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THE HELGASON FOURIER TRANSFORM FOR
SEMISIMPLE LIE GROUPS I: THE CASE OF SL2(E)

RUDRA P . SARKAR AND ALLADI SITARAM

We consider a Helgason-type Fourier transform on SL2(M) and prove various results
on inharmonic analysis on the full group analogous to those on symmetric spaces.

1. INTRODUCTION

Consider a connected semisimple Lie group G with a fixed maximal compact sub-
group K and let G = KAN be an Iwasawa decomposition. Given a suitably nice function
/ on G, one studies the "group-theoretic" Fourier transform f *-> f, where for an irre-
ducible unitary representation n, /(TT) = TT(/) is an operator on H* (the Hilbert space

on which n is realised), defined by ir(f) = / /(X)TT(X"1) dx, the integral being suitably
JG

interpreted. However if / is a right if-invariant function, then n(f) = 0 unless TT is a
representation of class one. Even when TT is of class one, n(f)v — 0, if v € {wo}1- where
vQ is the essentially unique if-fixed vector. So n(f) is completely determined by n(f)v0.
As is well known, the class one representations are given by the spherical principal se-
ries {TIA}, where A ranges over a suitable subset of a£ ([11]). All the TTA are realised
on close subspaces of L2(K) and v0 then is just the constant function on K. Thus one
is led to consider the function of two variables (A, A;), A as above and k G K, given by
/(A, k) — (•K\(f)vo)(k). This is essentially the Helgason Fourier transform, which can also

be expressed as / e\,k(g)f(g) dg, where e\k are eigenfunctions of the Laplace-Beltrami
JG

operator on the Riemannian symmetric space G/K, which are constant on horocycles
([14]). These eigenfunctions serve as analogues of plane waves in the case of Euclidean
space. (For an excellent overview of non-Euclidean analysis, see [12].) In this paper
we introduce a Helgason-type Fourier transform for complex valued functions on the full

group SL2(K), in the spirit of Camporesi [5]. Camporesi's definition, applied to SL2(R),
would amount to considering only those functions of a particular right K-type, where
K = SO(2). However, no restrictions are made here on the if-types of the functions in-
volved. Secondly, Camporesi's main interest is in C~-functions, while we are interested
in Z^-functions. For a general function / , the inversion formula (see Sections 3, 4) can be
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thought of as an eigenfunction expansion involving a sequence of elliptic operators An, or
alternatively an eigenfunction expansion for the Casimir operator fi. Our formulation is
particularly well-suited to stating various theorems of I^-harmonic analysis on the whole
group, such as theorems of the Wiener-Tauberian type and Benedicks' Theorem (see
[21, 6] and Sections 5 and 6 of this paper). In Section 7, we describe how SL2(R) can be
identified with the semisimple symmetric space SO0(2,2)/SO0(l, 2) ([1]) and we translate
our results in the language of harmonic analysis on this specific symmetric space. In a
subsequent paper we shall indicate how the definition of the Helgason Fourier transform
and some of the results of this paper can be generalised to a class of semisimple Lie
groups. One of the reasons for restricting to the case of SL2(R) is that an analogue of
the Wiener-Tauberian Theorem is known only in this case and as matters stand the case
of general semisimple Lie group is intractable. (However some reasonable analogues have
been found for symmetric spaces of rank one ([22, 17]).)

2. PRELIMINARIES

Let G be the group SL2(K) and g its Lie algebra (= sl(2,R)). Suppose that

/ cos#
\— sin0 cos 8

Then K = {kg \ 9 G [0,2TT)}, A = {at \ t € E} and N = {n? | £ G R} are three
particular subgroups of G of which K is the (maximal) compact subgroup SO(2) of G.

Let 6 be the Lie algebra of K. Let G = KAN be an Iwasawa decomposition and for
x € G, let x = kgatn^ be its corresponding decomposition. Then we shall write H(x)

for t and K{x) for kg. Let M be the subgroup {±/ 2 } , where I2 is the 2 x 2 identity
matrix. Let M denote the equivalence classes of irreducible representations of M. Then
M = {a,,, o{\ where Co is the trivial representation of M and G\ is the unique nontrivial
irreducible representation of M. For convenience we shall denote them simply by 0 and
1 respectively. We define

If = 2Z and lra = 2Z + 1 if a = 0

and If = 2Z + 1 and Z~ff = 2Z if a = 1.

We also define for n G Z, a{n) — 0 if n is even and a(n) = 1 if n is odd.

For n G Z, we define en by en{kg) = einB. Then {en | n G Z} is an orthonormal basis

of L2(K, dd/2-n) and e0 is the constant function 1 on K.

Let a be the Lie algebra of A, a* its dual, and oj the complexification of the dual.

Then a£ can be identified with C via X H- \p, where p is the half sum of the positive

roots for the adjoint action of o.

For a G M = {0,1} and A G C we have the principal series representations (7rffiA, Ha)

of SL2(K) where Ha is the subspace of L2(K) generated by the orthonormal basis
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{en | n € Z"}. Representations {7rffiA | (<r, A) e M x C} are parametrised such that
{"•ff,A | A 6 iR} are unitary irreducible representations, except for TT^O, which is uni-
tary but not irreducible. For a detailed account on the action of the principal series
representations and their reducibility we refer to [2, 4.1 and p. 16].

3. T H E HELGASON F O U R I E R TRANSFORM ON G

Let dx be a fixed Haar measure on G and dkg = dQ/2ir be a Haar measure on K such

that / dkg = 1. Let fj,(cr, A)dA,A € tE be the Harish-Chandra's Plancherel measure
JK

restricted to the spherical and the nonspherical unitary principal series depending on
whether a is trivial or not ([2, 10.1]). It is well known that fj.(a, A) = \c(a, A)|~ , where
c(a, A) is Harish-Chandra's c-function. Recall that for any A € C,a € M,m,n € Z",
the matrix coefficients $™'"(x) = (nai\(x)em, en) of the principal series representation
7rff]A are eigenfunctions of the Casimir operator fl with eigenvalue (A2 - l ) /4 ([2, p. 18]).
Note that the elementary spherical function <j>\ is indeed ^° '° , where a = 0, that is, a
is the trivial representation of M. It also follow from the action of the principal series
representation ([2, 4.1]) that 0_i = 1. For I € Z*, the discrete series representation 7r(
is infinitesimally equivalent to an infinite dimensional subrepresentation of 7rCT]|/| where a
is determined by / € Z~"'. The matrix coefficient $p*(i) of TTJ is up to a sealer factor
$£m(aO aQd is an eigenfunctions of fi with eigenvalue (I2 — l ) /4 , where er ,es are as
follows: r,s € Z", if I > 0 then r,s>l and if I < 0 then r,s < I. It follows easily from
the definition of the principal series representation ([2, p. 15]) that for any A € C, k £ K
and n € Z, the functions

ex,k,n : x ^

and e,,fc,n : x H-

are again eigenfunctions of fi with eigenvalues (A2 - l ) /4 and (I2 — l ) /4 respectively. A
function is said to be of right type n if f(xkg) = f(x)einB for all x € G and kg € K.

One knows that for a function / of right type n, Qf = A n / , where An is an explicitly
computable elliptic differential operator (see [16, p. 198]). It is easy to verify that ex,k,n
as a function on G is of right type n. Hence fieA,fc,n = AneA,fc,n for all A e C and k e K.

For / 6 C«(G), (A, a) € C x M and n € 1" we define

(3.1) f(X,a,k,n) = [ f(x)e-^^I-lk^en{K(x-lk'1)) dx.
JG

As n determines a unique a = a{n) by requiring n € Z", we sometimes omit cr as an

argument of the Fourier transform and write f(X,k,n) for f(X,a,k,n), if no confusion

arises.

For / e Z* we define,

= {n 6 Z-ff( l ) | n > I if J > 0 and n < I if Z < 0}.
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For two symbols 0+,0_ we also define

Z(0+) = {n € 2Z + 1 | n > 0} and Z(0_) = {n e 2Z + 1 | n < 0}.

For n e Z*, let Ln be the set

€ Z* | en is in the unique irreducible subrepresentation of
7rffi|/| infinitesimally equivalent to TT; }•

Precisely,

Note that for every Z € Z* U {0+, 0_}, Z(Z) is an infinite set while for every n G Z*, Ln is
a finite set. (Here LJ denotes the disjoint union).

For Z € Z* LJ {0+, 0 . } , n 6 Z(Z) and A: € if we define:

(3.2) f(l,k,n) = f f{x)
JG

dx,

where by |0+| or 10 | we mean 0.

For / as above, let /„ be the projection of / in the subspace of right n-type functions,

that is, fn{x) = / f(xk$)e~mB dk$. The function / has an unique decomposition in right-

K-types as / = £ / „ . In fact when / 6 C°°(G) then this is an absolutely convergent
n

series in the C°°-topology. (When / 6 W(G), p 6 [1, oo), then the equality is in the sense
of distributions.) It can be proved that /(A, k, n) = /n(A, k, n), and if g is a function of
right type m^n then g(-, •, n) = 0, as a function of A and k.

A function / £ C£°(G) (or Ll{G)) is said to be of type (m,n) (or a (m,n)-type
function) if

f(kgxkt) = /(z)ei mVn* for all x € G, kg, k+ e K.

For a function / € Ll(G), let /„,,„ be its projection in the subspace of (m, n)-type func-

tions, that is, /„,,„ = / / f (kexk<t,)e~imBe~in<t> dke dk,),. It can be proved that fm<n itself

is a function of type (m, n). As before / can be decomposed in the sense of distribution

as / = X) fm,n-
m,n

For any function space T of G, !Fn will denote its subspace of right n-type functions
while Tmin will denote the subspace of (m, n)-type functions.

For a function / e Cf{G), let f(a, A) and f(l) denote its (operator valued) principal
and discrete Fourier transforms at the representations ir^x and 7T; respectively. Precisely:

= f
JG

and
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The (m, n)-th matrix entries of f{a, A) and f(l) are denoted by /(<r, A)min and f{l)m,n

respectively. Thus

f(a,X)m,n = </(a,A)em,en> - /
JG

and /(0m „ = / f(x)V?-n(x-l)dx. It is easy to verify that
JG

(x)^f(x~l)dx = f fm,n(x)K"(*-l)dx,
JG

that is, f(a, A)m,n = /m,n(<x, A). Similarly f{l)m,n — /m,n(0- Henceforth we shall not
distinguish between f(a, A)m,n (/(0m,n) and /m,n(<7, A) (respectively, /m,n(fc)). As men-
tioned earlier that the integers m, n (of the same parity) uniquely determine a a € M
by m,n £ Z". Therefore we may sometimes omit the obvious a and write $™'n for $™^n

and /m,n(A) (or /(A)m?n) for An,n(ff,A).

Starting from the usual inversion formula:

one gets the inversion formula:

(3.3) /„(*) = f f U\,k,n)e^-l^x'lk'^e_n{K{x-lk-')) dk dvn.
JiRUU JK

We also have the following Plancherel formula:

(3.4) f \fn(x)f dx = f f\fn(X,k,n)\2dkdun.
JG JmuLn JK

Here dvn restricted to iW is l/4?r2 ii(a{n), A) dX, dX being the Lebesgue measure and dvn

restricted to Ln is the counting measure with weight |Z|/2TT on / € Ln. This measure is
really the "Harish-Chandra Plancherel measure" in disguise. Using the decomposition
of / = 53/n a n d noting that f(X,k,n) — fn(X,k,n), we have respectively the inversion

n
formula and the Plancherel formula for / € C£°(G):

(3.5) f(x) = Y/ f f f{\,k,n
~ JmuLn JK

dk
_ Jan ir._ J K

n€K

(3.6) f\f(x)\2dx = T [ [\f(X,k,n)\2dkdun.
JG ~JiRULnJK

n£K

(Recall that, in the above, LJ is the disjoint union, and enters because of the discrete

series representations.)
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4. THE HELGASON FOURIER TRANSFORM FOR L1 FUNCTIONS ON G

Let
Si = {A G C | |RA| ^ 1}

be the Helgason-Johnson strip, where !RA is the real part of A € C. It is well known that
the elementary spherical functions <AA,A e C of Harish-Chandra ([11]), are bounded if
and only if A G Si ([14]). In fact ||0A||OO < 1 for A in that strip. Recall that <f>\ is nothing
but $o'v ^y comparing with <j>\ it can be shown easily that for any m,n G If', the
(m, n)-th matrix coefficient of the principal series representation TT̂ A, $™A" is bounded if
A € Si.

For L1 functions on the symmetric space X = G/K, the natural domain of definition
of the Helgason Fourier transform is the strip St ([15]). In [24, 17] we made use of these
facts.

Using argument similar to that in [12, 13, 17], where proofs were provided for the
Helgason Fourier transform on symmetric spaces, we can prove most of the following:

THEOREM 4 . 1 . Let f be a function in Ll(G). Then there exists a subset Bf = B
of K of full ffaar measure (depending on f), such that

(i) /(A, k, n) exists for all k G B,n € Z and A € Si,

(ii) J{1, k, n) exists for alike B,n£ Z(l) and I G Z* U {0_, 0+},

(iii) / ( V . n ) G L\K) and ||/(A,-,n)||Ll(K) < C||/|U.(C), for all A e 5 , and

n € Z (that is, the constant C is independent ofn and A ),

(iv) for each fixed k G B and n e Z, A i-> /(A, k, n) is holomorphic on 5j and
continuous on Si, where 5° is the interior of Si,

(v) ||/(^>"' n)|Li(/e) —> 0 as |A| —> oo, uniformly in A G Si and in n G Za,
(vi) for A G zR,

/ ( V , n ) 6 i 2 W and ||/(A, -,n)||La(if) ^ | | / | | L l ( c ) .

Result (v) can be considered as a Riemann-Lebesgue Lemma (contrast with [9,
Theorem 5]). For another variant of this, see Section 8. We only need to justify (ii), that
is, the definition of /(/, k,n) given in (3.2) makes sense for n G Z(l) and / G Ll{G).

Suppose that / G Ll(G). We recall that for any I G Z*, TTI is (infinitesimally
equivalent to) a subrepresentation of 7rffi|i|, where / G IT". The carrier space H\ of 7T| is
the closed subspace of L2(K) generated by {en | n G Z(i)}. With respect to a suitably
chosen new inner product 7T; is a unitary representation and therefore 7Tj(/) exists as a
bounded operator on Hi. We take an element n G Z(J). Then - n G %>{—l). We define,

f(l,k,n) = (7r_,(/)e_n)(A0 = f {f{x)*-i{x)e-n){k)dx = f (f(x)naW(x)e_n)(k)dx.
JG JG
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(Note that although the inner product is different, the G-action is the same and hence

the usual definition of 7r((/) as a bounded linear operator used above makes sense.) This

is the same as the definition (3.2) of f(l,k,n). This also shows that f(l,k,n) exists for

almost every k e K. Note tha t for I € { 0 _ , 0 + } , •ni is a subrepresentation of a principal

series representation TT^O- But as 0 € Si, existence of f(l,k,n),l S {0_ ,0 + } for almost

every k follows automatically from the argument given for A £ Si.

For / e Ll{G), I f{l,k,n)em(k)dk = 0 for I € Z(n) U {0+,0_} and m <£ Z(l). In
JK

p a r t i c u l a r / / ( * , k, n) dk - 0, s ince 0 g Z ( / ) for a n y i e Z ' U { 0 + , 0 + } .
JK

Formally, as noted earlier, the Fourier inversion formula gives us

f(x) ~ A E / / /(A> *' ̂ ^-^'"''"'^^(^(a:-1*-1)) dk /i(a(n), A) d\
47r ^JiRJK

S E E / /(LMje"-^"-'
neK

+

Denoting the first term and the second term of right hand side of the above by fP and
fD respectively, it is clear that fP(X,k,n) = /(A, k,n) for A € iR, n € Z and for almost
every k € K; and fD(l, k, n) = J(l, k, n) for / e Z ' , n € Z(Z), and for almost every A: € if.

As in the case of the Helgason Fourier transform for symmetric spaces, we now have
the following inversion formula for right /^-finite functions on the group:

THEOREM 4 . 2 . Let f be a right K-Gnite function in Ll(G). If for all n,

f{-,-,n) G L x ( tRx K,n(<j(n),X)dXdk), then,

/(*) = E /
for almost every x e G, in particular for all Lebesgue points of f.

REMARK 4.3. Note that for a right A'-finite function, the sum on the right hand side
of the equation above is only a finite sum. See the discussion preceding (3.3). In [17]
to prove the analogue of the theorem above for symmetric spaces, we appeal to some
old results of [26]. Such results can also be developed for / * $"'n(i) and the proof of
Theorem 4.2 follows in a similar way.

5. BENEDICKS' THEOREM

If/ is an L2-function on En , Benedicks [3] proved that if both / and / are zero almost
everywhere outside sets of finite measure, then / = 0 almost everywhere. The exact
analogue of this for the group theoretic Fourier transform for a noncommutative connected
Lie group is still open, although some partial results are known (see [19, 6, 8]). In this
paper we offer an analogue of Benedicks' Theorem for the Helgason Fourier transform on
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SL2(E). These are related to the results in [19, 6]. Benedicks' Theorem can be viewed
as a qualitative uncertainty principle in harmonic analysis, which asserts that both a
function and its Fourier transform cannot be simultaneously concentrated.

Let m be a fixed left invariant Haar measure on G. Let us define the measure w on
(iMuZ*) xifxZas:

dxz(\,k,n) - l/4?r2 [i(a(n),\)d\dk, (\,k,n) E iRx K x Z,

dw(l,k,n) = \l\/2ndk, (l,k,n) e Z* x K x Z and n e Z(/)
= 0, (l,k,n) eZ* x K xZ and ngZ(Z).

Note that this measure is a slight variant of the Harish-Chandra's Plancherel measure
used in [6].

THEOREM 5 . 1 . Let f be a function in L2{G). Ifm{x e G \ f(x) ^ 0} < oo and

w{(A, k, n) £ (iR U Z") x K x Z | /(A, k, n) / 0} < oo,

then / = 0 almost everywhere.
PROOF: AS / is L2 and supported on a set of finite measure, / € Ll(G).
Therefore for every fixed n e Z and k € B, where B is a set of full Haar measure

in K, /(A, k, n) is analytic in A on S°. The given condition on /(A, k, n) implies that for
fixed n € Z and almost every fixed k € K, /(A, k, n) = 0 for all A e iR.

Suppose that

where ZF - {n € Z | /(•, -, n) ^ 0} is a finite subset of Z.
As eiiktn : x >-> e~('+1'^I"lt~1^e_n(i^'(a;~1A;"1) is an eigenfunction of the elliptic

operator An, it is a real analytic function on G and hence

K

is real analytic on G. As Z/? is a finite set and for a fixed n, Ln is also finite,

is real analytic in x € G. Now consider the two functions f(x) and /i(x). If / is a
reasonably nice function then inversion formula holds pointwise and the two functions
are identical. But since / is only assumed to be in Ll PI L2, the two functions will agree
at least in the sense of distributions. But we have established that h is real analytic. As
/ and h are the same as distributions, they must also be equal almost everywhere. Hence
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/ which is equal to a real analytic function almost everywhere cannot have the property

m{x £ G | f(x) ± 0} < 00, unless it is the zero function. D

In connection with the theorem above, we remark here that a careful examination

of the proof in [6] leads to Theorem 5.2 below.

We call a set E\ C G right if-invariant if for all x € Ex and k e K, xk € £ 1 .

THEOREM 5 . 2 . Let E\ be a right K-invariant subset of G of positive Haar
measure and Ei be a subset of iM. of positive Plancherel measure. If a function
f € Ll{G) n L2{G) is zero on £\ while /(A, •, •) = 0 for every X € E2 then / = 0
almost everywhere.

PROOF: Fix a right AT-type n € Z. As Ei is right if-invariant, the right n-th
component /„ of / is zero on E\.

For almost every fixed k and every fixed n, /(A, k, n) is an analytic function on S\.

Therefore f(X,k,n) is identically zero on Si x K x Z, that is, fnp = 0. There are only
finitely many discrete series relevant for a right n-type function. Therefore we can show
as in the previous theorem that fnD is analytic, since it involves only a finite sum of
analytic functions. Thus /„ is equal to an analytic function almost everywhere, which
contradicts the fact that /„ is zero on Ei, unless /„ = 0 almost everywhere. As n e Z is
arbitrary / = 0 almost everywhere. D

REMARK 5.3. For other groups like nilpotent Lie groups et cetera, the analogue of this
result has been proved (see [8]).

6. WIENER-TAUBERIAN THEOREM

As noted earlier that the $™'n as well as the e\,k,n are eigenfunctions of the Casimir
Q. of G with eigenvalue (A2 — l) /4. Thus, from the (formal) self adjointness of fi, for
sufficiently nice / ,

(6.1) (n/r™,»W = ^=-^/m.n(A) and ^ l H

Here /m,n(A) is f f(x)$™'n(x-l)dx.
JG

We have also noted that if / e LX(G) and A e iR, then /(A, •, n) € L2[K). For each
fixed A € iR, we have the Fourier series:

(6.2) f(X,;n)=L2 £ /U(Ate and £ ( J 0

For some e > 0, let % be the strip % = {A 6 C | |SRA| < 1 + e} and T° be
its interior. Let us define £E(G) to be the set of measurable functions on G such that

\f{x)\eed{-xK'K) dx < co, where d is the canonical distance function for GjK comingL
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from the Riemannian structure induced by the Cartan-Killing form restricted to p. Here
Q = I © p and p can be identified with tangent space at eK of G/K. Then,

(i) Cf{G) C Ce{G) C Ll{G), and hence £E(G) is a dense subset of Ll(G).

(ii) for / G C-e{G), / (A,k,n) exists for all (A,k,n) € Te~xBfXZ, is holomorphic
in T£° and continuous in % in A, for each k G Bf and n G Z*, where Bj <z K

is a set of full Haar measure, obtained in a fashion similar to Theorem 4.1.
(One needs to use some simple estimate of the elementary spherical function
([11, Proposition 4.6.1 and Theorem 4.6.4]) along with Fubini's Theorem.)

(iii) for / as above and n G Z, /(A, -,n) is in Ll(K) for A G Te and

||/(A, ;n)\\LHK) —> 0 as |A| —¥ oo, uniformly in %.

(iv) if e = 0, then Ce{G) = Ll(G) and % reduces to Si.

The following analogue of the Wiener-Tauberian Theorem for (n, n)-type L1-
functions of G was proved in [21] extending a result of [4], where the result was proved
for n = 0:

THEOREM 6 . 1 . Fix an integer n. Let T be a subset of Lx{G)n<n. Suppose that

for some e > 0, t i e (n,n)-th Fourier transform /„,„ of every f € F can be extended

holomorphically on an augmented strip % — {A G C | |5RA| ^ 1 + e} and lim |/(A)n,n|
|A|—>oo

— 0 on Te- Assume further that {/„,„ | / G T} does not have a common zero on % LJ Ln

and that there exists f° G T which satisfies

limsup|/0(t)nn|eQe'" > 0 for all a > 0.
|t|—»00

Then the ideal generated by T in L1(G)nin is dense in L1(G)Jltn.

With this preparation we now offer the following versions of the Wiener-Tauberian

Theorem for G.

THEOREM 6 . 2 . Let T be a subset of Ce(G) for some e > 0. Suppose that

Zi = {(a, A) G {0, l ] x T £ | f{o, A, •, •) = 0 for all f G ?}

and Z2 = { l e Z ' L J { O _ f O + } | / ( f , v ) = O for ail / G T}.

If Zi U Z2 is empty, I f(x) dx / 0 for some / € f and there exist p G T, j - 0,1
JG

such that for some n G Z-7, j = 0,1

(6.3) limsup | |p(A, -, n)||* eoeli | > 0, for all a > 0,
A€tR,|A|—>oo l '

t ien t i e (two-sided) G-translates of the functions in T span a dense subspace of Ll(G).
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REMARK 6.3.

(i) / f{x) dx / 0 is really the condition / ( - I , •, 0) ^ 0 as a function oik € K.
JG

(ii) In [21, 25], it was assumed that the Fourier transforms of the functions
in T exist in an augmented strip. This essentially amounts to demanding
that the functions are in a suitable weighted L'-space.

(iii) The condition (6.3) says that / does not go to zero too rapidly at infinity.

First a few remarks about the necessity of the conditions: "nonvanishing on the

Helgason-Johnson strip", Z2 being empty and / f(x) dx ^ 0.
JG

For / € Ll(G), let W be the closed span of the (two-sided) G-translates of / .

Suppose that for some a € M, f(a, X,-,) = 0onKx V for some A 6 S\. That is,

/
G

for all Jfc e K and n € If.

We use the following symmetry property of the matrix coefficients of the principal
series representations: for n € If, x, y € G, A 6 C,

en) (as (^(aT^e^e,,)

= (em,Tta^{x)en) [2, p. 16])

= f e-(
x+lWx-lk-ih-n(K(x-lk-1))e-l-x+lWy-lk-1)eJK(y-1k-1)) dk.

JK

Using this one can show that depending on a is trivial or not, either f * <j>\ = 0 as well

as 4>x* f = 0 or f * $l{\ = 0 as well as $ } ^ * / = 0.

For example if a is trivial:

f yf(x)<t>x{x-x)dx = Q and f P(x)<^x(x~l) dx - 0, for all y £ G,
JG JG

where vf and fy are respectively the left and right translates of / by y 6 G. This amounts

to saying that / g(x)cf>\(x~l) dx — 0 for all g € W, since W is the smallest closed two-
Jo

sided translation invariant subspace containing all vf and fy. But <j>\ is bounded when

A € S\, so it defines a linear functional on Ll(G). Therefore W is a proper subspace of

L}{G), and we have therefore proved the necessity of the nonvanishing condition on the

Helgason-Johnson strip S\. The necessity of the nonvanishing condition on the discrete

series can be established by an analogous argument as the matrix coefficients ^J"'n are

also bounded and hence define linear functional on Ll(G).

For SL2(K), the necessity of some kind of not too rapidly decreasing condition on the

Fourier transform was established in [10, Lemma 7.13 and Theorem 7.2] (see also the

comments after [9, Proposition 5.1]).
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P R O O F : For a function h in Ce(G) we define h* by h'{x) = h(x~l). If h is of left
if-type n then it is not hard to show that h* * h, is of (n, n)-type and is also in CC(G).

Suppose that g = / °* * f° for n 6 Z°. Then g is a (n, n)-type function in C£{G)

which is in the two-sided L1 (G)-module generated by f°.

For every A € C for which f° can be defined, we have, /°*jn(—A) — /°in(A), since

(v*Ax~l)em,en) = (em,7r<7_x(a;)en> ([2, p. 16]).

As noted earlier, for A €E iR.,

/°(A,-,n) = / o ( A , - , n ) = L 2 ^ / \ n ( A ) e i and ||/°(A, ;n)\\2
L2{K)

i

On the other hand,
g(X)n,n = £ l A " ( A ) | 2 for all A e iR.

Therefore g satisfies for n G Z°

(6.4) limsup |?(A)Ti>J1|e
orelxl > 0 for all a > 0.

A i R | A |

If we work with f1 instead of f° then we get another function say g' which satisfies
the inequality above for some n e Z1.

The following is essentially proved in [21]. Fix an integer n. Then n determines
a a € {0,1} by n € If. Given A 6 Tt and / e T with J{a, A, -, •) ^ 0, there exists
a (n,n)-type function f\ € Ce(G) in the two-sided Z/'(G)-module generated by / with
/A(A)n,n 7̂  0 except for the following cases:

[i] (a, A) = (0,-1) and n = 0,
[ii] (a, A) = (1,0) and n € 2Z + 1,
[iii] (a, A) = (0,1) and n € 2Z, n ^ 0.

For these we have the following remedy. For [i] we get a function /_i such that
/-i(—l)o,o # 0 in the L1(G)-module generated by the function / € T such that

/ f{x)dx # 0. For [ii] a function f0 such that /o(l)n,n ¥" 0 can be found in the L1-
JG
module generated by the function / £ 7 such that /0(0+,-,-) / 0 (/(0_,-,-) ^ 0) if
n > 0 (respectively, n < 0). For [iii] a function fi such that /i(l)n,n ^ 0 can be found in
the Z^-module generated by the function / € T such that the discrete Fourier transform
7i(l, •.') ^ 0 ( / ( - I , •, •) ^ 0) if n > 0 (respectively, n < 0).

We also note that for a function / of type (n, n), / f(\,k,n)e-n{k)dk — fnn(X).
JK ^

Therefore by (iii) in the discussion preceding Theorem 6.1, f\(v)ntn —> 0 as |i/| —)• oo
uniformly for v G Tc.
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Consequently, the family {/>} U {<?} satisfies the conditions of Theorem 6.1, and so
the L1(G)n,n-module generated by the family above is dense in L1(G)n,n. Since {/A} and
g are contained in the L1 (G)-module generated by T in Ll(G), it follows that the closed
span of the two-sided G-translates of the functions in T contains L1(G)71tn for all n G Z.

For every t > 0, let us define a (n, n)-type functions ht by the data /i«(A)n,n = etx* for
A G C and ht{X)r,s — 0 for r ^ n or s ^ n. In view of the embedding of the discrete series
in the principal series, the values of htnn at the relevant discrete series representations
are automatically determined. Then ht G GP(G), the Harish-Chandra Schwartz space
(see [2, p. 13]), for every p G [0,2]. It can be shown, as in the K-biinvariant case, that
for any function / G Ll(G) of right type n, / * ht —>• / in L1 as t —¥ 0 (see [23]).
This shows that the closed span of the two-sided G-translates of T contains Ll(G)n for
all n G Z. As the smallest such closed subspace of Ll(G) is Ll(G) itself, the theorem is
proved. D

REMARK 6.4. In an attempt to understand the nature of functions which satisfy the
growth condition (6.3), we see that if a function F in T is in C™(G), then a Phragmen-
Lindeloff argument combined with the Paley-Wiener Theorem guarantees that it satisfies
the required not-too-rapidly-decreasing condition. We shall see below that if |F(x)|
^ Ce~ad{-xK'K^, then we can apply an analogue of Hardy's uncertainty principle due to
Cowling, Price and Sitaram ([7]) to get the same conclusion about F. We also have an
alternative version where the growth condition on the Fourier transform is replaced by a
condition requiring that the collection T has functions which are not "too smooth".

THEOREM 6 . 5 . Let T be a subset ofCe(G), for some e > 0. Let the sets Z\ and

Z2 be as in Theorem 6.2. If Z\ U Z-i is empty, / f(x)dx^Q for some function f G T
Jc

and if there exist functions F, H in T with nonzero even and odd part respectively such

that one of the following conditions is satisfied:

(a) \F(x)\ < Ce-ad(xK>K? and \H(x)\ ^ Ce-ad^K'K^ for some positive con-

stants a and C,

(b) one of the right K-finite components of the even (odd) part ofF (respectively,

H ) is not equal to a real analytic function almost everywhere,

(c) a right K-finite component of the even (odd) part of F (respectively, H )

is zero on a set E\ (respectively, E? ) of positive measure.

(d) the even part of F and odd part of H are zero on right K-invasiant sets

of positive measures, then the two-sided G-translates of the functions in T

span a dense subspace of Ll(G).

PROOF: If we show that F and H satisfy condition (6.3), then this theorem will

follow from Theorem 6.2.

(a) As F has nonzero even component, Fm_n ^ 0 for some m,n £ 2Z. Since

d(xK,K) is if-biinvariant, |Fm,n(x)| ^ Ce-a<*xK-K)i. Now we take 0 = l /3a . Then it
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follows that

limsup |Fm,n(A)e^l2|>0,
|A|—K»,AgiR

because assuming that the right hand side equal to 0 will lead to the conclusion that F m n

and Fm>n both are very rapidly decreasing, which in turn will lead to the contradiction
that Fm,n = 0 by the analogue of Hardy's Theorem proved in [7]. This contradicts our
hypothesis that F has nonzero even component.

Since

t€Z»<">

condition (6.3) will be guaranteed for F. A similar argument works for H.

(b) Suppose that the right n-th component of F, Fn is not equal to a real analytic
function almost everywhere for some n € Z. If F does not satisfy (6.3), then

(6.5) \\F{\-,n)fLi(K)^Ce-aeM for all A € tR

for some constant C and some a > 0. Then by appealing to Plancherel Theorem (3.6)
and by observing that the Plancherel measure n(a, A) is at most of polynomial growth
on iB. (see (6.7) below), the principal part of Fn, namely Fnp is clearly in L2(G).

By remarks made earlier, if g is a sufficiently nice function, for example in C£°[G),

then

We consider QFn in the sense of distributions. If h is an L2-function on G of fixed
right-type n, such that (A2 — l)/4 h(X,k, n) is also in L2(a* x K,fj.(X)dXdk), then it is
not hard to show that Anh, which is a priori only defined as a distribution, is actually in
L2(G) a n d J A ^ R A , -, n) = (A2 - l)/4 h(X, -,n).

Now Fn(A, -,n) is very rapidly decreasing in A, so AnFnp G L2(G) and

(AnFnP)~(A, • ,„)= ^ " ^ F ^ A , -,n).

By repeated application of the argument above, we see that A™FnP is in L2{G) for any
positive integer m and

(6.6) (A?Fnp)~(A, -, n) = ( ^ l i ) F ^ ( A , •, n).

As An is elliptic, Sobolev theory implies that FnP can be taken to be C°° (that is, it is

equal almost everywhere to a C°°-function).

From the Plancherel Theorem (3.6), we have, for all positive integers m,

= ±Jj(A™FnPn\,;n)fL2{K)n(*(n),\)d\.
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Using (6.5) and (6.6), we see that

^ ° ° ( ^ ) 2 m e - ^ /x(a(n), A) dX.

We use the following estimate of fi(a, X) ([2, 10.2]):

(6.7) | M M ) | < (l + |A|) for all A € iE and a € M,

and get,
II A m p |p < /"• / A'*m~1e~a^2 AX

nP 2 "~ Jo
Note that the constant C is independent of m. Thus

(6.8) l|A™FnP||2 <J C\m{2m)\

for some constant C\ and for all positive integers m. By an elliptic regularity theorem of
Kotake and Narasimhan ([18, Theorem 3.8.9]), Fnp is real analytic. A slight variation
of the proof of Theorem 5.1 shows that the discrete part Fno of Fn is also real analytic.

Hence Fn is real analytic, a contradiction. Thus Fn satisfies (6.3). Similarly we can
show that H also satisfies (6.3) and hence the theorem is proved.

(c) We have shown above that if a function does not satisfy (6.3), then all its right
K-hnite components are real analytic almost everywhere. Hence none of them can be
zero on a set of positive measure.

(d) If a function is zero on a right iiT-invariant set, then all the right AT-finite
components of the function are also zero on that set. Therefore we can apply (c). D

REMARK 6.6. As in [17], we could have also discussed results for L1 n V, 1 ^ p < 2,
but for the sake of brevity, we have chosen to drop them.

7. SL2(/J) AS THE HYPERBOLIC SPACE X = SO0(2, 2)/SO0(l, 2)

Although the results of this section are really results of Sections 5 and 6 in a different
guise, we decided to include them in the hope that the results here can be formulated
and proved for other generalised hyperbolic spaces in the sense of [27, 20].

For integers p ^ 0, q ̂  1, suppose that

SO(p,g) = {A e SLP+,(E) | ATJA = J}

h 0 ""
where J = 'p

0 - / ,
, AT is the transpose of A and /„ is the n x n identity matrix.

When p = 0, SO(0, q) is naturally identified with SO(g). Let SO0(p,q') be the connected
component of the identity element of SO(p, q). If p ^ 1, a matrix A € SO0(p-1, q) can be
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identified with the matrix I I in SOo(p, q). In this way for p ^ 1, q > 1 we consider\° A)
SO0(p - l,q) as a closed subgroup of SO0(p, q). Thus X = SO0(p, g)/SO0(p - 1,<J) is a
homogenous space under left SOo(p, g)-action.

For x,y S W+q, we define (x,y) = xTJj/. Then (•, •) is a nondegenerate quadratic
structure on W+q of signature (p, q) which is preserved by SO(p, q). Consider the non-
compact hypersurface, {x € Rp+I7 | (x,x) - l } . Then SOo(p,q) acts transitively on this
surface and the isotropy subgroup of the point (1 ,0 , . . . , 0) in it, is precisely SOo(p - 1 , q) •

Thus X can be identified with this hypersurface.

We shall take up the particular case p = q = 2, that is, the homogenous space
X = S00(2,2)/SOo(l,2) under the left SO0(2,2)-action and for x,y € R4,

(x, y) - xii/i + x2y2 - x3y3 - z4y4.

For the rest of the paper G will denote SO0(2,2) instead of SL2(R). Let K be SO(2),
as in the previous sections. Then Y — K x K is a maximal compact subgroup of G. A
point (kg, k^) € Y is identified with a point in R4 as:

where ipi = 6 — <j> and i/>2 = 0 + </>. Every element x € X can be written as
(ch tcost/>i,ch tsin•!/>!,sh t s i n ^ . s h tcostl)2),t ^ 0,ip\,rp2 £ [0,2TT]. This is called the
polar decomposition of x and we write x =• x(y,t), where y = (kg,k^) € K and 6,<j>
are related to ^l.V^ as above. For i = x(y,t), by |x| we mean t. The form (-,-) in-
duces a pseudo-Riemannian structure on R4 and the corresponding Laplace-Beltrami

d2 d2 d2 &
operator is • = ^-^ + ^ - j — ^-5 - ^"1 • ^ n e hypersurface X is also equipped with the

OX i OX2 G'3'3 OX^

pseudo-Riemannian structure inherited from R4 and the corresponding Laplace-Beltrami
operator Ax is really the part of D tangential to X. There exists a unique (up to mul-
tiplication by a positive sealer) measure dx on X which is G-invariant. The algebra of
(left) G-invariant differential operators on X is generated by A*. For each A e C, y € Y
and £ £ { 0 , 1 } consider the function on X defined by:

eeXy:x>-+ |(x, y)]*"1 sign<a:, y>,

where y is now thought as a point in R4, and (•, •) is the quadratic form defined earlier.
Then this is a locally integrable function on X with respect to dx on X, at least for
A € C with KA ^ 1 ([1]), and is an eigenfunction (in the sense of distributions) of Ax
with eigenvalue A2 — 1.

For a suitably nice function / , fx is defined on {0,1} x Y x C (or some subspace

there of) by:

7x(£,\y)= / I(x,2/)I*"1 sign(z,y)/(z)dz,
Jx
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for all those A for which the right hand side exists. Sometimes we shall also write
fx{s,X,y) as /x(e , A,ki,k2) where y = (fei,^) 6 K x K = Y. It is also possible to
identify X with SL2(K) and the left-action of G on X corresponds to the two sided action
of SL2(M) on itself. Under this correspondence dx is just the Haar measure on SL2(R)
(see [l] for details). Taking into account these identifications, the subspace £e(SL2(R))
of L1(SL2(K)) defined in Section 6, carries over to a subspace Ce(X) of Ll(X) and the
Casimir Q of SL2(K) corresponds to a multiple of Ax- Further it can be shown that for
/ E £S{X), fx(e, \ y) exists for each y in a set of full measure on Y as a "meromorphic
function" (see explanation below) on the augmented strip S1 + e = {A e C | |!RA| ^ 1+e} ,
with possible simple poles at 0 or - 1 depending on whether £ is 0 or 1. The connection
between fx(e, >̂ y) and the Helgason-Fourier transform /(A, k, n) defined in Section 3 is
given by:

(7.1) c^ ' + (A) / (A,k u s ) = (fx(e, A ,*r \ •) .e-)L*{ Ky

for s 6 Zc where c*'3i+(A) are certain c-functions (see [1] and [2, p. 23-24]). In fact
the above may be viewed as the definition of fx- By fx being meromorphic, we mean
that for fci 6 K for which the left side of the expression above is defined, the expression
on the right hand side is meromorphic for each s € Ze, if not always holomorphic.
We also say f(e, A, •) has a pole at Ao if there exists a. k € K and s e ZE such that
A H4 (fx{e, A, k, •),e-,)Lt(K) has a pole at Ao.

On the left hand side of (7.1), / is considered as a function on SL2(R) while on the
right hand side it is viewed as a function on X via the identification referred to above.
Apart from this, there is a discrete part of the Fourier transform of / which in [1] enters
in the guise of certain residues calculated at the poles of the c-functions described in [2].
Without going into the details, we merely remark that this can be avoided by suitably
defining the discrete part JX,D{U y), leZ'U {0_, 0+}. This is related to J(l, k, n) by

(7.2) c ^ + ( A ) / ( | / | , klt s) = (fx,D(l, fcx, •), es)Ll{K),

for s € Z(l). (Obviously this comes from the discrete series and the mock discrete series

representations of SL2(E). Again one can take the relation above as the definition of the

discrete part of fx)

Note that an element y = (kg, kj,) in Y sits inside G as I *+9 I. So, Y acts
^ 0 k^oj

naturally on X. Suppose that Yo = {(e, k$) | kg € K}, where e is the identity element of
K. For a set 5 C X, Y0S is the set of all (left) translations of S by elements of V0- We
call a set 5 C X, Y^-invariant if Y0S = S. Let m be a fixed G-invariant measure on X

and let /J be the Plancherel measure on {0,1} x iK defined in [20, 1]. Then we have the
following two versions of Benedicks' Theorem. These are essentially the results proved in
Section 5 expressed in our new language.
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THEOREM 7 . 1 . For f e L2{X), suppose that A} = {x e X | f{x) / 0}. If
m(Y0Af) < oo and

/x({(e,A) e {0,1} x iR | fx{e,X,.) # 0}) < oo,

then / — 0 almost everywhere.

THEOREM 7 . 2 . Suppose that f e L2(X), S is a Y0-invariant subset of X of
positive measure and S" is a subset ofiR of positive Plancherel measure. If f is zero on
S while f(e, A, •) is zero on S' for e G {0,1}, then / = 0 aJmost everywhere.

For some (carefully chosen) e > 0, suppose that T£ = {0,1} x S1+£ \ {(0,0), (1,-1)}.
We have observed earlier that for / G CC{X) and for fixed y in a full measure set in Y,
A K* /x(e, A,y) is analytic on 5i+£ \ {0} or on S1+e \ {—1} depending on e = 0 or 1
respectively. With this preparation we are now ready to state the analogue of Wiener's
Theorem on X.

THEOREM 7 . 3 . Let T be a subset of Ce(X) for some e > 0. Suppose that

Zx = {(£, A) G T£ | fx{e, A, •) = 0 for all / € f }

and Z2 = {l€Z'U {0_, 0+} | JXJ0(l, •) = 0 for aJJ / G T).

If

(i) Zx U Z2 is empty,

(ii) there exist f0, f\ G T such that /ox(O, A, •) has a pole at 0 and /ix(li -V •)

has a pole at —1,

(iii) there exists gi G T, j = 0,1 such that

(7.3) limsup \\9jxU>^-)\\2
Li(Y^eaeM >0 for all a > 0,

then the left G-translates of the functions in T span a dense subspace of Ll(X).

REMARK 7.4. Condition (ii) will guarantee that there exists r € Z° and s € Z1 such
that /o(O, fc!,r) ^ 0 and fi(l,k2,s) ^ 0 for some kx,k2 € if. Because, otherwise fOx

{fix) W1^ no* n a v e a P°^e a t 0 (respectively, at -1) when e = 0 (respectively, e = 1) (see
(7.1)).

The only other point which may be obscure in this reformulation is why the necessary

condition / f(x)dx^0 (see Theorem 6.2 and Theorem 6.5) is absent in the hypothesis.

Indeed from the hypothesis we know that there exists / € T such that /x(0, - 1 , •) ^ 0.
Therefore there exists selP and kx 6 K such that (/x(0, - 1 , k~l, •), e-s)L2{K) £ 0. That
is CQS'+ (-1)f {-1,k\,s) ^ 0. But since c£"!'+(A) has a zero at - 1 for every nonzero even
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s (see [2, Proposition 6.1]), we conclude that s = 0, that is, / ( - I , fci,0) ^ 0. Recall that
the trivial representation is a subrepresentation of the principal series representation 7ro,-i-

Therefore / ( - l ) o n = / f(x)$°-"(x) dx-0 for any nonzero n and hence / ( - I , ku 0) ^ 0

implies that /(—l)o,o # 0. This is the same as / f(x) dx ^ 0 because <£_x = $^'° = 1.
JG

REMARK 7.5. Condition (iii) above can be replaced by the following: there exist two
functions 31,52 € J-, with nonzero even and odd part respectively, such that they satisfy
one of these conditions:

a. \gi{x)\ ^ Ce~aM2 and \g2(x)\ < Ce~a^2 for some C,a > 0,

b. m(Y0Agi) < 00 and m(Y0Ag2) < 00, where Agi,i = 1 , 2 are as in Theorem
7.1,

c. <7i and gi are zero on a Vb-invariant set of positive measures.

8. CONCLUDING REMARKS

As in the case of symmetric spaces, one can also define the Radon transform and
relate it to the version of the Helgason Fourier transform denned in this paper. These
questions will be taken up in a forthcoming paper.

We end this section by stating the following variant of the Riemann-Lebesgue Lemma
(Theorem 4.1 (v)). If / 6 L1(SL2(K) then for any a 6 M and n 6 Z", /(A, a, k,n) —> 0
as |A| —> 00 uniformly on Si. This can be proved using Radon transform techniques in
the same manner as in [13] for symmetric spaces.
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