ISOMORPHISMS BETWEEN ENDOMORPHISM RINGS OF PROJECTIVE MODULES

by JOSÉ LUIS GARCÍA† and JUAN JACOBO SIMÓN

(Received 29 September, 1992)

Let R and S be arbitrary rings, $_{R}M$ and $_{S}N$ countably generated free modules, and let $\phi: \operatorname{End}(_{R}M) \to \operatorname{End}(_{S}N)$ be an isomorphism between the endomorphism rings of M and N. Camillo [3] showed in 1984 that these assumptions imply that R and S are Morita equivalent rings. Indeed, as Bolla pointed out in [2], in this case the isomorphism ϕ must be induced by some Morita equivalence between R and S. The same holds true if one assumes that $_{R}M$ and $_{S}N$ are, more generally, non-finitely generated free modules.

In this note, we make the observation that the above results of Camillo and Bolla cannot be extended to a class of modules broader than that of non-finitely generated free modules in any natural way. More precisely, let \mathcal{M} be now the class of all the countably generated locally free projective modules (over arbitrary rings); we give examples to show that: (1) there exist modules $_R\mathcal{M}$ and $_S\mathcal{N}$ in the class \mathcal{M} such that $\operatorname{End}(_R\mathcal{M}) \cong \operatorname{End}(_S\mathcal{N})$, while R and S are not Morita equivalent; (2) there exist $_R\mathcal{M}$ in the class \mathcal{M} and an automorphism δ of the endomorphism ring $\operatorname{End}(_R\mathcal{M})$ such that δ cannot be induced by any Morita auto-equivalence of the ring R.

All the rings in this paper are supposed to be associative and with identity element. A module $_RM$ is called *locally free* [4] if each finite set of elements of M is contained in a finitely generated free direct summand. If $_RM$ is a left R-module, then $End(_RM)$ denotes the endomorphism ring of $_RM$ (and endomorphisms act opposite scalars) and $f End(_RM)$ will denote the subring (not necessarily with identity) of $End(_RM)$, given by

 $f \operatorname{End}_{R}M = \{ f \in \operatorname{End}_{R}M \mid f = g \circ h, h : {}_{R}M \to R^{n}, g : {}_{R}R^{n} \to {}_{R}M, \text{ for some integer } n \}.$

In particular, when $_RM$ is free and countably generated, then $\operatorname{End}(_RM)$ is isomorphic to the ring of row-finite matrices $\mathbb{RFM}(R)$ and $f \operatorname{End}(_RM)$ is then isomorphic to the subring of the matrices with a finite number of non-zero columns, $\mathbb{FC}(R)$.

We start with the following lemma, which will be needed for the construction of the announced examples. Notice that this lemma could also be obtained from [9, Corollary 1], but we give a different proof of it.

LEMMA. Let D be a division ring. Then, the rings $\mathbb{RFM}(D)$ and $\mathbb{RFM}(\mathbb{RFM}(D))$ are not Morita equivalent rings.

Proof. To simplify the notation, let us put $E = \mathbb{RFM}(D)$ and $S = \mathbb{RFM}(E)$. By [1, Exercise 7, p. 23], E has only one non-trivial ideal which is just the left socle of E, E_0 . S has the non-trivial ideal $S_0 = \mathbb{FC}(E)$, and S_0 -mod is a category equivalent to E-mod [5, Theorem 2.4]. By using this equivalence and [6, Proposition 3.5], we see that S_0 has exactly one non-trivial ideal I satisfying that $S_0IS_0 = I$. However, such an I is also an ideal of S, so that S has at least two non-trivial ideals. Thus, E and S cannot be Morita equivalent rings [1, Proposition 21.11].

† Supported by the DGICYT of Spain (PB90-0300-C02-02).

Glasgow Math. J. 35 (1993) 353-355.

EXAMPLE 1. There exist rings R, S and modules $_{R}P$, $_{S}Q$ such that $_{R}P$, $_{S}Q$ are (non-finitely) countably generated locally free and projective modules with $End(_{R}P) \cong End(_{S}Q)$, but R, S are not Morita equivalent rings.

Proof. Let *D* be a division ring and *V*, *W*, left *D*-vector spaces with dim(*V*) = \aleph_0 and dim(*W*) = \aleph_1 . We put $A = \text{End}(_DV)$, $B = \text{End}(_DW)$, and then $T = \mathbb{RFM}(A)$, $U = \mathbb{RFM}(B)$. Note that, by the Lemma, *A* and *T* cannot be Morita-equivalent rings. The rings *R* and *S* are now constructed by taking $R = A \times U$, $S = B \times T$. Finally, we choose the modules $_RP$ and $_SQ$ by putting $_RP = A^{(\mathbb{N})} \oplus U$, $_SQ = B^{(\mathbb{N})} \oplus T$. Since $\text{End}(_RP) \cong \text{End}(_AA^{(\mathbb{N})}) \times U$ -and similarly for $_SQ$ - we have that $\text{End}(_RP) \cong T \times U \cong U \times T \cong \text{End}(_SQ)$.

^RP and ${}_{S}Q$ are projective modules, because ${}_{A}A^{(\mathbb{N})}$, ${}_{U}U$, ${}_{B}B^{(\mathbb{N})}$ and ${}_{T}T$ are projective; they are (non-finitely) countably generated, since so are ${}_{A}A^{(\mathbb{N})}$ and ${}_{B}B^{(\mathbb{N})}$, while ${}_{R}U$ and ${}_{S}T$ are cyclic. Moreover, for each $n \ge 1$, we have ${}_{A}A \cong {}_{A}A^{n}$ and ${}_{B}B \cong {}_{B}B^{n}$, because A and B are endomorphism rings of non-finitely generated vector spaces (see, for instance, [7, Example 1.3.33]). As a consequence, any finite family of elements of ${}_{R}P$ being included in a direct summand of the form $A^{n} \oplus U$, we deduce that ${}_{R}P$ -and ${}_{S}Q$ -are locally free modules.

It remains to show that R and S are not Morita equivalent. By [3, Theorem], it is enough to prove that the rings $\mathbb{RFM}(R)$ and $\mathbb{RFM}(S)$ are not isomorphic. Suppose we had such an isomorphism, so that $\mathbb{RFM}(A) \times \mathbb{RFM}(U) \cong \mathbb{RFM}(B) \times \mathbb{RFM}(T)$. But the endomorphism ring of a vector space is always indecomposable as a ring, and so we can infer that each of the four factors above is indecomposable as a ring. It follows from [1, Proposition 7.8] that we should have either $\mathbb{RFM}(A) \cong \mathbb{RFM}(B)$ or $\mathbb{RFM}(A) \cong \mathbb{RFM}(T)$. By applying again [3, Theorem], this would imply that A is Morita equivalent to one of the rings B or T. But A is not equivalent to T by the Lemma, as we saw before. Finally, A and B are not equivalent rings because A has exactly one non-trivial ideal, while B has two [8, p. 360].

We now turn to the above-mentioned result of Bolla [2]: if δ is an isomorphism between endomorphism rings of the non-finitely generated free modules $_{R}P$ and $_{S}Q$, then δ is induced by a Morita equivalence. By Example 1, this is no longer the case if $_{R}P$ and $_{S}Q$ are supposed to belong to the class \mathcal{M} of non-finitely generated locally free projective modules. We show next that δ need not be induced by an equivalence, even if we assume that the rings R and S are already Morita equivalent.

EXAMPLE 2. There exist a non-finitely generated projective and locally free left R-module $_{R}P$ and an isomorphism δ of the endomorphism ring $End(_{R}P)$ such that δ is not induced by any Morita auto-equivalence of R.

Proof. Let D be a division ring, $_DV$ a non-finitely generated left D-vector space and $A = \text{End}(_DV)$. Then we put $R = D \times A$, and $_RP = V \times A$, so that $\text{End}(_RP) \cong A \times A$. $_RP$ is obviously a non-finitely generated projective module which is locally free because $A^k \cong A$ for any $k \ge 1$. Let δ be the automorphism of the ring $A \times A$ given by $\delta(a, a') = (a', a)$. Now, if $F: R \text{-mod} \rightarrow R$ -mod is any Morita equivalence satisfying that $F(P) = Q \cong P$, then

F induces a ring isomorphism $\operatorname{End}_{(RP)} \xrightarrow{\theta(F)} \operatorname{End}_{(RP)}$ such that $\theta(F)(f \operatorname{End}_{(RP)}) = f \operatorname{End}_{(RP)}$, because the morphisms in $f \operatorname{End}_{(RP)}$ are characterised in $\operatorname{End}_{(RP)}$ by the

property of factoring through some finitely generated projective. But $\theta(F) \neq \delta$ because if $\alpha: V \to V$ is the projection of V onto the first coordinate, then $(\alpha, 1) \in f \operatorname{End}_{R}P$ and $\delta(\alpha, 1) = (1, \alpha) \notin f \operatorname{End}_{R}P$. This shows that δ is not induced by an equivalence.

REFERENCES

1. F. W. Anderson and K. R. Fuller, Rings and categories of modules. (Springer-Verlag, 1974).

2. M. Bolla, Isomorphisms between infinite matrix rings, *Linear Algebra and Appl.* 69 (1985), 239–247.

3. V. Camillo, Morita equivalence and infinite matrix rings, Proc. Amer. Math. Soc. 90 (1984), 186–188.

4. W. N. Franzsen and P. Schultz, The endomorphism ring of a locally free module, J. Austral. Math. Soc. Ser. A 35 (1983), 308-326.

5. J. L. García, The characterization problem for endomorphism rings, J. Austral. Math. Soc. Ser. A 50 (1991), 116-137.

6. J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56.

7. L. H. Rowen, Ring theory, Vol. 1 (Academic Press, 1988).

8. K. G. Wolfson, An ideal-theoretic characterization of the ring of all linear transformations, *Amer. J. Math.* 75 (1953), 358–386.

9. L. Bonami, Morita-equivalent rings are isomorphic, Arch. Math. 34 (1980), 108-110.

DEPARTMENT OF MATHEMATICS University of Murcia 30071 Murcia Spain