The Nine-point Circle.

By R. F. Davis, M.A.

The nine-point circle of a triangle touches the inscribed circle.

FIGURE 2.

I. Let ABC be a triangle, having \angle C greater than \angle B, D, E, F the middle points of the sides, and AX perpendicular to BC.

Then the upper segment of the nine-point circle cut off by DX contains an angle C-B; and conversely.

FIGURE 3.

II. If AP bisect the angle A and meet the base BC in P, and AC' be taken along AB equal to AC; then PC' touches the inscribed circle. Also \angle BPC' = \angle C - \angle B.

For the triangles APC, APC' are congruent; hence the perpendiculars IM, IM' on PC, PC' respectively are equal.

FIGURE 4.

III. $DM^2 = DP \cdot DX$

For $HI^2 = HC^2$

= HD.HK

= HP . HA ;

and the projections of HI, HP, HA on BC are DM, DP, DX.

FIGURE 5.

IV. Let O be a fixed point on the tangent at A to a fixed circle S, and points P, Q be taken (the one on OA and the other on OA produced) such that $OA^2 = OP \cdot OQ$, then the segment of a circle Σ , described through O, Q and containing an angle equal to the external angle between the tangents to S from P, touches the circle S.

For if PR, the second tangent to S from P, be drawn, and OR produced to meet S in T, since

$$OR \cdot OT = OA^2 = OP \cdot OQ$$

therefore

$$\angle OTQ = \angle OPR$$
;

therefore the point T lies on S.

Again, drawing the tangent $\,\mathrm{TU}\,$ to $\,\mathrm{S}\,$ at $\,\mathrm{T}\,$ to meet $\,\mathrm{PR}\,$ produced in $\,\mathrm{U}\,$;

$$\angle UTR = \angle URT = \angle ORP = \angle OQT$$
;

therefore TU touches 2 at T.

Thus the circles S, Σ touch each other in T.

V. The application of IV. is fairly obvious. Since in Figure 4,

$$DM^2 = DP \cdot DX$$
 (III.),

the segmental circle upon DX, containing an angle

$$BPC' = C - B$$
 (11.),

touches the inscribed circle (v.). But (1.) the former circle is none other than the nine-point circle.