J. Austral. Math. Soc. 25 (Series A) (1978), 328-331.

PROJECTIVE LIMIT OF INFINITE RADON MEASURES

SUSUMU OKADA AND YOSHIAKI OKAZAKI

(Received 13 April; revised 3 June 1977)

Communicated by E. Strzelecki

Abstract

We show that for any self-consistent sequentially maximal system $\{\mu_{\alpha}\}$ of infinite (perhaps non- σ -finite) Radon measures, the projective limit of $\{\mu_{\alpha}\}$ exists.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 28A35.

1. Introduction

Yamasaki (1975) has studied the extension problem of a self-consistent system of infinite measures to a σ -additive measure, under the assumption that every system of probability measures has a unique σ -additive extension. In this paper we consider a system of infinite Radon measures on arbitrary topological spaces. In Theorem 1, we prove that for every denumerable projective system $\{\mu_n\}$, there uniquely exists a Radon measure μ satisfying $p_n(\mu) = \mu_n$. In Theorem 2, for a general projective system, we show that Kolmogorov consistency theorem is valid.

Throughout this paper we assume every topological space is a Hausdorff space. Let T be a topological space. By the *Borel field* $\mathbf{B}(T)$, we mean the minimal σ -algebra generated by all open subsets of X. A *Radon measure* μ is a non-negative, extended real-valued Borel measure on $\mathbf{B}(T)$ such that

1) for x in T, there exists an open neighborhood U of x such that $\mu(U) < \infty$ (locally finite);

2) for every Borel set E in $\mathbf{B}(T)$,

 $\mu(E) = \sup \{ \mu(K); K \subset E \text{ and } K \text{ is compact} \}.$

Let (A, \leq) be a directed set. A system $\{(T_{\alpha}, p_{\alpha\beta}); \alpha, \beta \in A, \alpha \leq \beta\}$ of topological spaces $\{T_{\alpha}; \alpha \in A\}$ is said to be a *projective system* if for $\alpha \leq \beta \leq \gamma, p_{\alpha\beta}$ and $p_{\beta\gamma}$ are continuous $(p_{\alpha\alpha} = id)$ and $p_{\alpha\beta} \circ p_{\beta\gamma} = p_{\alpha\gamma}$ holds. We

denote by $T = \lim_{\alpha \in A} T_{\alpha}$ the projective limit $\{(x_{\alpha}) \in \prod_{\alpha \in A} T_{\alpha}; p_{\alpha\beta}(x_{\beta}) = x_{\alpha}, \alpha \leq \beta\}$. By p_{α} we mean the projection of T to T_{α} . A family $\{\mu_{\alpha}\}$ of measures on the projective system $\{(T_{\alpha}, p_{\alpha}, p_{\alpha\beta})\}$ is called self-consistent if μ_{α} is a non-negative, extended real-valued Borel measure on T_{α} and $p_{\alpha\beta}(\mu_{\beta}) = \mu_{\alpha}$ holds for $\alpha \leq \beta$.

2. Kolmogorov consistency theorem

THEOREM 1. Let $T = \lim_{n \to \infty} T_n$ be the projective limit of a projective system $\{(T_n, p_n, p_{nm}); n \leq m\}$ and $\{\mu_n\}$ be a self-consistent system of Radon measures on $\{T_n\}$. Then there exists a unique Radon measure μ on T such that $p_n(\mu) = \mu_n$ on T_n .

PROOF. Let $\{U_{\lambda}; \lambda \in \Lambda\}$ be the family of all open subsets of T_1 such that $\mu_1(U_{\lambda}) < \infty$. Naturally we may assume Λ is directed. For any λ the system $\{(p_{1n}^{-1}(U_{\lambda}), q_{nm}); n \leq m\}$ is a projective system, where $q_{nm} = p_{nm} | p_{1m}^{-1}(U_{\lambda})$. If we put $\nu_{\lambda}^n = \mu_n | p_{1n}^{-1}(U_{\lambda})$, then we have $q_{nm}(\nu_{\lambda}^m) = \nu_{\lambda}^n$ for $n \leq m$, where $\mu_n | p_{1n}^{-1}(U_{\lambda})$ is the restriction of μ_n to $p_{1n}^{-1}(U_{\lambda})$. By Theorem 4.2 in Bourbaki (1969), there exists a Radon measure ν_{λ} on $V_{\lambda} = \lim_{t \to n} p_{1n}^{-1}(U_{\lambda})$ for every λ in Λ . From the construction of V_{λ} , it is clear $V_{\lambda} = p_1^{-1}(U_{\lambda})$. We put

$$\mu(E) = \sup_{\lambda} \nu_{\lambda} (E \cap V_{\lambda})$$

for every Borel set E in $\mathbf{B}(T)$. For every Borel set E_n in $\mathbf{B}(T_n)$, we have

$$p_{n}(\mu)(E_{n}) = \mu (p_{n}^{-1}(E_{n})) = \sup_{\lambda} \nu_{\lambda} (p_{n}^{-1}(E_{n}) \cap V_{\lambda})$$

$$= \sup_{\lambda} \nu_{\lambda} (p_{n}^{-1}(E_{n} \cap p_{1n}^{-1}(U_{\lambda})))$$

$$= \sup_{\lambda} \nu_{\lambda}^{n}(E_{n} \cap p_{1n}^{-1}(U_{\lambda}))$$

$$= \sup_{\lambda} \mu_{n}(E_{n} \cap p_{1n}^{-1}(U_{\lambda}))$$

$$= \sup_{\lambda} (\mu_{n} | E_{n})(E_{n} \cap p_{1n}^{-1}(U_{\lambda}))$$

$$= \mu_{n}(E_{n}),$$

since $\mu_n | E_n$ is a Radon measure on E_n . Therefore we have $p_n(\mu) = \mu_n$ for every *n*, which shows μ is locally finite. Since every ν_{λ} is a Radon measure, μ is a Radon measure on *T*. 330

Assume ν is another Radon measure on T such that $p_n(\nu) = \mu_n$. For every compact subset K of T, it holds $K = \bigcap_{n=1}^{\infty} p_n^{-1} p_n(K)$ (see Proposition 4.2 in Bourbaki (1969)). Thus we have

$$\nu(K) = \lim_{n \to \infty} \nu(p_n^{-1} p_n(K))$$
$$= \lim_{n \to \infty} \mu_n(p_n(K))$$
$$= \mu(K),$$

which shows ν is identical to μ . This proves the theorem.

COROLLARY. If μ_n is σ -finite for some n, then the Radon measure μ is also σ -finite, moreover μ is outer regular.

PROOF. Clearly μ is σ -finite and satisfies the conditions of Theorem A in Amemiya, Okada and Okazaki (to appear).

Next we deal with the general projective system $\{(T_{\alpha}, p_{\alpha}, p_{\alpha\beta}); \alpha \leq \beta\}$. If each μ_{α} is a probability measure, then $\{\mu_{\alpha}\}$ has a unique σ -additive extension by Theorem 5.1.1 in Bochner (1955). We put

$$D(A) = \{ (\alpha_n)_{n=1}^{\infty}; \quad \alpha_1 < \alpha_2 < \cdots, \alpha_n \in A \}.$$

For every $M = (\alpha_n)_{n=1}^{\infty}$ in D(A), we denote by p_M the natural projection of T to $T_M = \lim_{n \to \infty} T_{\alpha_n}$. We say the projective system $\{(T_\alpha, p_\alpha, p_{\alpha\beta}); \alpha \leq \beta\}$ is sequentially maximal if p_M is a surjection for every M in D(A).

THEOREM 2. Let $T = \lim_{\alpha} T_{\alpha}$ be the projective limit of a sequentially maximal projective system $\{(T_{\alpha}, p_{\alpha}, p_{\alpha\beta}); \alpha \leq \beta\}$ such that p_{α} is surjective. Let $\{\mu_{\alpha}\}$ be a self-consistent system of Radon measures on $\{T_{\alpha}\}$. Then there exists a unique σ -additive measure on the σ -algebra $\mathbf{B}_1 = \bigcup_{M \in D(A)} P_M^{-1}(\mathbf{B}(T_M))$ satisfying that $p_M(\mu)$ is a Radon measure on T_M and $p_{\alpha}(\mu) = \mu_{\alpha}$ on T_{α} for every α in A.

PROOF. Let **F** be the algebra $\bigcup_{\alpha \in A} p_{\alpha}^{-1}(\mathbf{B}(T_{\alpha}))$. We define a finitely additive set function ρ on **F** by

$$\rho(p_{\alpha}^{-1}(E_{\alpha})) = \mu_{\alpha}(E_{\alpha})$$

for every E_{α} in **B**(T_{α}). Since p_{α} is surjective, ρ is well defined.

For every $M = (\alpha_n)_{n=1}^{\infty}$ in D(A), $\{\mu_{\alpha_n}\}$ is self-consistent on $\{(T_{\alpha_n}, q_{nM}, p_{\alpha_n\alpha_m})\}$, where q_{nM} is the natural projection of T_M to T_{α_n} . By Theorem 1 there exists a unique Radon measure μ_M on T_M such that $q_{nM}(\mu_M) = \mu_{\alpha_n}$. We introduce an order relation in D(A) as follows: for $M = (\alpha_n)_{n=1}^{\infty}$, $N = (\beta_n)_{n=1}^{\infty}$ in D(A),

$M \leq N$ if and only if $\alpha_n \leq \beta_n$ for every *n*.

For (x_{β_n}) in T_N we set $p_{MN}((x_{\beta_n})) = (p_{\alpha_n\beta_n}(x_{\beta_n}))$. It follows that $p_M = p_{MN}p_N$, and $p_{MN}(\mu_N) = \mu_M$ since it holds $q_{nM}p_{MN}(\mu_N) = p_{\alpha_n\beta_n}q_{nN}(\mu_N) = p_{\alpha_n\beta_n}(\mu_{\beta_n}) = \mu_{\alpha_n}$. Thus we can define μ as follows:

$$\mu\left(p_{M}^{-1}(E_{M})\right)=\mu_{M}(E_{M})$$

for every E_M in $\mathbf{B}(T_M)$. Obviously μ is σ -additive on \mathbf{B}_1 and $p_M(\mu)$ is equal to the Radon measure μ_M on $\mathbf{B}(T_M)$ for every M in D(A). For each α in A, there exists an M in D(A) such that $\alpha_1 = \alpha$, which shows $p_{\alpha}(\mu) = q_{1M}p_M(\mu) =$ $q_{1M}(\mu_M) = \mu_{\alpha_1} = \mu_{\alpha}$. Since \mathbf{B}_1 is a σ -algebra containing \mathbf{F} , μ is a σ -extension of ρ .

Suppose ν is another σ -additive extension of ρ on \mathbf{B}_1 such that $p_M(\nu)$ is a Radon measure on T_M for every $M = (\alpha_n)_{n=1}^{\infty}$ in D(A). Then it follows that for every $n, q_{nM}(p_M(\nu)) = p_{\alpha_n}(\nu) = p_{\alpha_n}(\rho) = p_{\alpha_n}(\mu) = q_{nM}(p_M(\mu))$ on T_{α_n} . Thus by Theorem 1, we have $p_M(\nu) = p_M(\mu)$. From the definition of \mathbf{B}_1 , ν is equal to μ . This proves the theorem.

REMARK. In Theorem 2, μ is not necessarily extended to a τ -smooth Borel measure even if every μ_{α} is a probability measure (see Theorem 4.6 in Moran (1968)).

REFERENCES

- I. Amemiya, S. Okada and Y. Okazaki (to appear), 'Pre-Radon measures on topological spaces'.
- S. Bochner (1955), Harmonic analysis and the theory of probability (University of California Press).
- N. Bourbaki (1969), Integration Chapter 9 (Hermann, Paris).
- W. Moran (1968), 'The additivity of measures on completely regular spaces', J. London Math. Soc. 43, 633-639.
- Y. Yamasaki (1975), 'Kolmogorov's extension theorem for infinite measures', Publ. RIMS. Kyoto Univ. 10, 381-411.

Department of Mathematics,

Institute of Advanced Studies,

The Australian National University,

P.O. Box 4, Canberra, A.C.T. 2600, Australia.

Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan.