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Abstract

In this paper periodic modules over group rings and algebras are considered. A new lower bound for
the />-part of the rank of a periodic module with abelian vertex is given, and results on periodic
modules with odd/even and small periods are obtained. In particular, it is shown that characters
afforded by periodic lattices of odd period satisfy strong properties and that irreducible periodic
lattices are always of even period.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 C 05, 20 C 10, 20 C 20.

1. Introduction

Let G be a finite group, R a complete discrete valuation ring with quotient field K
of characteristic 0, and residue field F of characteristic p > 0, A ^ {R, F}. In
this article we will consider periodic A G-modules, where the term "A G-modules"
denotes modules which are finitely generated and free over A; for A = R we also
use the term "i?G-lattice".

For periodic A G-modules with abelian vertices we shall improve the lower
bound on the/»-part of their ,4-rank, given by Green's theorem [4, 59.6] or by the
improved version of this theorem involving complexity [1, 3.1]. This is the content
of Theorem 2.1; an application of a theorem of Jon Carlson [2] is crucial in
proving 2.1. In the rest of this section we shall derive consequences of the
existence of an irreducible periodic /?G-lattice with abelian vertex.
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J2J Some properties of periodic modules 409

The topic of the next section is the period of periodic modules. Theorem 3.2
deals with periodic /?G-lattices of odd periods. They satisfy very strong proper-
ties. In particular, their rank is always divisible by the highest power of p dividing
the order of G. As a corollary of this, irreducible periodic lattices are always of
even period, if K is sufficiently large. Moreover, results on i?G-lattices of period 1
and 2 are obtained. We also consider periodic FG-modules, but although some
results are parallel to those on lattices, the implications of odd period are less
strong. In particular, when p = 2 the simplest example shows that the full power
of/? dividing the order of G does in general not divide the dimension of a periodic
module of odd period, and that a simple FG-module need not have even period.

For standard terminology we refer to the books of Dornhoff [4] and Feit [6].

2. Periodic modules with abelian vertices

In the following, for a natural number n, np denotes the highest power of p
dividing/!.

2.1. THEOREM. Let U be an indecomposable periodic AG-module with abelian
vertex D. Then |G|/,exp(D)"1|rank^(/, where exp(Z>) denotes the exponent of D.

PROOF, (i) Let A = F.

Without loss of generality we can assume that F is algebraically closed. Take a
Sylow /^-subgroup P of G. Then UP = © "_x Ut with indecomposable FP-modules
Ut, and each Ut is (Dx' n i>)-projective, for some x, e G. Set Z), =
Dx< n P. By Green's theorem [4, 52.6] we have Ut — Vf, with indecomposable
FDrmodules Vt, for 1 < i < n. As t/ is periodic, so is each Ut and hence each V(.
Now since the D, are abelian, by [2, 5.6] we have |D,| exp(D1)"1|dimf Vt, for all i.
This implies |P | expiD^-^ixap Ut, for all i. But obviously exp(D,) < exp(Z>) for
all /, so \P\ exp(D)-1|dimf Uit for all /, and thus \P\ expiDy^imF U.

(ii) Now suppose A = R. Then U ®RF — ©™ Vj, with indecomposable peri-
odic FG-modules Vjy for ally. As vx Vj^ < G D, vx Vj is abelian and by (i)

\G\P txp{D)'l\i\mF Vj, for ally.

This gives

\G\P exp(Z))"1|dimF(f/ ®^ F) = rank^f/.

2.2. REMARKS. (1) This lower bound for the />-part of rank,, U improves the
bound \G : D\pp

rt-D)~x, where r(D) is the rank of D, which we get from [1, 3.1].
(2) If D is not abelian, the lower bound given in 2.1 does not hold, as already

the example G = Q% (the quaternion group of order 8) and U = AG (the trivial
j4G-module) shows.
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2.3. COROLLARY. / / K is a splitting field for G and its subgroups and U an
irreducible periodic RG-lattice with elementary abelian vertex D, then D is cyclic.

PROOF. By Theorem 2.1 \G\pp~lYark.RU. Now by [9, Theorem 4.5B] this
implies that U belongs to a block of defect 0 or 1. Hence D must be cyclic.

2.4. REMARK. The above corollary was also obtained in [1] as Corollary 3.5.

In the following, we will combine Theorem 2.1 with well-known theorems on
upper bounds of character degrees. First, let us state these results for convenience.
For proofs see [8, 5.11], [7, Chapter V, 17.9] or [3, 53.17]. Observe that in (b) we
can take K to be a splitting field instead of algebraically closed.

2.5. THEOREM. Let M be a simple KG-module.
(a) / / EndKC(M) = K and H is an abelian normal subgroup of G, then

dim^MllG: H\.
(b) Suppose that K is a splitting field for G and its subgroups, and that H is a

subnormal subgroup of G. Then dim KM\\G: H\d, where d= dim^ V,V any
simple KH-module with V\MH.

Before we turn to periodic modules, we derive a corollary to Theorem 2.5. First
we have a definition.

2.6. DEFINITION. Let Ube an indecomposable A G-module with vertex D. Then
U is said to be of vertex height 0, if \G: D\p = (rank^ U)p.

2.7. COROLLARY. Let U be an irreducible RG-lattice with vertex D.
(a) If End RG(U) = R and D is normal and abelian, then U is of vertex height 0.
(b) If K is a splitting field for G and its subgroups, D is subnormal and there exists

an irreducible RD-lattice V of rank not divisible by p, such that HomRC(U, VG) + 0
(e.g., if D is abelian), then Uis of vertex height 0.

PROOF, (a) is clear by 2.5(a).
(b) By 2.5(b) vankRU\\G: D\iankRV, as KV\KUD. Thus, as p\iankRV,

(rankRU)p\\G: D\p. By Green's theorem, \G: D\p\rankRU, so U is of vertex
height 0.

For the rest of this section we assume that R is sufficiently large, so that K is a
splitting field for G and its subgroups.
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2.8. PROPOSITION. Let U be an irreducible periodic RG-lattice with abelian vertex
D. Let H be a subnormal subgroup of G, and suppose HomRG(U, VG) # 0 for some
irreducible RH-lattice V of rank not divisible by p. {In particular, this is satisfied if
H is abelian.) Then \H\p\exp(D).

PROOF. By 2.1 we have \G\pexp(Dyl\rankRU. On the other hand, by 2.5(b)
(rankRU)p\\G: H\p. Hence\H\p\exp(D).

From this we get immediately

2.9. COROLLARY. Let U be an irreducible periodic RG-lattice with subnormal
abelian vertex D. Then D is cyclic.

2.10. PROPOSITION. Let U be an irreducible periodic RG-lattice with abelian
vertex D, and let H be a subnormal p-subgroup of G, \H\= p", w > 1. Then
/?["/21 + 1|exp(D), where [n/2] is the integer part ofn/2.

PROOF. By 2.5(b) rank R t / | |G : H\dimKM, where M is a simple A7/-module.
As \H\ = p", dimK M = p" and

{ — - 1, if n is even,

» 1

n — V . . ,
— -—, if n is odd.

Now by 2.1 \G\pexviD)l\[xakRU, so \H\pl~"/2\sxp(D), if n is even,
\H\pil-")/2\exp(D), if n is odd. Since

[«/2] + i = IP"/2 + 1> if « is even,

\

we get the result.

[

\ / 7 ( n + 1 ) / 2 , if n is odd,

3. Periods of periodic modules

In this paragraph we will derive properties of periodic modules from the fact
that they are of odd/even or small period. For an RG-lattice U, the character
afforded by f/will be denoted by \ v .

3.1. PROPOSITION. Let U be a periodic RG-lattice, 0 -> 1/ -» PB -> • • • -* P1 -*
U —* 0 an exact sequence with projective RG-lattices Pt, 1 < i < n.

(a) Ifn is odd, then 2-Xu = W-ii-iy-'xp,-
(b) / /n is even, then ®"'2 P2i~i = ®"^Pn-
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PROOF. From the exact sequence we get

i-1

Now if n is odd, (*) immediately implies (a). If n is even, Ef_x(- l)'Xpi = 0-
as projective .RG-lattices with the same character are isomorphic [3, 77.14], this
gives (b).

This proposition has strong implications for periodic .RG-lattices of odd period.

3.2. THEOREM. Let U be a periodic RG-lattice of odd period. Then
(a) Xu(x) = 0, for allp-singular x e G (i.e. p divides the order of x),
(b) there exist projective RG-lattices Qt and nt e Z , 1 < i < m, such that

Xu = EJli ntxQ (or equivalently, Xu is in tne image of the map e in the cde-trian-
gle),

(c)|G|^|rank^f/.

PROOF, (a) Without loss of generality we can assume that K is a splitting field
for G and its subgroups. As U is of odd period, we have an exact sequence as in
3.1 with odd n. Hence (with the notation as in 3.1) 2 • Xu(x) =

E"_x( — 1)'~1XP,(X)
 = 0> f°r all />-singular x e G, because Xp,(x) = 0 as ^ is

projective (see [4, 59.7] or [6, 2.5]). Thus Xu(x) = 0 for all p-singular x e G.
(b) By [10, Theorem 36], (a) implies (b).
(c) As |G| |rankfl Qt, for all /, because the (?, are projective,

For irreducible /?G-lattices we now have

3.3. COROLLARY. Let K be a splitting field for G and its subgroups. Then every
irreducible periodic non-projective RG-lattice is of even period.

PROOF. Suppose U is an irreducible periodic .RG-lattice of odd period. By
3.2(c), IG^Irank^ U. Now [9, Theorem 4.5B] implies that U belongs to a block of
defect 0, so U is projective.

3.4. COROLLARY. Let U be a periodic RG-lattice of period 1. Then \u 's a^so

afforded by a projective RG-lattice Q, and Q © Q is the projective cover of U.

PROOF. If P is the prqjective cover of U, we obtain from 3.1 2 • Xu = Xp- Now
[10, Proposition 44] implies that Xu IS a^so afforded by a (unique) projective
.RG-lattice Q, so Xu = Xe- Th^ Xp = 2 • Xu = 2 ' XQ = Xfi®e- so the projective
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#(J-lattices P and Q ffi Q afford the same character, and hence by [3, 77.14]
p ~ Q © Q.

The next corollary shows how the Qt in 3.2(b) may be chosen.

3.5. COROLLARY. Let U be a periodic RG-lattice of odd period n. Then xv
 =

XP — ^"-iXf2/_,' where P2i-i is the projective cover ofQ2''^, and P © P is the
projective cover of ®"~^Qi'U {where 12 denotes Heller's operator).

PROOF. V= ®"~Q^'U is a periodic /*G-lattice of period 1. By 3.4 \v= Xp
with a projective .RG-lattice P, such that P © P is the projective cover of V.
Moreover, Xa'u + Xc/+1t/ = Xp, where Pt is the projective cover of Q'U. Now

n - l

Xt/ = X^ "" 2-i Xa'u

= Xp ~ E (Xo2'-1!/ + XB2't/)
1 = 1

(n-D/2
= Xp ~ 2 - Xp2,_,-

Let us now turn from periodic .RG-lattices to periodic /"(/-modules. For an
/"G-module M, [M] denotes the corresponding element in the Grothendieck
group (see [10]).

3.6. PROPOSITION. Let M be a periodic FG-module, 0 -> M -* Pn -* • • • -> Px

-» M -» 0 an exact sequence with projective FG-modules Pt, 1 < / < n.
(a) Ifn is odd, then 2 • [M] = E f - i C - l ) ' " 1 ! ^ ] (/« the Grothendieck group). In

particular, this implies \G\pp, • dimFM.
(b) Ifn is even, then ®tf P2i_x = ®»^ P2i.

The proof is similar to the proof of 3.1, except that for (b) we use the
injectiveness of the map c in the a/e-triangle [10, Corollary 1 to Theorem 35].

3.7. REMARK. For a periodic FG-module M of odd period we do not in general
have IGlpldim^M. Take G = Z 2 and M = FG as an example, M is of period 1.

3.8. COROLLARY. Let U be a periodic AG-module of period 2. Then there exists an
exact sequence 0 -* U —> P -* P —» U —» 0, where P is the projective cover of U.
Especially, for A = F the socle and the head of U are isomorphic.
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PROOF. The first statement follows directly from 3.1(b) and 3.6(b). For the
additional assertion observe that in case A = F

socle(f/) = socle(/*) (as P is by the above also the injective envelope of U),

— head(P) (as P is projective),

= head(f/) (as P is the projective cover of U).

COROLLARY. Let G be ap-group.

(a) / / U is a periodic non-projective cyclic RG-lattice, then U is of even period.
(b) If p + 2 and M is a periodic non-projective cyclic FG-module, then M has

even period.

PROOF, (a) If U has odd period, then by 3.2(c), \G\ \rwakR U. But as U is cyclic,
U is an epimorphic image of RG, and hence U — RG, a contradiction,

(b) Similar to (a), using 3.6(a) instead of 3.2(c), but just forp ¥= 2.

3.10. REMARK. AS we have seen in 3.7, for p = 2 we do have periodic
non-projective cyclic FG-modules of odd period.

The above example is essentially the only one with a simple FG-module M, as
long as we are dealing with /^-solvable groups. To be more precise, we have

3.11. PROPOSITION. Let F be algebraically closed. Let G be a p-solvable group, M
a simple periodic non-projective FG-module of odd period. Then p = 2, a vertex D of
M is isomorphic toZ2 and FD is a source of M.

PROOF. AS G is />-solvable, by [6, X, 1.8] (dimFM)p = \G: D\p. On the other
hand, by 3.6 \G\p\2 • dixnFM. As M is non-projective, this says \D\ = 2. Now FD

must be a source of M, since it is the only non-projective indecomposable
FD-module.

3.12. REMARK. For non-p-solvable groups we do have other examples of simple
periodic modules with odd period. Let F be algebraically closed of characteristic 2
and let G be the group PSL(2, q), where q = 5 (mod 8); then there is a simple
periodic /"G-module M of period 3 which has a Klein four group as a vertex [5].
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