 is a root of 8X> — 6X + 1 and its conjugates are () = 3,
B2 = cos(87/9), and B3 = cos(4m/9). Calculation shows

a) = —10+428+ 5683 = f(3),
a; = 60 — 148 — 843 = g(B),
as =4 — 288+ 28437 = h(B).
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Also, we have

S(B1) = g(B3) = h(B2),
f(B2) = g(B1) = h(B3),
S(B3) = g(B2) = h(B1)-

The result follows. Note that once we have found this factorization, it can be checked
easily using (2) and (3).

In the factorization (11), one factor has 8 as a root, hence is irreducible. Since the
factors are conjugate via Gal(Q(Cy.u )/ Q). All three factors are irreducible over Q(G1).
Since they are not in Q[X], it follows that P,(X; a) is irreducible over Q. This completes
the proof of the irreducibility theorem.

PROPOSITION 4. Let R = Z[1]. The R-valued solutions of y* + 48 = x> are
(4,4£4), (28,£148), and (73/9,4595/27).
PROOF. Supposex,y € R, but not in Z.

CASE I: y 1S EVEN. Then 2|x = 8)y? = 4|y = 4|x. Write x = 4x;, y = 4y;. The
equation becomes y? +3 = 4x3. This implies y; is odd and so

Nn+tv-3 yp—-v-3_ 3

2 2 xl .
Clearly 2 '+‘2/?3 and ¥ "F are relatively prime in the UFD R[(3]. Therefore

=3 bV/=3)
PV (D)

(12)

Sincex; ¢ Zand y, £ Z, we have v3(y1) = 0 (mod 3), where v; is the 3-adic valuation,
and so v =0 (mod 3). Therefore, we may assume v = 0.
(i) u = 0: Equation (12) becomes

4y, +V=3)=a® +3a’bV/—3 — 9ab* — 3’V -3

Hence 4 = 3b(a®> — b?). If b is odd, then a must be odd. But then a> — > = 0 (mod 8),
a contradiction. Therefore b is even. If a is even then 3b(a®> — b?) = 0 (mod 8), so a is
odd. Therefore 4y, = a®> — 9ab? is odd, a contradiction.

(ii) u = 1: Equation (12) becomes

81 +vV—=3) = (=1 +v=3)a+bv=3)".

Hence 8 = @ — 3a’b — 9ab? +3b°. Let ] = v3(a), m = v3(b). Since y; ¢ Z, at least one of
I,m is < 0. The 3-adic valuations of the terms on the right are 3, 1 +2/+m, 2 + [+ 2m,
1 + 3m, respectively. We claim there is a unique smallest one: If / > 1 + m then 1 + 3m
is smallest, while if / < m then 3/ is smallest. Therefore either 3/ or 1 + 3m is the unique
smallest valuation. Since at least one of /, m is negative, the right hand side has negative
valuation, hence cannot equal 8.

(iii) = 2: The automorphism v/—3 +— —+/—=3, plus appropriate adjustment of signs,
reduces this case to case (ii).

, a,beRr.
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CASEIL: y1SODD. (y+4+v/—3)(y—4v/—3) =x>. Since y+4v/—3 and y — 4v/—3 are

relatively prime in R[(3], we have

3
(13) y+4\/:§=c_%,‘(\/—_3)”(1’%__3) , a,beR.

As before, we may assume v = 0.
(1) u = 0: Equation (13) becomes

8(y +4v—3) =@ +3a*bv/—3 — 9ab? — 36/ 3.
Hence 32 = 3b(a + b)(a — b). If a + b is odd, then so is a — b. Therefore
b=432.3", a+b=43, a—b==3,

and hence +64-3" = 2b = £3°+3/,50 64 = £3° "+ 3", which is impossible. Therefore
a+bis even, and so is a — b. Suppose b is odd. Thena + b £ a — b (mod 4), so

2Yla+band2'|ja—b, or 2'|a+band2|a—b.
Changing the sign of b if necessary, we may assume the first possibility. Then
b=43", a+b=%£16-3, a—b=42-3" r+s+r=—1.

We obtain +2-3" = £16-3°+2-3,50 8 = £3"*+3°*. This implies {r—s, t—s} = {0,2}
(in some order). Therefore —1 =r+s+t=(r—s)+(t—s)+3s=2+3s,505 = —1
and {r,7} = {—1,1}. This yields finitely many possibilities which may be checked
individually. The solutions are (a,b) = (£7/3,43) and (F17/3,£1/3). All of these
yield x = (a* +3b%)/4 = 73 /9 and hence y = +595/27.

Now suppose b is even. Since a + b is even, so is a. Write a = 2a;, b = 2b;. Then
4 = 3bi(a; + by)(a; — by). 1t is easy to see that b; must be even and a; must be odd.
Therefore

b1=:l:4-3r7 a1+b1=i35, al—b1=:t3’, r+s+t=—1.

Subtracting, we obtain +8 - 3" = 2b; = +3* + 3/, so 8 = £3%" & 3", Therefore
{s—r,t—r} = {0,2},and —1 = r+s+t = 243r. It follows that» = —1and {s, t} = {—1, 1}.
The finitely many cases may be checked individually, and yield (a, b) = (£10/3, £8/3).
These yield x = (a® +3b%)/4 = 73 /9, which is the same as above.

(i) u = 1: Equation (13) becomes

16(y +4v/=3) = (=1 + V=3)(a + bv/=3)’.

Hence 64 = a® — 3a?b — 9ab? + 3b*. An analysis of 3-adic valuations, as in the case
where y is even and u = 1, shows that this equation is impossible.
(iii) u = 2: The automorphism y/—3 — —+/—3 reduces this to the case u = 1.
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Therefore the only solutions of y* + 48 = x* with x,y € R are
(x,y) = (739, £595 /27)

and the integral solutions. From [4], the integral solutions are (4, +4), and (28, :148).
The result could also be deduced from the data in Table 4 in Modular Functions of One
Variable IV (ed. by B. J. Birch and W. Kuyk), Springer Lecture Notes in Math. 476,
Springer-Verlag, 1975. This completes the proof of the proposition.

S. Units and roots of the p"-tic polynomial. Since p = 2 was treated in [7], we
assume p is odd. Fix a root 8 of P,(X; a), and therefore the roots are of the form
Mo, 0<k<p
- | € -1 = 12 - -
where M = (1 6—(Cq+C;1)) and € = (NG — G¢r)/(1 — ¢ Let K = Q(e) =
Q(¢»)". Throughout this section, we assume P,(X; a) is irreducible over K. As shown
in Theorem 2, this excludes only finitely many a. Then it is easy to see that K() is the

Galois closure of Q(6), and the Galois group Gal(K(G) / K) = (o) is cyclic of order p",
where

@) =M9, 0<k<p"
Since the constant term of P,(X; a) is —1, these 0*(d) are units in the ring of integers of
K(8). Obviously, these p” units are not independent. For instance, we have the following
lemma.
LEMMA 2. For odd primes p, we have Hj.’:_ol o) = 1.

PROOF. We have :
M, = \A"'D,A,
» e al e
where)\,,=e,,_1—§q ,D,,=(f"~lo<q 1),a:)1dA=(1 _gl).

n— 2 — 0
Since D?' ' = (% (1)) and M, = \ 47! (O‘éql I)A’ we have

M’ =M, in PGLy(R).
CLAIM. HjZo' M,(X) = 1, for all X.
PROOF OF THE CLAIM. Let Y = AX. Then
i 1y 1,2 -Gy
= A4 =4 4 = _
MO0 =4 DY =GN =G
The product clearly equals 1, and hence the claim is true. The lemma follows immediately
from the claim.

THEOREM 3. The (p — 1)p"~! elements
('O 1<k<@-1p"}

are independent units in the ring Ok of integers of the field K(0), where K = Q(¢) =
QG
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PROOF. Let 8, = o7 1(6), 1 <k <p"andletm=p"'. Then

p-2
(14) Ocsp—tm = I Oy for 1 <k <p™'.
7=0
Suppose we have by, by, b3, ... ,bp—1ym € Z such that
(@—bm
(15) M e=1.
k=1

Applying o, ...,0%~D"=1 o equation (15) and simplifying by using formula (14), we
obtain (p — 1)m equations. Taking absolute values followed by taking logarithms of these
(p — )m equations, we have a system of (p — 1)m linear equations in (p — 1)m unknowns
x; =log|O|, 1 <k < (p— D)m. If B is the coefficient matrix, then det(B) = 0.

LEMMA 3. The determinant of the (p — 1)m X (p — 1)m matrix B is

—1)m

-1
detB) = ] S bt

(=primitive k=1
p"-throot of 1

PROOF. The first row of the matrix B is (bi,...,bp_1)m). If (c1,...,cp—1ym) is the

Jj-th row, the (j + 1)-st row is
(0, C1,C2y .. ,C(pfl)m-l) — C(p_l)m(l,(), ey 1, 0, .. .),

where the 1’s are in positions 1,1 +m, 1+2m,...,1+(p — 2)m.

Let ¢ be any primitive p”-th root of unity and let A = Zk(’:ll)”’ biC*~1. Then we claim
1
¢

I’
Il

C(p—{)m—l
is an eigenvector of B with eigenvalue A. Clearly, the first row times Eyields A. Assume
the j-th row times ¢ is A\¢~"!. Then the (j + 1)-st row times ( is
aigtel+ -+ i1l —cppm(1+ ¢+ + T
=(ler +eal+ -+ cpmtyma1CP ") — o ym(—CEI™)
= (A" = conmC® ") + oo mPO"
=)¢.
Therefore Z is an eigenvector with eigenvalue A. Since ¢ can take on (p — 1)m differ-

ent values, we have a full set of eigenvectors. The determinant is the product of the
eigenvalues.

By the lemma, we have ij(’;jl)'" b1 = 0, for some primitive p”-th root of unity
¢. Since ¢p(p") = (p — )m, the set {1,(,...,(P~Y"=1} s linearly independent over

the rationals, and hence by = b, = - -+ = bp_1)m = 0. Therefore the (p — 1)p"~! units
{o*1®) | 1 < k < (p — )p""'} are independent. This completes the proof of the
theorem.
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REMARK. So far we have (p — 1)p"~! independent units, all of which are roots of
P.(X;a). If the field Q(0) is Galois over the rationals, then the rank of the unit group is
p" — 1 and we need only p"~! — 1 more units in order to get a set of units which is close
to being a system of fundamental units. We can reach this goal by the method described
in the next section. Unfortunately, the field Q(f) is not Galois in general. We know that
K(8) is the Galois closure of Q(6) so that the rank of the full unit group is (p — 1)p*" ! — 1
and we need many more units to reach the same goal. Although the set of the cyclotomic
units in K = Q({»)" = Q(¢) will be part of them, it doesn’t help us enough. In the next
section we show how to obtain additional units from subfields of K(8), though we still
do not obtain a maximal set of independent units.

6. A set of p” — | independent units. Define a sequence (i) of real numbers as
follows:

Ry(uj—1)

Si(uj—1)

For convenience, we denote the field Q(u;) by K; for 1 <j < n. Obviously, we have the
following lemma.

up=0and y; = for1 <;j<n.

LEMMA 4. The element u;._, satisfies the polynomial
Pi(Xpwy), for1 <j<n.
LEMMA 5. We have the following identities:

= Ritm)
™ S um)’

In particular, u, = ﬁ and therefore K,, = Q.

for0<m+j<n.

PROOF. From (2) and (3), we have, for 1 <;j <n

R _R(EE)

500 $i1(349)

(16)

For j = 0 the lemma is trivial, since Ro(X)/So(X) = X. Assuming it is true forj — 1, we
easily find from (16) that it is true for j. Letting j = » in the lemma, and using the fact
that P,(6; a) = 0, we find that
R,(0) a
U, = =—.
Si(0)  p
Therefore K,, = Q. This completes the proof of the lemma.

THEOREM 4. The element u; satisfies the polynomial

Poj(X;alp), for1<j<n.

Furthermore, the field K; is a simplest p"7-tic field, if p/ divides a. In this case, the
element u; is also a unit in the ring Ok, of the integers of K(0).
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PROOF. Lemma 5 tells us that the element u; satisfies the polynomial
a
Rn*j(X) - p—,,SnAj(X)v
which is in fact the polynomial

alp N a
Ry—j(X) — F}‘Sn—j(X) = Pnj(X; 1‘;)-

This completes the proof of the theorem.

REMARK. More generally, we see that u,, is a root of P;(X; p/ums;), so each interme-
diate extension K, / Ku+; could be regarded as being “of simplest type.”

From the previous theorem, we have for each 0 < j < n that the element #; is a unit
in the ring Ok, if p/ divides a. Theorem 3 gives us (p — 1)p"~~! independentunits,
namely _

{7 | 1<k< -1
in the ring Ok, of integers of the field K(x;). Putting all these units together, we have in
total

- -1 =P - P+~ 1’ =p" —

units in the field K(6). Are these units independent? The answer is yes, and we will prove
this in the following theorem.

THEOREM 5. Leta € Z[(, +g1] and let p"|a. Then the p" — 1 elements
{o”* D) | 1 <k <(@p—1)p"7 " and 0 <j < n}
are independent units in the ring Ok of algebraic integers of the field K(0), where
K=Q() = Q)"

PROOF. We will prove the theorem by induction on n. The result is trivial for n = 1.
Assume the theorem is true for n — 1. If there is a relation, then we have rational integers
by ; such that

-y n—1(p—1)p*-! .
17 n= H (a,k—l(uo))bk,o - H (G,P'(kv—l)(uj))bk.,'
k=1 =l kel

The right side is in K(u;). Since the field K(u;) is fixed by the automorphisms
{o"50 <j<p},
the element 7 is invariant under these automorphisms. Therefore, we have

-t "
M o (" w)™ =n,

k=1
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and hence
Pl bio
=1 I o (0 w)”
J=0 k=1
@-Dp! p-l bro
= I (T w)
k=1 j=0

From Lemma 2, the above gives us 7”7 = 1 and so n = 1. We have

-1y
[I (@)™ =1.

k=1

Theorem 3 tells us that b o = 0, for all . Now, the relation in (17) becomes
n—1p'7! ) )
H H (Oﬂ(kfl)(uj))bu =1.
=1 k=l
From the induction hypothesis, the p"~! — 1 units
{"* D) |1 <k<p"7'and1<j<n}
are independent, and so
bij=0, forl <k<p"/'andl<j<n.

Therefore all by ; are 0, and this completes the proof of the theorem.

7. Fields of composite degree. To conclude our study of the real fields arising from
matrices in PGL,(R), we make a brief observation on the fields of composite degree but
not a prime power. Real cyclic sextic fields are studied in [2] and [3] by M.-N. Gras. The

} L Fields of degree 10 and 12 have been studied by
C. Levesque. We can obtain these fields by a slight variation of our methods used above.
In Section 2, our p was restricted to be a prime integer and n could be any positive
integer. Now, we let n = 1 and consider an even integer p > 2. It is easy to see the
. 0 —1 S G 0
matrix M, = _; | 1s similar to D, = ( _
P ( 1 40 + <p 1 ) P 0 Cp 1
PGL, (Q(Q,)). Therefore, what we want is a square root Mo, of M, so that M3, has the
correct order. One way to do this is as follows: We know that

corresponding matrix is

), and hence is of order p /2 in

M, =A47"'D,4, forA=(l 4,”1)
1 ¢

Replacing the matrix D, by the matrix D,, = (42

7 ) gives us a square root of M.
0 &
Let M, = A~'D;,A. Then

1 (1 -1
M2p—€2p+czpl(1 1+§0+Cp—1)-
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This turns out to be a good choice. Firstly, when p = 6 the matrix M>, is the matrix of
M.-N. Gras. Secondly, as we show below, a result similar to Theorem 1 remains true.
As before, we consider the polynomial (X + ¢, and write it in the form

X+GY = RX) +GS(X),

where R(X) and S(X) are polynomials over the ring 0 = Z[(, +(, 1. The polynomials in
which we are interested are

P(X;a) = R(X) — %S(X), where a € 0.
LEMMA 6. For even p > 2, the number (1 + Q,)”/ 2 is purely imaginary, and (1 + (Y

is real and negative. Moreover, (1 + Y = R(1) < 0.

PROOF. We have

(L+GY = GG, + G2,

Since C‘% > =jand Cz‘p' +(p is real, the first and second statements hold. Since (1 +{, ) =
R(1) +S(1), we must have S(1) =0 and R(1) = (1 + ().

THEOREM 6. Fora € Z[( +(, 1, the polynomial P(X; a) has p distinct real roots.

Moreover, the matrix
(1 -1
M= ( 1 1+ +gp—1 )

has order p in PGL,(R), and the transformation
€d — 1
0— —
O+e— (Gt gp—l)
permutes cyclically the roots of P(X; a).

PROOF. The polynomial P(X;a) has at least one real root, since Lemma 6 gives us
P(1;a) = R(1) < 0 and it is easy to see P(0;a) = R(0) = 1 > 0. Suppose 8 is any root of
P(X;a) and let o = 0 +(,, B = MO +(,. Then

- 1+6
ﬂ_a'0+1+§,+<p—l'

Lemma 6 implies that the number (1 + ¢, is real and so is the number

As in the proof of Theorem 1, we have
R(M®O)=cR(@) and S(M8) = cS(6).

Therefore, the transformation M permutes the roots.
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Since M has two distinct eigenvalues 1 +¢, and 1+, ! it must be similar to the

diagonal matrix
_(1+§ 0
b= ( 0 1+¢! ) :

Because the matrices M and D have the same order, it suffices to show that D is of

order p. Now for any z

N
DZ—WZ—QPZ,

and so D is of order p and this completes the proof as in Theorem 1.
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