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THE HELGASON FOURIER TRANSFORM FOR
SEMISIMPLE LIE GROUPS I: THE CASE OF SLy(R)

RUDRA P. SARKAR AND ALLADI SITARAM

We consider a Helgason-type Fourier transform on SLy(R) and prove various results
on L'-harmonic analysis on the full group analogous to those on symmetric spaces.

1. INTRODUCTION

Consider a connected semisimple Lie group G with a fixed maximal compact sub-
group K and let G = KAN be an Iwasawa decomposition. Given a suitably nice function
f on G, one studies the “group-theoretic” Fourier transform f f, where for an irre-
ducible unitary representation =, f(r) = w(f) is an operator on H, (the Hilbert space

on which 7 is realised), defined by n(f) = / f(z)m(z™") dz, the integral being suitably
G

interpreted. However if f is a right K-invariant function, then 7(f) = 0 unless 7 is a
representation of class one. Even when 7 is of class one, n(f)v = 0, if v € {vg}* where
v is the essentially unique K-fixed vector. So m(f) is completely determined by = (f)vp.
As is well known, the class one representations are given by the spherical principal se-
ries {m\}, where X ranges over a suitable subset of af ([11]). All the =) are realised
on close subspaces of L?(K) and vp then is just the constant function on K. Thus one
is led to consider the function of two variables (), k), A as above and k € K, given by

F(A k) = (ma(f)ve) (k). This is essentially the Helgason Fourier transform, which can also
be expressed as [ e x(g)f(g)dg, where e, x are eigenfunctions of the Laplace-Beltrami
e

operator on the Riemannian symmetric space G/K, which are constant on horocycles
([14]). These eigenfunctions serve as analogues of plane waves in the case of Euclidean
space. (For an excellent overview of non-Euclidean analysis, see [12].) In this paper
we introduce a Helgason-type Fourier transform for complex valued functions on the full
group SLy(R), in the spirit of Camporesi [5]. Camporesi’s definition, applied to SL,(R),
would amount to considering only those functions of a particular right K-type, where
K = SO(2). However, no restrictions are made here on the K-types of the functions in-
volved. Secondly, Camporesi’s main interest is in C°-functions, while we are interested
in L'-functions. For a general function f, the inversion formula (see Sections 3, 4) can be
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thought of as an eigenfunction expansion involving a sequence of elliptic operators A, or
alternatively an eigenfunction expansion for the Casimir operator 2. Our formulation is
particularly well-suited to stating various theorems of LP-harmonic analysis on the whole
group, such as theorems of the Wiener-Tauberian type and Benedicks’ Theorem (see
[21, 6] and Sections 5 and 6 of this paper). In Section 7, we describe how SLy(RR) can be
identified with the semisimple symmetric space SOg(2,2)/SOy(1, 2) ([1]) and we translate
our results in the language of harmonic analysis on this specific symmetric space. In a
subsequent paper we shall indicate how the definition of the Helgason Fourier transform
and some of the results of this paper can be generalised to a class of semisimple Lie
groups. One of the reasons for restricting to the case of SLy(R) is that an analogue of
the Wiener—Tauberian Theorem is known only in this case and as matters stand the case
of general semisimple Lie group is intractable. (However some reasonable analogues have
been found for symmetric spaces of rank one ([22, 17]).)

2. PRELIMINARIES

Let G be the group SLy(R) and g its Lie algebra (= sl{2, R)). Suppose that

cosf siné e 0 1 ¢
k = = = .
b (— sin@ cos 0) > at (0 e“) and ne (0 1)

Then K = {kg | 6 € [0,2m)}, A = {a; |t € R} and N = {n¢ | £ € R} are three
particular subgroups of G of which K is the (maximal) compact subgroup SO(2) of G.
Let £ be the Lie algebra of K. Let G = KAN be an Iwasawa decomposition and for
z € G, let x = kga,n¢ be its corresponding decomposition. Then we shall write H(z)
for t and K(z) for k9. Let M be the subgroup {+I;}, where I; is the 2 x 2 identity
matrix. Let M denote the equivalence classes of irreducible representations of M. Then
M= {00, 01} where oq is the trivial representation of M and o} is the unique nontrivial
irreducible representation of M. For convenience we shall denote them simply by 0 and
1 respectively. We define

Z° =27 and Z7°=2Z+1 if 6 =0
and Z°=2Z+1 and Z7°=2Z if c=1.

We also define for n € Z, o(n) =0 if n is even and o(n) = 1 if n is odd.

For n € Z, we define e, by e,(kg) = ¢™. Then {e, | n € Z} is an orthonormal basis
of L?(K,df/2x) and e is the constant function 1 on K.

Let a be the Lie algebra of A, a* its dual, and a¢ the complexification of the dual.
Then af can be identified with C via A &+ Ap, where p is the half sum of the positive
roots for the adjoint action of a.

Foroc € M = {0,1} and A € C we have the principal series representations (74, H;)
of SLy(R) where H, is the subspace of L?(K) generated by the orthonormal basis
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{en | n € Z°}. Representations {7, | (0,A) € M x C} are parametrised such that
{msx | A € iR} are unitary irreducible representations, except for m; g, which is uni-
tary but not irreducible. For a detailed account on the action of the principal series
representations and their reducibility we refer to [2, 4.1 and p. 16}

3. THE HELGASON FOURIER TRANSFORM ON G

Let dz be a fixed Haar measure on G and dks = df/2m be a Haar measure on K such
that dkg = 1. Let p(o,A)dA, A € iR be the Harish-Chandra’s Plancherel measure

restrict[gd to the spherical and the nonspherical unitary principal series depending on
whether ¢ is trivial or not ([2, 10.1]). It is well known that u(o, ) = ]c(cz,\ /\)I_z, where
¢(o, A) is Harish—-Chandra’s c-function. Recall that for any A € C,0 € M, m,n € Z°,
the matrix coefficients @Z:;\"(z) = (m,,,\(x)em,en) of the principal series representation
7y are eigenfunctions of the Casimir operator 2 with eigenvalue (A2 — 1)/4 ([2, p. 18]).
Note that the elementary spherical function ¢, is indeed <I>g'3‘, where ¢ = 0, that is, o
is the trivial representation of M. It also follow from the action of the principal series
representation ([2, 4.1]) that ¢_, = 1. For | € Z*, the discrete series representation
is infinitesimally equivalent to an infinite dimensional subrepresentation of 7, where o
is determined by [ € Z7°. The matrix coefficient ¥;"*(z) of m; is up to a scaler factor
@;’j”(:c) and is an eigenfunctions of Q0 with eigenvalue ({2 —1)/4, where e,,e, are as
follows: r,s € Z7 if | > 0 then r,s > [ and if [ < 0 then r,s < . It follows easily from
the definition of the principal series representation ([2, p. 15]) that forany A€ C,k € K
and n € Z, the functions

ertn 3 b e OVHE R (1)

and e,z > e HDHET RN (g (z71k1))

are again eigenfunctions of ) with eigenvalues (A2 — 1)/4 and ({2 — 1)/4 respectively. A

function is said to be of right type n if f(zks) = f(z)e™ for all z € G and ky € K.

One knows that for a function f of right type n, 2f = A, f, where A, is an explicitly

computable elliptic differential operator (see [16, p. 198]). It is easy to verify that e,

as a function on G is of right type n. Hence Qey 4, = Apergn forall A € C and k € K.
For f € C*(G), (A\,0) € C x M and n € Z° we define

(3.1) f(,\,a, k,n) = / f(z)e-(x+1)f1(z—nk—x)en(K(z—xk-l)) dz.
G

As n determines a unique o0 = o(n) by requiring n € Z°, we sometimes omit o as an
argument of the Fourier transform and write f(/\,k,n) for f()\, o, k,n), if no confusion
arises.

For | € Z* we define,

ZU) ={n€eZ°W|n>1if I>0 and n<! if  <0}.
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For two symbols 0,,0_ we also define
Z(04)={n€2Z+1|n>0} and Z(0-)={n€2Z+1|n<0}.
For n € Z*, let L, be the set

l€Z*| e, isin the unique irreducible subrepresentation of
7o,y infinitesimally equivalent to m '

Precisely,
L,={leZ°™ |nez()}

Note that for every [ € Z* U {04,0_}, Z(!) is an infinite set while for every n € Z*, L, is
a finite set. (Here Ul denotes the disjoint union).
Forl € Z* U {04,0_}, n € Z(l) and k € K we define:

(3.2) F(l, k,n) =/f(z)e—(llHl)H(z-lk-l)e"(K(x—lk-l)) dz,
G

where by |04 or [0_| we mean 0.

For f as above, let f,, be the projection of f in the subspace of right n-type functions,
that is, fo(z) = [ f(zke)e ™ dkg. The function f has an unique decomposition in right-

K

K-types as f = ) fu. In fact when f € C*(G) then this is an absolutely convergent
series in the C™-topology. (When f € LP(G), p € 1, 00), then the equality is in the sense
of distributions.) It can be proved that f(A k,n) = f.(\ k,n), and if g is a function of
right type m # n then g(-,-,n) =0, as a function of ) and k.

A function f € C®(G) (or LY(QG)) is said to be of type (m,n) (or a (m,n)-type
function) if

fkozky) = f(z)e™e™ for all z € G, kg ky € K.
For a function f € L'(G), let fmn be its projection in the subspace of (m, n)-type func-
tions, that is, fmn = / / f(kgzky)e ™% dkg dk,. It can be proved that fi, , itself
KJK

is a function of type (m,n). As before f can be decomposed in the sense of distribution
as f = Z fmn-

For ;a.ny function space F of G, F, will denote its subspace of right n-type functions
while F,, , will denote the subspace of (m,n)-type functions.

For a function f € C(G), let f(a, A) and f(l) denote its (operator valued) principal
and discrete Fourier transforms at the representations 7, , and m; respectively. Precisely:

flo,A) = /G F(@)moa(z ) dz and f(I) = /G f(@)m(z ") dz.
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The (m,n)-th matrix entries of J?(a, A) and f(l) are denoted by f(o, A)mn and f(l)m,n
respectively. Thus

Flo, Nmn = (f(a, MNem, en) = / f(z)@f,j\"(:z:‘l) dz
¢
and f(l)mn = /c; f(2)¥"(z7Y) dz. 1t is easy to verify that

[ f(2)@m @) dr = / Frn(2)@™(27) da,
G G

that is, f(0, Nmn = fmn(0,A). Similarly f()mn = fma(l). Henceforth we shall not
distinguish between (o, A)mn (f(l)m,n) and fm,n(a, A) (respectively, fm,n(k)). As men-
tioned earlier that the integers m,n (of the same parity) uniquely determine a o € M
by m,n € Z°. Therefore we may sometimes omit the obvious o and write ®}" for &'\

and fra(A) (0f F(N)mn) for frn(o, A).
Starting from the usual inversion formula:

Il

folz) = :1% /R Trace(mox(fa)an(z)) u(o(n), A) dX + Z Trace(m(fa)m(z)) o

leLln

one gets the inversion formula:
(3.3) falz) = / / Fa(A k,n)e@ VARG e (K (2% 1)) dk dun.
iRULn J K

We also have the following Plancherel formula:

(3.4) /G |fa(@)|” dz = /M /K |Fa(A k,m)|* dk .

Here du,, restricted to iR is 1/4n% u(o(n), A) d), dA being the Lebesgue measure and dv,
restricted to L, is the counting measure with weight |/|/27 on | € L,. This measure is
really the “Harish-Chandra Plancherel measure” in disguise. Using the decomposition
of f =3 f. and noting that FA k,n) = f.() k,n), we have respectively the inversion

formula and the Plancherel formula for f € C®(G):

(3.5) f(z) = Z 1768 k,n)e(’\‘l)H("lk—x)e_n(K(z'lk'l)) dk duvy,
ek /RUL,. /K

(3.6) /G £ ()|} de = HEZK /Mn /K IF 0 k)| dk dv.

(Recall that, in the above, Ui is the disjoint union, and enters because of the discrete
series representations.)

https://doi.org/10.1017/50004972700035437 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035437

418 R.P. Sarkar and A. Sitaram (6}

4. THE HELGASON FOURIER TRANSFORM FOR L! FUNCTIONS ON G

Let
81={/\€CH§R/\|<1}

be the Helgason-Johnson strip, where R A is the real part of A € C. It is well known that
the elementary spherical functions ¢, A € C of Harish-Chandra ([11]), are bounded if
and only if A € S ([14]). In fact ||¢a[lo < 1for A in that strip. Recall that ¢, is nothing
but @3’2. By comparing with ¢, it can be shown easily that for any m,n € Z°, the
(m, n)-,th matrix coefficient of the principal series representation , », <1>Zj;\" is bounded if
A E S

For L! functions on the symmetric space X = G/K, the natural domain of definition
of the Helgason Fourier transform is the strip S; ([15]). In [24, 17] we made use of these
facts.

Using argument similar to that in {12, 13, 17], where proofs were provided for the
Helgason Fourier transform on symmetric spaces, we can prove most of the following:

THEOREM 4.1. Let f be a functionin L'(G). Then there exists a subset B; = B
of K of full Haar measure (depending on f), such that

() f()k,n) exists for allk € B,n€ Z and A € Sy,

(ii) f(l,k,n) exists for all k € B,n € Z(l) and l € Z* U {0_,0,},

(iii) f()-,n) € LK) and ||f()\,',n)||u(K) < Clifllr ey, for all A € Sy and
n € Z (that is, the constant C is independent of n and ) ),

(iv) for each fixed k € B andn € Z, A — f()\,k,n) is holomorphic on S} and
continuous on S, where 85 is the interior of S,

(v) Hf(/\, -,n)l]L,(K) — 0 as |A| — oo, uniformly in A € S, and inn € Z°,

(vi) for A € R,

f(’\:'an) € L2(K) and ”f(’\v'vn)”m(;() < ”f”u(c) .

Result (v) can be considered as a Riemann-Lebesgue Lemma (contrast with [9,
Theorem 5]). For another variant of this, see Section 8. We only need to justify (ii), that
is, the definition of f(l, k,n) given in (3.2) makes sense for n € Z(l) and f € LY(G).

Suppose that f € L!'(G). We recall that for any [ € Z*, m is (infinitesimally
equivalent to) a subrepresentation of 7, ), where | € Z~°. The carrier space H; of = is
the closed subspace of L?(K) generated by {e, | n € Z(I)}. With respect to a suitably
chosen new inner product m; is a unitary representation and therefore m;(f) exists as a
bounded operator on H;. We take an element n € Z(!). Then —n € Z(-1). We define,

Fl k,n) = (1_i(f)e-n)(K) =/G(f(z)7r_z(Z)e_,.)(k) dr=/G(f(x)ﬂa.m(ir)e—n)(k)df-
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(Note that although the inner product is different, the G-action is the same and hence
the usual definition of m;(f) as a bounded linear operator used above makes sense.) This
is the same as the definition (3.2) of f(I, k,n). This also shows that f(I,k,n) exists for
almost every k € K. Note that for [ € {0_,0,}, m is a subrepresentation of a principal
series representation 7, 5. But as 0 € &), existence of f(l,k,n),l € {0_,0,} for almost
every k follows automatically from the argument given for A € ;.

For f € LY{G), / F(l, k,n)en(k)dk = 0 for | € Z(n) U {0,,0_} and m ¢ Z(l). In
K

particular / f(l,k,n)dk = 0, since 0 ¢ Z(l) for any [ € Z* U {0,,0,}.

K
Formally, as noted earlier, the Fourier inversion formula gives us

~ it Z/ / FOuk, n)e@DHETR N, (K (272 k71)) dk p(o(n), A) dA

”' Z Z/ F, k,n)el=VAC R De__ (K (z7'k7Y)) dk.

nEK l€Ln

Denoting the first term and the second term of right hand side of the above by fp and
fp respectively, it is clear that };()\, k,n) = f~(/\, k,n) for A € iR,n € Z and for almost
every k € K; and f;(l, k,n) = f~(l, k,n) forl € Z*,n € Z(l), and for almost every k € K.
As in the case of the Helgason Fourier transform for symmetric spaces, we now have
the following inversion formula for right K-finite functions on the group:
THEOREM 4.2. Let f be a right K-finite function in LY (G). If for all n,
F(,-n) € L*(iR x K, u(o(n), A) dA dk), then,

=2 / / F(A k,n)el-DHE R e (1 (2- k1) dk duy,
w JiRUL, VK

for almost every x € G, in particular for all Lebesgue points of f.

REMARK 4.3. Note that for a right K-finite function, the sum on the right hand side
of the equation above is only a finite sum. See the discussion preceding (3.3). In [17]
to prove the analogue of the theorem above for symmetric spaces, we appeal to some
old results of [26]. Such results can also be developed for f x ®™(z) and the proof of
Theorem 4.2 follows in a similar way.

5. BENEDICKS’ THEOREM

If f is an L2-function on R", Benedicks [3] proved that if both f and fare zero almost
everywhere outside sets of finite measure, then f = 0 almost everywhere. The exact
analogue of this for the group theoretic Fourier transform for a noncommutative connected
Lie group is still open, although some partial results are known (see [19, 6, 8]). In this
paper we offer an analogue of Benedicks’ Theorem for the Helgason Fourier transform on

https://doi.org/10.1017/50004972700035437 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035437

420 R.P. Sarkar and A. Sitaram 8]

SLy(R). These are related to the results in [19, 6]. Benedicks’ Theorem can be viewed
as a gualitative uncertainty principle in harmonic analysis, which asserts that both a
function and its Fourier transform cannot be simultaneously concentrated.

Let m be a fixed left invariant Haar measure on G. Let us define the measure w on
((RUZ*) x K xZ as:

dw(M k,n) = 1/4n% p(o(n),A)dAdk, (M k,n)€iRx K x Z,
dw(l, k,n) = |[l|/2ndk, (Lk,n) €Z* x KX Z and n € Z(l)
= 0, (L,k,n) €Z* x K xZ and n ¢ Z(l).

Note that this measure is a slight variant of the Harish-Chandra’s Plancherel measure
used in [6].
THEOREM 5.1. Let f be a function in L*(G). If m{z € G | f(z) # 0} < oo and

w{(\ k,n) € (RUZ") x K x Z| f(\ k,n) # 0} < oo,

then f = 0 almost everywhere.

PROOF: As f is L? and supported on a set of finite measure, f € L(G).
Therefore for every fixed n € Z and k € B, where B is a set of full Haar measure
in K, f(A, k,n) is analytic in A on S7. The given condition on f(A, k, n) implies that for

fixed n € Z and almost every fixed k € K, f(\ k,n) =0 for all A € :R.
Suppose that

l ~ _ 1= L
hz) =" > %/Kf(z,k,n)e t+DHGT N (K(z71k71) dk,

n€Zpl€l,

where Zp = {n € Z | f(-, -,n) # 0} is a finite subset of Z.
As eipn : T = e~ DHET" e (K (z71k71) is an eigenfunction of the elliptic
operator Ay, it is a real analytic function on G and hence

/f~(l,k,n)e‘““’”(‘_l"_l’e-n(K(I'lk")
K

is real analytic on G. As Zr is a finite set and for a fixed n, L, is also finite,

h(z) = Z Z/ T, by n)em DA g (fe(27 k1) gk
K

n€Zr l€Lln

is real analytic in £ € G. Now consider the two functions f(z) and h(z). If f is a
reasonably nice function then inversion formula holds pointwise and the two functions
are identical. But since f is only assumed to be in L' N L?, the two functions will agree
at least in the sense of distributions. But we have established that A is real analytic. As
f and h are the same as distributions, they must also be equal almost everywhere. Hence
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f which is equal to a real analytic function almost everywhere cannot have the property
m{z € G| f(z) # 0} < oo, unless it is the zero function. 0

In connection with the theorem above, we remark here that a careful examination
of the proof in [6] leads to Theorem 5.2 below.
We call a set E; C G right K-invariant if for all z € F, and k € K, zk € E,.

THEOREM 5.2. Let E;, be a right K-invariant subset of G of positive Haar
measure and E, be a subset of iR of positive Plancherel measure. If a function

f € LYG) N L*G) is zero on E, while f()\,-,-) = 0 for every A\ € E, then f = 0
almost everywhere.

ProoOF: Fix a right K-type n € Z. As E, is right K-invariant, the right n-th
component f, of f is zero on Ej;.

For almost every fixed k and every fixed n, f(A, k,n) is an analytic function on ;.
Therefore f(/\, k,n) is identically zero on 8, x K X Z, that is, fop = 0. There are only
finitely many discrete series relevant for a right n-type function. Therefore we can show
as in the previous theorem that f,p is analytic, since it involves only a finite sum of
analytic functions. Thus f, is equal to an analytic function almost everywhere, which
contradicts the fact that f, is zero on E;, unless f, = 0 almost everywhere. Asn € Z is

arbitrary f = 0 almost everywhere. 0

REMARK 5.3. For other groups like nilpotent Lie groups et cetera, the analogue of this
result has been proved (see [8]).

6. WIENER-TAUBERIAN THEOREM

As noted earlier that the ®7"" as well as the e) 4, are eigenfunctions of the Casimir
Q of G with eigenvalue (A2 — 1)/4. Thus, from the (formal) self adjointness of , for
sufficiently nice f,

(¥’ -1

(61) (erm,n(A) = _4_‘;';"’"(/\) and (Qf)~(,\, "n) _ (/\2 _ 1) -

1 (A, -, n).

Here fnn()) is / f()d7"(z7!) dz.
G -

We have also noted that if f € L'(G) and A € iR, then f(A,-,n) € L?*(K). For each
fixed A € iR, we have the Fourier series:

62)  fhnam) =2 Y FiaWVe and [[FO,m)a = 3 [FinW[™
ieZe(n) i€Zo(n)

For some ¢ > 0, let 7; be the strip 7 = {A € C | |RA| < 1 +¢} and T be
its interior. Let us define £.(G) to be the set of measurable functions on G such that

/ |f (z)|e€d(1K'K) dz < oo, where d is the canonical distance function for G/K coming
e
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from the Riemannian structure induced by the Cartan-Killing form restricted to p. Here
g = E® p and p can be identified with tangent space at eK of G/K. Then,

(i) C®(G) C L(G) C L'(G), and hence L.(G) is a dense subset of L!(G).

(ii) for f € L.(G), f() k,n) exists for all (A, k,n) € T; x By x Z, is holomorphic
in 7.° and continuous in 7, in ), for each k € By and n € Z*, where By C K
is a set of full Haar measure, obtained in a fashion similar to Theorem 4.1.
(One needs to use some simple estimate of the elementary spherical function
([11, Proposition 4.6.1 and Theorem 4.6.4]) along with Fubini’s Theorem.)

(i) for f as above and n € Z, f(A,-,m) is in LY(K) for A € T; and
”f(/\, “ n)”L,(K) — 0 as |A| — oo, uniformly in 7;.

(iv) ife =0, then £L,(G) = L'(G) and T; reduces to S;.

The following analogue of the Wiener-Tauberian Theorem for (n,n)-type L!-
functions of G was proved in [21] extending a result of [4], where the result was proved
for n=0:

THEOREM 6.1. Fix an integer n. Let F be a subset of L}(G), . Suppose that
for some ¢ > 0, the (n,n)-th Fourier transform ﬁm of every f € F can be extended

holomorphically on an augmented strip T, = {A € C | |[RA| < 1 + ¢} and IAIlim |f()\),,,,,|
—ro0

= 0 on 7T.. Assume further that {]‘;”. | f € F} does not have a common zero on T; U L,
and that there exists f® € F which satisfies

eltl

lim sup|f°(t)n,,,|e° >0 forall a>0.

|tj—ro00

Then the ideal generated by F in L'(G)n is dense in L' (G), p.

With this preparation we now offer the following versions of the Wiener-Tauberian
Theorem for G.

THEOREM 6.2. Let F be a subset of L (G) for some ¢ > 0. Suppose that

Zy={(c,)) € {0,1} x T; | f(0,),,') =0 forall feF}
and Z, = {l € Z°U{0-,0;}| f(,-,) =0 forall feF}.

If Z, U Z, is empty, / f(z)dz # 0 for some f € F and there exist f € F,j =0,1
/G
such that for somen € Z?,j =0,1

(6.3) A lgr?AS;up 1A ) Laeye™” > 0, forall a >0,
€1R,|A|— 00

then the (two-sided) G-translates of the functions in F span a dense subspace of L'(G).
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REMARK 6.3.
(i) / f(z) dz # Ois really the condition f(—1, -,0) # 0 as a function of k € K.
G
(i) In [21, 25], it was assumed that the Fourier transforms of the functions

in F exist in an augmented strip. This essentially amounts to demanding
that the functions are in a suitable weighted L!-space.

(iii) The condition (6.3) says that F does not go to zero too rapidly at infinity.
First a few remarks about the necessity of the conditions: “nonvanishing on the
Helgason—Johnson strip”, Z, being empty and / f(z)dz #0.
G

For f € LYG), let W be the closed span of the (two-sided) G-translates of f.
Suppose that for some ¢ € M, f(o,),-,") =0 on K x Z° for some A € S;. That is,

/ f(2)eMVHE R e (K (g7 kY dz =0
G

forall k € K and n € Z°.
We use the following symmetry property of the matrix coefficients of the principal
series representations: for n € Z%,z,y € G, A € C,

®;N(y7'z) = (ma(z)en, T_x(y)en) (as (Mor (27! )em, €n)
= (em: 7, _x(z)en) [2, p. 16))
=/ e—(A+1)H(z“k")e_n(K(I—lk—l))e—(—A+l)H(y“k‘1)en(K(y—lk—l)) dk.
K

Using this one can show that depending on o is trivial or not, either f x ¢, = 0 as well
asqb,\*fEOorf*ti)}:f\EOaswellasd)}:f\*fEO.

For example if o is trivial:

/ Vf(z)pa(z')dz =0 and / f¥x)pa(z"t)dz =0, forall y€G,
G G

where ¥ f and fY are respectively the left and right translates of f by y € G. This amounts
to saying that | g(z)ér(z™')dz = 0 for all g € W, since W is the smallest closed two-

sided translationcinvariant subspace containing all ¥f and f¥. But ¢, is bounded when
A € 8y, so it defines a linear functional on L'(G). Therefore W is a proper subspace of
L'(G), and we have therefore proved the necessity of the nonvanishing condition on the
Helgason—Johnson strip S;. The necessity of the nonvanishing condition on the discrete
series can be established by an analogous argument as the matrix coefficients ¥7"" are
also bounded and hence define linear functional on L*(G).

For SLy(R), the necessity of some kind of not too rapidly decreasing condition on the
Fourier transform was established in [10, Lemma 7.13 and Theorem 7.2] (see also the
comments after {9, Proposition 5.1]).
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PRrROOF: For a function & in £.(G) we define h* by h*(z) = h(z-1). If h is of left
K-type n then it is not hard to show that h* * h, is of (n, n)-type and is also in £.(G).
Suppose that g = fO* * f0 for n € Z°. Then g is a (n,n)-type function in £.(G)
which is in the two-sided L'(G)-module generated by f°.
For every A € C for which f° can be defined, we have, f’\o‘i,n(—X) = f’bi’n()\), since

(Tor (27" )em, en) = (em, T, _x(z)en) ([2, p. 16]).

As noted earlier, for A € iR,
PO = B n) =2 30 Pua(We and [P m)[age = 31PN

On the other hand,
G Xnpn = Zlfo,-,n()\)lz for all A €iR.

Therefore g satisfies for n € Z°

(6.4) limsup [§(M)nnle®™ >0 forall a> 0.
AEIR,|Aj—r00
If we work with f! instead of f° then we get another function say g’ which satisfies
the inequality above for some n € Z1.
The following is essentially proved in [21]. Fix an integer n. Then n determines

aoc € {0,1} byn € Z°. Given A € 7; and f € F with f(o,,-,+) # 0, there exists
a (n,n)-type function f) € L.(G) in the two-sided L'(G)-module generated by f with
faX)nn # 0 except for the following cases:

li] (o,A) =(0,-1) and n =0,

[ii] (o,A)=(1,0) and n € 2Z +1,

[ii] (o,A) =(0,1) and n € 2Z, n #0.
Fﬁr these we have the following remedy. For [i] we get a function f.; such that
f-1(=1)o0 # 0 in the L'(G)-module generated by the function f € F such that

/f(x) dr # 0. For [ii] a function fo such that fo(1)nn # O can be found in the L
G

module generated by the function f € F such that ﬁ)(0+,~,-) #0 (f~(0_,-,-) # 0) if
n > 0 (respectively, n < 0). For [iii] a function f; such that fl(l),,,,, # 0 can be found in
the L!'-module generated by the function f € F such that the discrete Fourier transform
fl(l, ) #0 (f(—l, -y+) #0) if n > 0 (respectively, n < 0).

We also note that for a function f of type (n,n), / f()\, k,n)e_,(k)dk = ﬁ,,n()\).
K

Therefore by (iii) in the discussion preceding Theorem 6.1, f,\(u)n,n — Oas |v| — o©
uniformly for v € 7.
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Consequently, the family {f,} U {g} satisfies the conditions of Theorem 6.1, and so
the L'(G), n-module generated by the family above is dense in L'(G)n,. Since {f,} and
g are contained in the L!(G)-module generated by F in L'(G), it follows that the closed
span of the two-sided G-translates of the functions in F contains L'(G), , for alln € Z.

For every t > 0, let us define a (n, n)-type functions h, by the data il\t(/\)n,n = et for
A € Cand I?,(x\)m =0 forr # n or s # n. In view of the embedding of the discrete series
in the principal series, the values of ﬁ}m at the relevant discrete series representations
are automatically determined. Then h, € C?(G), the Harish-Chandra Schwartz space
(see (2, p. 13]), for every p € [0,2]. It can be shown, as in the K-biinvariant case, that
for any function f € L'(G) of right type n, f * hy — f in L! as t — 0 (see [23]).
This shows that the closed span of the two-sided G-translates of F contains L'(G), for
all n € Z. As the smallest such closed subspace of L!(G) is L}(G) itself, the theorem is
proved. 0

REMARK 6.4. In an attempt to understand the nature of functions which satisfy the
growth condition (6.3), we see that if a function F in F is in C®(G), then a Phragmén-
Lindeldff argument combined with the Paley-Wiener Theorem guarantees that it satisfies
the required not-too-rapidly-decreasing condition. We shall see below that if lF(z)l
< Ce~2d=K.K)? then we can apply an analogue of Hardy’s uncertainty principle due to
Cowling, Price and Sitaram ([7]) to get the same conclusion about F. We also have an
alternative version where the growth condition on the Fourier transform is replaced by a
condition requiring that the collection F has functions which are not “too smooth”.
THEOREM 6.5. Let F be a subset of L.(G), for somee > 0. Let the sets Z, and
Z, be as in Theorem 6.2. If Z, U Z, is empty, / f(z)dz # 0 for some function f € F
and if there exist functions F, H in F with nonzecro even and odd part respectively such
that one of the following conditions is satisfied:
(a) |F(z)| < Cemodak:K) and |H(z)| < Ce~*4=K:KY for some positive con-
stants o and C,
{b) oneoftheright K-finite components of the even (odd) part of F (respectively,
H ) is not equal to a real analytic function almost everywhere,
(c) a right K-finite component of the even (odd) part of F' (respectively, H )
is zero on a set E (respectively, E, ) of positive measure.
(d) the even part of F and odd part of H are zero on right K-invariant sets
of positive measures, then the two-sided G-translates of the functions in F
span a dense subspace of L'(G).
PRroOF: If we show that F' and H satisfy condition (6.3), then this theorem will
follow from Theorem 6.2.

(a) As F has nonzero even component, F,, # 0 for some m,n € 2Z. Since
d(zK, K) is K-biinvariant, |Fa(z)] < Ce™4@KK?  Now we take 8 = 1/3a. Then it
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follows that

lim sup |ﬁm,n(z\)e‘3|’\|z| >0,
|A|—ro0,AEIR

because assuming that the right hand side equal to 0 will lead to the conclusion that F,, ,
and fm,,, both are very rapidly decreasing, which in turn will lead to the contradiction
that F,, , = 0 by the analogue of Hardy’s Theorem proved in [7]. This contradicts our
hypothesis that F' has nonzero even component.

Since B

”F(’\"’")”iz(x) = Z Iﬁi,n()‘)r’
i€zZo(m)

condition (6.3) will be guaranteed for F. A similar argument works for H.

(b) Suppose that the right n-th component of F, F,, is not equal to a real analytic
function almost everywhere for some n € Z. If F' does not satisfy (6.3), then

(6.5) IFO )2y < Ce for all A € iR

for some constant C and some o > 0. Then by appealing to Plancherel Theorem (3.6)
and by observing that the Plancherel measure u(o, A) is at most of polynomial growth
on iR (see (6.7) below), the principal part of Fy,, namely F,p is clearly in L(G).

By remarks made earlier, if g is a sufficiently nice function, for example in C°(G)
then

k

(Ag)~(’\7 '7"') = (_/\2—4——]'25

(A, -, n).

We consider 2F,, in the sense of distributions. If k is an L2-function on G of fixed
right-type n, such that (A2 — 1)/4 k() k,n) is also in L?(a* x K, u(A) dA dk), then it is
not hard to show that A,h, which is a priori only defined as a distribution, is actually in
L*(G) and (Anh)Y (A, - n) = (A2 = 1)/4 h(}, -, n).

Now Fn(,\, -,n) is very rapidly decreasing in ), so A, F,p € L*(G) and

(V=1

(AnFup) (A, n) = For(), -, n).

By repeated application of the argument above, we see that A™F, p is in L%(G) for any
positive integer m and

P l)m~

(6.6) (A7 Far) (A m) = wr (A, -, 7).

As A, is elliptic, Sobolev theory implies that F,,p can be taken to be C*® (that is, it is
equal almost everywhere to a C*®-function).
From the Plancherel Theorem (3.6), we have, for all positive integers m,

m 1 w1
AT Farlls = 35 [Rll(An FapY ) [fasey (0 (), X) dA.
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Using (6.5) and (6.6), we see that
®© A2 _]ym
AT Fapll3 < C/o (——-—4 ) e u(a(n), A) dA.
We use the following estimate of u(o, A) ([2, 10.2]):
(6.7) |#(a,\)] < (1 +|A]) forall A€iR and o€ M,

and get, -
|ArFapl2 < C / xim-lemed gy,
0

Note that the constant C is independent of m. Thus
(6.8) AR Faell3 < CP™(2m)!

for some constant C; and for all positive integers m. By an elliptic regularity theorem of
Kotaké and Narasimhan ([18, Theorem 3.8.9]), Fy,p is real analytic. A slight variation
of the proof of Theorem 5.1 shows that the discrete part F,,p of F,, is also real analytic.

Hence F, is real analytic, a contradiction. Thus F;, satisfies (6.3). Similarly we can
show that H also satisfies (6.3) and hence the theorem is proved.

(c) We have shown above that if a function does not satisfy (6.3), then all its right
K-finite components are real analytic almost everywhere. Hence none of them can be
zero on a set of positive measure.

(d) If a function is zero on a right K-invariant set, then all the right K-finite
components of the function are also zero on that set. Therefore we can apply (c). a

REMARK 6.6. As in [17], we could have also discussed results for L' " L?,1 < p < 2,
but for the sake of brevity, we have chosen to drop them.

7. SL2(R) AS THE HYPERBOLIC SPACE X = S00(2,2)/S00(1,2)

Although the results of this section are really results of Sections 5 and 6 in a different
guise, we decided to include them in the hope that the results here can be formulated
and proved for other generalised hyperbolic spaces in the sense of {27, 20].

For integers p 2 0,q = 1, suppose that

SO(p,q) = {A € SLy1(R) | ATJA = J}

L 0
0 -1,
When p = 0, SO(0, ¢) is naturally identified with SO(g). Let SOq(p, q) be the connected
component of the identity element of SO(p, q). If p 2 1, a matrix A € SOy(p—1,q) can be

where J = AT is the transpose of A and I, is the n x n identity matrix.
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1
identified with the matrix (0 f;) in SOp(p, q). In this way for p > 1,9 2 1 we consider

SO¢(p — 1,49) as a closed subgroup of SOy(p, ¢). Thus X = SO¢(p,q)/SOs(p — 1,¢) is a
homogenous space under left SOq(p, g)-action.

For z,y € RP*9, we define (z,y) = z7Jy. Then (-,-) is a nondegenerate quadratic
structure on RP*9 of signature (p,q) which is preserved by SO(p,g). Consider the non-
compact hypersurface, {x € R | (z,2) = 1}. Then SOq(p, q) acts transitively on this
surface and the isotropy subgroup of the point (1,0, ...,0) in it, is precisely SOq(p—1, q).
Thus X can be identified with this hypersurface.

We shall take up the particular case p = ¢ = 2, that is, the homogenous space
X = S0(2,2)/S0¢(1,2) under the left SOy(2, 2)-action and for z,y € R*,

(z,y) = T191 + TaY2 — Tays — Tals.

For the rest of the paper G will denote SOg(2,2) instead of SLy(R). Let K be SO(2),
as in the previous sections. Then Y = K x K is a maximal compact subgroup of G. A
point (kg, ky) € Y is identified with a point in R* as:

(kg, k) —> (cos 4, siny, sin 1Py, cos 1hy),

where 1, = 8 — ¢ and ¥ = 0 + ¢. Every element £ € X can be written as
(ch tcosyy,ch tsiny,sh tsiny,,sh tcosyy),t > 0,91,9, € [0,27]. This is called the
polar decomposition of z and we write z = z(y,t), where y = (k¢,ky) € Y and 6, ¢
are related to ¥;,v, as above. For r = z(y,t), by |z| we mean t. The form (-,-) in-
duces a pseudo-Riemannian structure on R* and the corresponding Laplace-Beltrami
. 9? 0? 9? . . .
operator is 0 = 6_1:% + —8:5—% - 6_zg - 6_2:"‘;' The hypersurface X is also equipped with the
pseudo-Riemannian structure inherited from R? and the corresponding Laplace—Beltrami
operator Ay is really the part of (I tangential to X. There exists a unique (up to mul-
tiplication by a positive scaler) measure dz on X which is G-invariant. The algebra of
(left) G-invariant differential operators on X is generated by Ay. Foreach A € C,y €Y
and ¢ € {0, 1} consider the function on X defined by:

A-1 S
ee,,\,y T |(I’ y)l sxgn(:z;, y)’

where y is now thought as a point in R%, and (-, -) is the quadratic form defined earlier.
Then this is a locally integrable function on X with respect to dr on X, at least for
A € C with R\ > 1 ([1]), and is an eigenfunction (in the sense of distributions) of Ay
with eigenvalue A2 — 1.

For a suitably nice function f, fx is defined on {0,1} x Y x C (or some subspace
there of) by:

Fx(e hy) = /X (.0 sign(z, 1) £ (z) de,
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for all those A for which the right hand side exists. Sometimes we shall also write
Fx(e, A\ y) as fx(e, A ki, kz) where y = (ky,kp) € K x K = Y. It is also possible to
identify X with SLy(R) and the left-action of G on X corresponds to the two sided action
of SLy(R) on itself. Under this correspondence dz is just the Haar measure on SLy(R)
(see [1] for details). Taking into account these identifications, the subspace L. (SL2(R))
of L' (SLy(R)) defined in Section 6, carries over to a subspace £.(X) of L'(X) and the
Casimir  of SL,(R) corresponds to a multiple of Ax. Further it can be shown that for
f € LX), fx(e, ), y) exists for each y in a set of full measure on Y as a “meromorphic
function” (see explanation below) on the augmented strip Sj4e = {XA € C | [RA| < 1+¢},
with possible simple poles at 0 or —1 depending on whether ¢ is 0 or 1. The connection
between fx(e, A, y) and the Helgason-Fourier transform f(, k, n) defined in Section 3 is
given by:

(71) e NF ki s) = (Fele, AT s o

for s € Z° where c¢2**(A) are certain c-functions (see [1] and (2, p. 23-24]). In fact
the above may be viewed as the definition of fx. By f~x being meromorphic, we mean
that for k; € K for which the left side of the expression above is defined, the expression
on the right hand side is meromorphic for each s € Z¢, if not always holomorphic.
We also say f~(6,)\, -) has a pole at g if there exists a k € K and s € Z¢ such that
A (f}(e, Ak, -),e-,)L,(K) has a pole at ).

On the left hand side of (7.1), f is considered as a function on SLy(R) while on the
right hand side it is viewed as a function on X via the identification referred to above.
Apart from this, there is a discrete part of the Fourier transform of f which in [1] enters
in the guise of certain residues calculated at the poles of the c-functions described in {2].
Without going into the details, we merely remark that this can be avoided by suitably
defining the discrete part f~x,D(l, v),l € Z* U {0_,0,}. This is related to f(l, k,n) by

(72) c:'s'+(’\)f(|l|: klv S) = (fX,D(ly kh ')7 e’)L’(K)’

for s € Z(!). (Obviously this comes from the discrete series and the mock discrete series
representations of SLy(R). Again one can take the relation above as the definition of the
discrete part of fx.)
ksvo O
0 kyo
naturally on X. Suppose that Yy = {(e, ko) | ks e K }, where e is the identity element of
K. Foraset S C X, Y,S is the set of all (left) translations of S by elements of Y. We
call a set S C X, Yp-invariant if ¥,S = S. Let m be a fixed G-invariant measure on X
and let u be the Plancherel measure on {0, 1} x iR defined in {20, 1]. Then we have the
following two versions of Benedicks’ Theorem. These are essentially the results proved in
Section 5 expressed in our new language.

Note that an element y = (kg, k) in Y sits inside G as ( ) So, Y acts
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THEOREM 7.1. For f € L*(X), suppose that A; = {z € X | f(z) # 0}. If
m(YpAy) < oo and

u({(eX) € (0.1} xR | Fx(e,),) #0}) < o0

then f = 0 almost everywhere.

THEOREM 7.2. Suppose that f € L%(X), S is a Yp-invariant subset of X of
positive measure and S’ is a subset of iR of positive Plancherel measure. If f is zero on
S while f(g, A,-) is zero on S’ for e € {0,1}, then f = 0 almost everywhere.

For some (carefully chosen) £ > 0, suppose that T, = {0,1} x Si;¢ \ {(0,0), (1, -1)}.
We have observed earlier that for f € £.(X) and for fixed y in a full measure set in Y,
A= fx(e,/\,y) is analytic on Sy, \ {0} or on Sy \ {—1} depending on &€ = 0 or 1
respectively. With this preparation we are now ready to state the analogue of Wiener’s
Theorem on X.

THEOREM 7.3. Let F be a subset of L(X) for some ¢ > 0. Suppose that

Zy={(e,\) € T | fx(e,\,) =0 forall fe F}
and Zy={leZ u{0-,0,}| fxp(l,)=0 for all f € F}.

If
(i) Z,U Z, is empty,
(ii) there exist fo, fi € F such that ﬁ,X(O, A, ) has a pole at 0 and f~1x(1, Ac)
has a pole at -1,
(iii) there exists ¢’ € F, j = 0,1 such that
(7.3) lim sup ||g~J'X(j, A, -)||211,(Y)e""'uI >0 forall a>0,

A€IR" JA[— o0

then the left G-translates of the functions in F span a dense subspace of L'(X).

REMARK 7.4. Condition (ii) will guarantee that there exists r € Z° and s € Z! such
that fo(0,k1,7) # 0 and fi(1, k2, 5) # O for some ki, k; € K. Because, otherwise foy
( fi x) will not have a pole at 0 (respectively, at ~1) when ¢ = 0 (respectively, € = 1) (see

(7.1)).

The only other point which may be obscure in this reformulation is why the necessary

condition / f(z)dz # 0 (see Theorem 6.2 and Theorem 6.5) is absent in the hypothesis.
G

Indeed from the hypothesis we know that there exists f € F such that fx(O, -1,)#0.
Therefore there exists s € Z° and k; € K such that (fx(0,-1,k71,.), e-,)Lz(K) # 0. That

is cf,"'*’(—l)f(—-l, ky,s) # 0. But since cg®*()) has a zero at —1 for every nonzero even
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s (see [2, Proposition 6.1]), we conclude that s = 0, that is, f(—1, k1,0) 3 0. Recall that
the trivial representation is a subrepresentation of the principal series representation 7 —;.

o~

Therefore f(—1)on = / f(x)®%7(z) dz = 0 for any nonzero n and hence F(=1,k;,0) #0
G

implies that f(—l)o,o # 0. This is the same as / f(z)dx # 0 because ¢_, = cI>°_‘1’ =1
G

REMARK 7.5. Condition (iii) above can be replaced by the following: there exist two
functions g,, g» € F, with nonzero even and odd part respectively, such that they satisfy
one of these conditions:
a. lgl(z)| < Ce#l* and lgz(z)l < Ce~°* for some C,a > 0,
b. m(YpA,) < o0 and m(YpAg,) < oo, where Ay, ¢ = 1,2 are as in Theorem
7.1,
c. ¢ and g, are zero on a Yp-invariant set of positive measures.

8. CONCLUDING REMARKS

As in the case of symmetric spaces, one can also define the Radon transform and
relate it to the version of the Helgason Fourier transform defined in this paper. These
questions will be taken up in a forthcoming paper.

We end this section by stating the following variant of the Riemann-Lebesgue Lemma,
(Theorem 4.1 (v)). If f € L}(SLy(R) then for any o € M and n € Z°, f()\, o,k,n) —0
as |A| — oo uniformly on &;. This can be proved using Radon transform techniques in
the same manner as in [13] for symmetric spaces.
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