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The purpose of this paper is to integrate the theorems on enumerating 
subgraphs and supergraphs in (2) and (3) respectively by generalizing to a 
result which includes both of these as special cases. In this process we again 
utilize the powerful enumeration method of Pôlya (4). 

A graph may be defined as a set of p points together with a prescribed 
subset of the \p{p — 1) lines joining pairs of distinct points. Two points of 
a graph are adjacent if there is a line joining them. Two graphs are isomorphic 
if there is a one-to-one correspondence between their point sets which pre
serves adjacency. An automorphism of a graph G is an isomorphism of G 
with G. It is well known that the set V(G) of all automorphisms of a graph 
G forms a group, called the group of the graph. The line group T\(G) of a 
graph G has been defined in (2) as the permutation group acting on the lines 
of G which is induced by the automorphisms of G. Two points of a graph 
are similar if there is an automorphism mapping one onto the other. Similarity 
of two lines or of two subgraphs is defined analogously. 

The complement G' of a graph G is that graph whose point set coincides 
with that of G and in which two points are adjacent whenever they are not 
adjacent in G. Let Kv be the complete graph of p points, that is, the graph 
of p points in which every two distinct points are adjacent. Then Kv

f is the 
totally disconnected graph with p points and no lines. Let Kmn be the graph 
of m + n points au a2, . . . , am, bu b2, . . . , bn and all mn lines of the form atbj. 

A spanning subgraph (called a line-subgraph in (2)) of a graph G is a 
subgraph of G with the same point set. The main result of (2) is an enumera
tion formula for the number of dissimilar spanning subgraphs of a given 
graph G. If G has p points, this result may be described as the number of 
dissimilar graphs between G and Kv'. The number of dissimilar supergraphs 
of G was obtained in (3). This is, of course, the number of dissimilar graphs 
between Kp and G. Even the generating function of (1) whose coefficients for 
a given value of p are the numbers of non-isomorphic graphs of p points and 
q lines may be regarded as enumerating the dissimilar graphs between Kp 

and Kp. More recently a formula (to appear elsewhere) has been obtained 
which enumerates bicoloured graphs essentially as the dissimilar graphs 
between Kmn and Kp' for m + n = p. 

We wish to derive here a generating function for the number of dissimilar 
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graphs between any given graph G and a given spanning subgraph H. Let 
q and q\ be the number of lines of G and H respectively. We denote this 
function 

(1) FGrH(X) = a0 + aix + a2x
2 + . . . + arx

r 

where r = q — qi and ak is the number of dissimilar graphs K between G 
and H having k + #i lines. 

We now require Pôlya's Theorem precisely in the one variable form in 
(1, p. 447). Since the definitions appear there we include only a statement 
of the theorem here. 

PÔLYA'S THEOREM. The configuration counting series F(x) is obtained by 
substituting the figure counting series fix) into the cycle index Z(T) of the con
figuration group T. Symbolicallyj 

(2) F(x) = Z ( I \ / ( * ) ) . 

This theorem reduces the problem of finding the configuration counting 
series to the determination of the figure counting series and the cycle index 
of the configuration group. The desired configuration counting series in the 
present context is the function F0tH(x) of equation (1). 

Let L and L\ be the line sets of G and H respectively. Let G — H be the 
spanning subgraph of G whose line set is L — L\. Then the figures are the 
pairs of points of G adjacent in G — H. In a configuration K, that is, a graph 
between G and H, the content of a given figure is 1 if the points of the pair 
are adjacent in K and is 0 otherwise. Hence the figure counting series is 

(3) f(x) = l + x. 

The appropriate configuration group for this problem is the permutation 
group which acts on L — L\ described as follows. Consider the subgroup of 
Ti(G), the line group of G, which leaves the set L\ invariant. If in this sub
group we cut down the object set from L to L — Li, which can be done 
since L\ is invariant, we obtain the required configuration group. We denote 
this group by Ti(G — H\H) to indicate that it is the line group of G — H 
subject to the auxiliary condition that H is left invariant. On substituting 
these observations into equation (2), we obtain the formula: 

(4) F0,H(x) = Z{T^G - H\H), 1 + *). 

THEOREM. The generating function for the number of dissimilar graphs be
tween G and H is given by equation (4). 

For purposes of clarity, we illustrate this theorem using two examples 
other than those in (2) and (3). 

Example 1. Let G — X33, and let H = C§, a cycle of length 6. Then 
r i(G — H\H) = S3, the symmetric group of degree 3. Since it is well known 
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that Z(Sn, 1 + x) = 1 + x + x2 + . . . + xn, it follows that FGtH(x) = 
1 + x + x2 + xz. This counting polynomial is illustrated in Figure 1, in 
which the first graph is C$ and the last is K^. 

Example 2. Let G = Q3, the graph of the three dimensional cube, and let 
H = Cg, any Hamiltonian circuit of Q3. (A Hamiltonian or complete circuit 
of a graph is one containing all its points. All complete circuits of Q% are 
similar.) Then one readily sees that Ti(Qz — CslCs) is the direct product of 
two copies of the permutation group 52, denoted 52 X 52 or more briefly 
52

2. Since Z(S2) = i ( / i 2 + / 2 ) and Z(S X T) =Z(S)-Z(T) for any per
mutation groups 5 and T, we have Z(S2

2) = J( / i4 + 2/i2/2 + /2 2 ) . 
Hence 

Z(T1(QZ - C8\Cs), 1 + x) = 1[(1 + x)4 + 2(1 + x)2(l + x2) + (1 + x2)2] 

so that 
FQ3tC8(x) = l+2x + 3x2 + 2xz + x4. 

This generating function enumerates the graphs of Figure 2, in which C% 
appears first and Qz last. 

FIGURE 2 

These considerations leave open the subtle problem of enumerating the 
dissimilar Hamiltonian circuits in an ^-cube. 
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