ON SOME GROUPS WITH TRIVIAL MULTIPLICATOR JAMES WIEGOLD

For Bernhard Neumann, with respect and affection

Scene:	B.H. Neumann's office, in the University of Manchester;
	an M.Sc. tutorial.
Date:	late 1954.
Dramatis Personae:	B.II. Neumann and James Wiegold.
B.H.N.:	"So you see, the Schur multiplicator is an important tool
	for the BFC-problem and others; thou shouldst definitely
	go forth and multiplicate."
J.W.:	"I Schur should."

I discussed the sort of thing Bernhard had in mind concerning the BFC-problem in [3], an article written for his sixieth birthday. This vigesennial contribution deals with one of the "and others", namely the zero deficiency problem. In his article [1] bearing the same title as this one, Bernhard gave 2-generator 2-relator presentations of some metacyclic groups; if one distils and formalises the process used there, one gets the following result, to be used later in constructing some zero-deficiency finite *p*-groups.

THEOREM. Let m and n be positive integers and w a two-variable word. The group $G = \langle a, b | a^m = b^n = w(a, b) \rangle$ is finite if and only if G/G' and $H = \langle a, b | a^m = b^n = w(a, b) = 1 \rangle$ are finite. If G/G' and H are finite π -groups for some set π of primes, so is G.

PROOF: One way around everything is obvious. Suppose that G/G' and H are finite π -groups. Since a^m is central in G and $G/\langle a^m \rangle \cong H$, it follows that $G' \cap \langle a^m \rangle$ is a finite π -group, being a homomorphic image of the multiplicator of H. But $a^s \in G'$ for some π -number s, and a^{ms} has π -order since $a^{ms} \in G' \cap \langle a^m \rangle$. Thus $\langle a^m \rangle$ is a finite π -group, and therefore so is G.

Of course, the theorem has a version for groups on more than two generators and/or more than one relator. However, the main interest is in zero deficiency groups.

Received 6 April, 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

James Wiegold

Robertson [2] has constructed some finite non-metacyclic 2-groups of zero deficiency and high nilpotency class; as far as I know, 2 is the only prime where this has been achieved to date. The theorem allows us to make some suitable 3-groups.

Example 1. The group $G = \langle a, b | a^{3^n} = b^3 = [a, a^b] \rangle$ is a finite 3-group of nilpotency class 2n + 2.

PROOF: Clearly, G/G' is a finite 3-group. But the corresponding $H = \langle a, b \mid a^{3^n} = b^3 = [a, a^b] = 1 \rangle$ is nothing but $Z_{3^n} \nmid Z_3$ thinly disguised; the relation $[a, a^b] = 1$ yields $1 = [a, a^b]^b = [a^b, a^{b^2}]$ and $1 = [a^b, a^{b^2}]^b = [a^{b^2}, a]$, so that $\langle a, a^b, a^{b^2} \rangle$ is a commutative subgroup of H. The class of H is 2n + 1, and the claim about the class of G follows after a tedious calculation.

Of course, the group obtained by replacing 3 by 2 in Example 1 is a finite 2-group of high class. Here is a slightly more complicated example.

Example 2. The group $G = \langle a, b \mid a^{2^n} = b^2 = [a^b, a, a] \rangle$ is a finite 2-group of class n+2.

PROOF: Here $H = \langle a, b | a^{2^n} = b^2 = [a^b, a, a] = 1 \rangle$ is the second nilpotent wreath product of Z_{2^n} by Z_2 ; for $1 = [a^b, a, a] \implies 1 = [a^b, a, a]^b = [a, a^b, a^b]$, so that the normal closure $\langle a, a^b \rangle$ of a is nilpotent of class two. I shall once more omit the class-claim.

Like all other methods attempted so far, that presented here appears to be hopeless for constructing zero-deficiency groups of high solubility length. Further, I think there is enough lack of evidence around to make a final point:

CONJECTURE. For each $p \ge 5$, zero-deficiency finite p-groups have p-bounded nilpotency classes.

I shall try to confirm or deny this in readiness for October 2009.

References

- B.H. Neumann, 'On some groups with trivial multiplicator', Publ. Math. Debrecen 4 (1956), 190-194.
- [2] Edmund F. Robertson, 'A comment on finite nilpotent groups of deficiency zero', Canad. Math. Bull. 23(3) (1980), 313-316.
- [3] James Wiegold, 'Commutator subgroups of finite p-groups', J. Austral. Math. Soc. 1 (1969), 480-484.

School of Mathematics University of Wales College of Cardiff Senghenydd Road Cardiff CF2 4AG United Kingdom