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Abstract. We present a brief survey on (Weakly) Admissible Meshes and correspond-

ing Discrete Extremal Sets, namely Approximate Fekete Points and Discrete Leja Points.

These provide new computational tools for polynomial least squares and interpolation

on multidimensional compact sets, with different applications such as numerical cuba-

ture, digital filtering, spectral and high-order methods for PDEs.
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1. Introduction

Locating good points for multivariate polynomial approximation, in particular interpo-

lation, is an open challenging problem, even in standard domains. One set of points that

is always good, in theory, is the so-called Fekete points. They are defined to be those points

that maximize the (absolute value of the) Vandermonde determinant on the given compact

set. However, these are known analytically in only a few instances (the interval and the

complex circle for univariate interpolation, the cube for tensor product interpolation), and

are very difficult to compute, requiring an expensive and numerically challenging nonlin-

ear multivariate optimization.

Recently, a new insight has been given by the theory of “Admissible Meshes” of Calvi

and Levenberg [9], which are nearly optimal for least-squares approximation and contain

interpolation sets (Discrete Extremal Sets) nearly as good as Fekete points of the domain.

Such sets, termed Approximate Fekete Points and Discrete Leja Points, are computed using
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only basic tools of numerical linear algebra, namely QR and LU factorizations of Vander-

monde matrices. Admissible Meshes and Discrete Extremal Sets allow us to replace a

continuous compact set by a discrete version, that is “just as good” for all practical pur-

poses.

2. Weakly Admissible Meshes (WAMs)

Given a polynomial determining compact set K ⊂ Rd or K ⊂ Cd (i.e., polynomials

vanishing there are identically zero), a Weakly Admissible Mesh (WAM) is defined in [9]

to be a sequence of discrete subsetsAn ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ Pd

n(K), (2.1)

Pd
n(K) being the set of d-variate polynomials of degree at most n on K , where both

card(An)≥ N := dim(Pd
n(K)) and C(An) grow at most polynomially with n. When C(An)

is bounded we speak of an Admissible Mesh (AM). Here and below, we use the notation

‖ f ‖X = supx∈X | f (x)|, where f is a bounded function on the compact X .

We sketch below the main features of WAMs in terms of ten properties (cf. [4,9]):

P1: C(An) is invariant under a�ne mapping
P2: any sequene of unisolvent interpolation sets whose Lebesgue onstant grows at mostpolynomially with n is a WAM, C(An) being the Lebesgue onstant itself
P3: any sequene of supersets of a WAM whose ardinalities grow polynomially with n is aWAM with the same onstant C(An)

P4: a �nite union of WAMs is a WAM for the orresponding union of ompats, C(An) beingthe maximum of the orresponding onstants
P5: a �nite artesian produt of WAMs is a WAM for the orresponding produt of ompats,

C(An) being the produt of the orresponding onstants
P6: in Cd a WAM of the boundary ∂ K is a WAM of K (by the maximum priniple)

P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for πs(K) withonstants C(Ans) (f. [4, Prop.2℄)
P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤ Mnr‖p‖K has an AM with
O (nrd) points (f. [9, Thm.5℄)

P9: least-squares polynomial approximation of f ∈ C(K): the least-squares polynomial LAn
fon a WAM is suh that

‖ f −LAn
f ‖K ¯ C(An)

p

card(An) min
�‖ f − p‖K , p ∈ Pd

n
(K)
	(f. [9, Thm.1℄)

P10: Fekete points: the Lebesgue onstant of Fekete points extrated from a WAM an bebounded like Λn ≤ NC(An) (that is the elementary lassial bound of the ontinuumFekete points times a fator C(An)); moreover, their asymptoti distribution is the sameof the ontinuum Fekete points, in the sense that the orresponding disrete probabilitymeasures onverge weak-∗ to the pluripotential equilibrium measure of K (f. [4, Thm.1℄).
https://doi.org/10.1017/S1004897900000507 Published online by Cambridge University Press

https://doi.org/10.1017/S1004897900000507


Weakly Admissible Meshes and Discrete Extremal Sets 3

The properties above give the basic tools for the construction and application of WAMs

in the framework of polynomial interpolation and approximation.

For illustrative purposes we focus briefly on the real bivariate case, i.e., K ⊂ R2. Prop-

erty P8, applied for example to convex compacts where a Markov inequality with exponent

r = 2 always holds, says that it is possible to obtain an Admissible Mesh with O (n4) points.

The construction works as follows (see [9, Thm.5], also for a generalization to the non-

convex case). First, we recall that every convex compact set of R2 admits the Markov

inequality

max
x∈K
‖∇p(x)‖2 ≤ M n2 ‖p‖K , M =

α(K)

w(K)
,

for every p ∈ P2
n(K), where α(K) ≤ 4, and w(K) is the minimal distance between two

parallel supporting lines for K; cf. [19]. Consider a cartesian grid {(ih, jh) , i, j ∈ Z} with

constant stepsize h: for every square of the grid that has nonempty intersection with K ,

take a point in this intersection. Let An be the mesh formed by such points. For every

x ∈ K , let a ∈ An be the point closest to x : by construction, both belong to the same

square of the grid. Using the mean value theorem, the Cauchy-Schwarz inequality and the

Markov inequality, we can write

|p(x)− p(a)| ≤ ‖∇p(y)‖2‖x − a‖2 ≤ M
p

2hn2 ‖p‖K ,

since y belongs to the open segment connecting x and a, which lies in K . Then, from

|p(x)| ≤ |p(x)− p(a)|+ |p(a)| ≤ M
p

2hn2 ‖p‖K + |p(a)|,

the polynomial inequality

‖p‖K ≤
1

1−µ ‖p‖An

follows, provided that

h= hn : M
p

2hnn2 ≤ µ < 1,

i.e.,An is an AM with constant C = 1/(1−µ).
Taking for example µ = 1/

p
2 and reasoning by the minimal rectangle including the

compact, it is not difficult to show that the cardinality of the mesh is approximately n4

times area(K)× (α(K)/w(K))2, that is, e.g., approximately πn4 for the unit disk (cf. [4,

Table 1]).

In order to avoid such a large cardinality, which has severe computational drawbacks,

we can turn to WAMs, which can have a much lower cardinality, typically O (n2) points.

In [4] a WAM on the disk with approximately 2n2 points and C(An) = O (log2 n)

has been constructed with standard polar coordinates, using essentially property P2 for

univariate Chebyshev and trigonometric interpolation. Moreover, using property P2 and

P7, WAMs for the triangle and for linear trapezoids, again with approximately 2n2 points

and C(An) = O (log2 n), have been obtained simply by mapping the so-called Padua points

of degree 2n from the square (the first known optimal points for bivariate polynomial
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interpolation, with a Lebesgue constant growing like log-squared of the degree, cf. [3]) by

standard quadratic transformations.

In [8] these results have been improved, showing that there are WAMs for the disk

and the triangle with approximately n2 points and still the same growth of the relevant

constants. In particular, a symmetric polar WAM of the unit disk is made by equally spaced

angles and Chebyshev-Lobatto points on the corresponding diameters

An =
�

(r j cosθk, r j sinθk)
	

,

{(r j,θk)} j,k =
�

cos
jπ

n
, 0≤ j ≤ n

�

×
�

kπ

m
, 0≤ k ≤ m− 1

�

,

where m= n+ 2 for even n even and m= n+ 1 for odd n (see Fig. 1).

A WAM of the unit simplex is obtained from a WAM of the disk for polynomials of

degree 2n containing only even powers, by the standard quadratic transformation from

the (quadrant of the) disk to the simplex (u, v) 7→ (x1, x2) = (u
2, v2),

An =
�

(r2
j cos2 θk, r2

j sin2 θk)
	

,

�

(r j,θk)
	

j,k =

�

cos
jπ

2n
, 0≤ j ≤ n

�

×
�

kπ

2n
, 0≤ k ≤ n

�

,

see Fig. 2. This mesh can then be mapped to any triangle by the standard affine trans-

formation, in view of Property P1. The resulting mesh points lie on a grid of intersecting

straight lines, namely a pencil from one vertex (image of the point (0,0) of the simplex)

cut by a pencil parallel to the opposite side (image of the hypothenuse of the simplex).

The points on each segment of the pencils, and in particular the points on each side, are

the corresponding Chebyshev-Lobatto points.

Property P4 allows to obtain WAMs for any polygon that can be subdivided into trian-

gles by standard algorithms of computational geometry (see for example the underlying

meshes in Fig. 3).

2.1. Discrete least squares approximation on WAMs

Consider a WAM {An} of a polynomial determining compact set K ⊂ Rd (or K ⊂ Cd),

say An = {a1, · · · , aM}, M ≥ N = dim(Pd
n), and the associated rectangular Vandermonde-

like matrix

V (a; p) = V (a1, · · · , aM ; p1, · · · , pN ) = [p j(ai)], 1≤ i ≤ M , 1≤ j ≤ N , (2.2)

where a = (ai) is the array of mesh points, and p = (p j) is the array of basis polynomials

for Pd
n (both ordered in some manner). For convenience, we shall consider p as a column

vector p = (p1, · · · , pN )
t .

The least-squares projection operator at the WAM can be constructed by the following

algorithm:
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Figure 1: Symmetri polar WAMs of the disk for degree n = 10 (left) and n= 11 (right).
Figure 2: A WAM of the quadrant for even polynomials of degree n = 16 (left), and the orrespondingWAM of the simplex for degree n= 8 (right).
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Figure 3: N = 45 Approximate Fekete Points (irles) and Disrete Leja Points (asterisks) for degree
n= 8 extrated from two WAMs of a nonregular onvex hexagon (dots).Algorithm 2.1: Iterated orthogonalization

• V (a; p) =Q1R1, Q1 =Q2R2;
• Q =Q2, T = R−1

1 R−1
2 .

It amounts to a change of basis from p to the discrete orthonormal basis

ϕ = (ϕ1, · · · ,ϕN )
t = T t p
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with respect to the inner product 〈 f , g〉 =∑M

i=1 f (ai)g(ai) (we use here the QR factoriza-

tion with Q rectangular M × N and R upper triangular N × N). Observe that the Vander-

monde matrix in the new basis, namely

V (a;ϕ) = V (a; p)T = Q,

is a numerically orthogonal (unitary) matrix, i.e. QtQ = I . The reason for iterating the QR

factorization is to cope with ill-conditioning which is typical of Vandermonde-like matrices.

Two orthogonalization iterations generally suffice, unless the original matrix V (a; p) is

so severely ill-conditioned (rule of thumb: condition number greater than the reciprocal

of machine precision) that the algorithm fails (cf. [15]). This phenomenon of “twice is

enough”, is well-known in numerical Gram-Schmidt orthogonalization.

Denoting by LAn
the discrete least-squares projection operator, we can write

LAn
f (x) =

N
∑

j=1

 

M
∑

i=1

f (ai)ϕ j(ai)

!

ϕ j(x) =

M
∑

i=1

f (ai) gi(x), (2.3)

where gi(x) = Kn(x , ai), i = 1, · · · , M , Kn(x , y) =
∑N

j=1ϕ j(x)ϕ j(y) is the reproducing ker-

nel corresponding to the discrete inner product. In matrix terms, the relevant set of genera-

tors of Pd
n (which is not a basis when M > N), becomes simply g = (g1, · · · , gM )

t = QT t p ,

where the transformation matrix T and the orthogonal (unitary) matrix Q are computed

once and for all for a fixed mesh. Moreover, the norm of the least-squares operator is given

by

‖LAn
‖ =max

x∈K

M
∑

i=1

�

�gi(x)
�

�=max
x∈K
‖QT t p(x)‖1.

Property P9 ensures that the WAMs described in the previous section can be directly

used for least-squares approximation of continuous functions with an error which is, up to

a factor, O (n log2 n). The latter, however, turns out to be a rough overestimate (see [8]).

Concerning the triangle, for example, for n> 5 the (numerically evaluated) norms turn out

to be lower than the Lebesgue constants of the best known points for polynomial interpola-

tion, which have been obtained by various authors with different techniques up to degree

n = 19, in view of the relevance to spectral and high-order methods for PDEs (cf. [18]);

see Table 1. We stress that the triangle WAM can be explicitly computed at any degree and

used via the iterated orthogonalization process, provided that the Vandermonde condition-

ing is not too severe.Table 1: Comparison of the Lebesgue onstants of the best known points for interpolation in the trianglewith the uniform norms of least-squares projetion operators at the WAM.
deg 8 9 10 11 12 13 14 15 16 17 18 19

intp 5.0 5.7 6.7 7.3 7.6 9.3 9.0 9.3 12.1 13.3 13.5 14.2

LS 4.2 4.4 4.7 4.9 5.0 5.2 5.3 5.5 5.7 5.9 6.1 6.2
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3. Fekete points and discrete extremal sets

The concept of Fekete points for interpolation can be described in a very general func-

tional, not necessarily polynomial, setting. It is worth observing that such Fekete points

should not be confused with the “minimum energy” Fekete points, the two concepts being

equivalent only in the univariate complex case (cf. [13]).

Given a compact set K ⊂ Rd (or Cd), a finite-dimensional space of linearly independent

continuous functions, SN = span(p j)1≤ j≤N , and a finite set {ξ1, · · · ,ξN} ⊂ K , ordering

in some manner the points and the basis we can construct the Vandermonde-like matrix

V (ξ; p) = [p j(ξi)], 1 ≤ i, j ≤ N . If det V (ξ; p) 6= 0 the set {ξ1, · · · ,ξN} is unisolvent for

interpolation in SN , and

ℓ j(x) =
det V (ξ1, · · · ,ξ j−1, x ,ξ j+1, · · · ,ξN ; p)

det V (ξ1, · · · ,ξ j−1,ξ j ,ξ j+1, · · · ,ξN ; p)
, j = 1, · · · , N , (3.1)

is a cardinal basis, i.e. ℓ j(ξk) = δ jk and LSN
f (x) =

∑N

j=1 f (ξ j)ℓ j(x) interpolates any

function f at {ξ1, · · · ,ξN}. In matrix terms, the cardinal basis ℓ = (ℓ1, · · · ,ℓN )
t is obtained

from the original basis p = (p1, · · · , pN )
t as ℓ = Lp, L := (V (ξ; p))−t .

In the case that such points maximize the (absolute value of the) denominator of (3.1)

in KN (Fekete points), then ‖ℓ j‖∞ ≤ 1 for every j, and thus the norm of the interpolation

operator LSN
: C(K)→ SN is bounded by the dimension of the interpolation space,

‖LSN
‖=max

x∈K

N
∑

j=1

|ℓ j(x)|=max
x∈K
‖Lp(x)‖1 ≤ N . (3.2)

Clearly, Fekete points as well as ‖LSN
‖ are independent of the choice of the basis in SN ,

since the determinant of the Vandermonde-like matrices changes by a factor independent

of the points (namely the determinant of the transformation matrix between the bases).

In the polynomial framework, Λn = ‖LSN
‖ is the so-called Lebesgue constant of interpo-

lation at the point set {ξ j}; moreover, Fekete points and Lebesgue constants are preserved

under affine mapping of the domain. It is also worth recalling that (3.2) is often a rather

pessimistic overestimate of the actual growth.

There are several open problems about Fekete points, whose properties have been stud-

ied till now mainly in the univariate complex case in view of their deep connection with po-

tential theory. They are analytically known only in few cases: the interval (Gauss-Lobatto

points), the complex circle (equispaced points), and the cube (tensor-product of Gauss-

Lobatto points for tensor interpolation). An important qualitative result has been proved

only recently, namely that Fekete points are asymptotically equidistributed with respect

the pluripotential equilibrium measure of K , cf. [1]. Their asymptotic spacing is known

only in few instances, cf. the recent paper [7]. Moreover, the numerical computation of

Fekete points becomes rapidly a very large scale problem, namely a nonlinear optimization

problem in N × d variables. It has been solved numerically only in very special cases, like

the triangle and the sphere, for a fixed limited range of degrees.
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A reasonable approach for the computation of Fekete points is to use a discretization of

the domain, moving from the continuum to nonlinear combinatorial optimization. Prop-

erty P10 gives a first guideline on the fact that WAMs are good candidates as starting

meshes. Since the rows of the Vandermonde matrix V = V (a, p), cf. (2.2), correspond to

the mesh points and the columns to the basis elements, computing the Fekete points of a

WAM amounts to selecting N rows of V such that the volume generated by these rows,

i.e., the absolute value of the determinant of the resulting N × N submatrix, is maximum.

This problem, however, is known to be NP-hard, so heuristic or stochastic algorithms are

mandatory; cf. [10] for the notion of volume generated by a set of vectors (which general-

izes the geometric concept related to parallelograms and parallelepipeds), and an analysis

of the problem from a computational complexity point of view.

An approximate solution can be given by one of the following two greedy algorithms,

given as pseudo-codes in a Matlab-like notation, which compute what we call “Discrete

Extremal Sets”; cf. [4,5].Algorithm Greedy 1 (Approximate Fekete Points):
• V = V (a, p); ind = [ ];
• for k = 1 : N �selet ik: volV ([ind, ik] , 1 : N) is maximum�; ind = [ind, ik]; end
• ξ= a(i1, · · · , iN )Algorithm Greedy 2 (Disrete Leja Points):
• V = V (a, p); ind = [ ];
• for k = 1 : N �selet ik: |detV ([ind, ik] , 1 : k)| is maximum�; ind = [ind, ik]; end
• ξ= a(i1, · · · , iN )

These algorithms are genuinely different. In both cases, the selected points (as opposed

to for the continuum Fekete points) depend on the choice of the polynomial basis. But

in the second algorithm, which is based on the notion of determinant, the selected points

depend also on the ordering of the basis. In the univariate case with the standard monomial

basis, it is not difficult to recognize that the selected points are indeed the Leja points

extracted from the mesh (cf. [2,13] and references therein). On the contrary, dependence

on the ordering of the basis does not occur with the first algorithm, which is based on

the notion of volume generated by the rows of a rectangular matrix (the two notions

being eventually equivalent on the final square submatrix). On the other hand, Discrete

Leja Points form a sequence, in the sense that, if {p1, · · · , pk} is a basis of Pd
k

for every k,

then on a fixed mesh the first Nk = dim(Pd
k
) selected points are exactly the Discrete Leja

Points for degree k. This gives an important computational feature to Discrete Leja Points:
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once we have computed the points for degree n, we have automatically at hand (nested)

interpolation sets for all lower degrees.

The two greedy algorithms above correspond to basic procedures of numerical linear

algebra. Indeed, in algorithm 1 the core “select ik: vol V ([ind , ik] , 1 : N) is maximum”

can be implemented as “select the largest norm row rowik
(V ) and remove from every row

of V its orthogonal projection onto rowik
”, since the corresponding orthogonalization pro-

cess does not affect volumes (as can be understood geometrically applying the method

to a collection of 3-dimensional vectors and thinking in terms of parallelograms and par-

allelepipeds). Working for convenience with the transposed Vandermonde matrix, this

process is equivalent to the QR factorization with column pivoting proposed by Businger

and Golub in 1965, and exploited for example by Matlab in the solution of underdeter-

mined systems by the standard “backslash” operator; cf. [6] for a full discussion of the

equivalence.

On the other hand, it is clear that in algorithm 2 the core “select ik: |det V ([ind , ik] , 1 :

k)| is maximum” can be implemented by one column elimination step of the Gaussian

elimination process with standard row pivoting, since such process automatically seeks the

maximum keeping invariant the absolute value of the relevant subdeterminants.

As a consequence of the considerations above (see [5] for a more detailed discussion),

the computation of Discrete Extremal Sets can be done by few basic linear algebra opera-

tions, corresponding to the LU factorization with row pivoting of the Vandermonde matrix

(cf. [14]), and to the QR factorization with column pivoting of the transposed Vander-

monde matrix (cf. [15]). This is summarized in the following Matlab-like scripts:

Algorithm AFP (Approximate Fekete Points):

• W =
�

V (a, p)
�t ; b = (1, · · · , 1)t ∈ CN ; w =W\b ; ind = find(w 6= 0); ξ= a(ind).

Algorithm DLP (Discrete Leja Points):

• V = V (a, p); [L, U ,σ] = LU(V, �vetor�); ind = σ(1, · · · , N); ξ= a(ind).

Notice that the choice of b 6= 0 in algorithm AFP is irrelevant in practice, and that

in algorithm DLP we are using the version of the LU factorization with row pivoting that

produces a row permutation vector. When the conditioning of the Vandermonde matrices

is too high, the algorithms can still be used provided that a preliminary iterated orthogo-

nalization, that is a change to a discrete orthogonal basis, is performed as in Section 2.1;

cf. [4,5,15].

As already pointed out, once the underlying extraction WAM has been fixed, Approxi-

mate Fekete Points depend on the choice of the basis, whereas Discrete Leja Points depend

also on its order. Nevertheless, such Discrete Extremal Sets share the same asymptotic

behavior, which is exactly that of the continuum Fekete points, as is stated in the following

theorem (cf. [4,5] for a proof and [12] for the definition of the relevant terms).
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Theorem 3.1. Suppose that K ⊂ C
d

is compact, non-pluripolar, polynomially convex and

regular (in the sense of Pluripotential theory) and that for n= 1,2, · · · ,An ⊂ K is a WAM. Let

ξ = {ξ1, · · · ,ξN} be the Approximate Fekete Points selected fromAn by the greedy algorithm

AFP using any basis p , or the Discrete Leja Points selected from An by the greedy algorithm

DLP using any basis of the form p = Le, where e = {e1, · · · , eN} is any ordering of the

standard monomials xα that is consistent with the degree and L ∈ CN×CN is lower triangular.

Then

•
lim

n→∞ |det V (ξ; p)|1/mn = τ(K),

the transfinite diameter of K, where mn = d n N/(d + 1) (i.e the sum of the degrees of

the N monomials of degree at most n);

• the sequence of discrete probability measures

µn :=
1

N

N
∑

j=1

δξ j

converge to the pluripotential-theoretic equilibrium measure dµK of K, in the sense that

lim
n→∞

∫

K

f (x)dµn =

∫

K

f (x)dµK

for every f ∈ C(K).

To give an example of computation of Discrete Extremal Sets, we consider the nonreg-

ular convex hexagon in Fig. 3, with the WAMs generated by two different triangulations,

and the Chebyshev product basis of the minimal including rectangle. From Table 2 we

see that, concerning Lebesgue constants, DLP are of lower quality than AFP: this is not

surprising, since the same phenomenon is well-known concerning continuous Fekete and

Leja points. Nevertheless, both provide reasonably good interpolation points, as it is seen

from the interpolation errors on two test functions of different regularity in Table 3.Table 2: Lebesgue onstants for AFP and DLP extrated from two WAMs of a nonregular onvexhexagon (WAM1: baryentri triangulation, WAM2: minimal triangulation; see Fig. 3).
mesh points n= 5 n= 10 n= 15 n= 20 n= 25 n= 30

WAM1 AFP 6.5 18.9 20.4 40.8 73.3 73.0

DLP 7.1 19.6 49.8 58.3 108.0 167.0

WAM2 AFP 6.8 12.3 34.2 52.3 49.0 80.4

DLP 10.7 48.4 62.0 91.6 86.6 203.0
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Weakly Admissible Meshes and Discrete Extremal Sets 11Table 3: Max-norm of the interpolation errors with AFP and DLP extrated from WAM2 for two testfuntions: f1 = cos (x1+ x2); f2 = ((x1− 0.5)2+ (x2 − 0.5)2)3/2.
function points n= 5 n= 10 n= 15 n= 20 n= 25 n= 30

f1 AFP 6E-06 5E-13 3E-15 3E-15 3E-15 4E-15

DLP 8E-06 2E-12 2E-15 4E-15 3E-15 4E-15

f2 AFP 3E-03 2E-04 1E-04 4E-05 2E-05 1E-05

DLP 3E-03 3E-04 1E-04 3E-05 2E-05 5E-06

3.1. Some applications

Polynomial interpolation and approximation are at the core of many important numer-

ical techniques, and we are of the opinion that Weakly Admissible Meshes and Discrete

Extremal Sets could give new useful tools in several applications. We mention here three

of them.

As a first natural application, we can consider numerical cubature. In fact, if in algo-

rithm AFP we take as right-hand side b =m =
∫

K
p(x) dµ (the moments of the polynomials

basis with respect to a given measure), the vector w (ind) gives directly the weights of an

algebraic cubature formula at the corresponding Approximate Fekete Points. When the

boundary of K is approximated by splines, for dµ= d x such moments can be computed by

the formulas developed in [16]. The same can clearly be done with Discrete Leja Points,

solving the system V (ξ; p)w =m by the LU factorization, with the additional feature that,

if the polynomial basis is as in Theorem 3.1, we get a nested family of cubature formulas

(Leja points being a sequence).

In [17], Approximate Fekete Points have been applied to weighted polynomial inter-

polation, where one considers a basis wp for the Vandermonde matrix, w being a suit-

able weight function. There are two different but related frameworks: approximation of

functions with prescribed singularities (e.g., poles) where singularities are absorbed in the

weight function, and approximation with weighted norms, which is relevant for example to

the construction of real and complex, uni- and multivariate digital filters.

The possibility of locating good points for polynomial approximation on polygonal re-

gions/elements, could also be useful in the numerical solution of PDEs by spectral and

high-order methods, for example in the emerging field of discontinuous Galerkin methods

(see, e.g., [11]).
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