
J. Aust. Math. Soc. 84 (2008), 109–116
doi:10.1017/S1446788708000293

ORBIFOLDS ARE NOT COMMUTATIVE GEOMETRIES

ADAM RENNIE ˛ and JOSEPH C. VÁRILLY
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Abstract

In this note we show that the crucial orientation condition for commutative geometries fails for the natural
commutative spectral triple of an orbifold M/G.
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1. Introduction

A spectral triple (A,H,D) consists of a unital ∗-algebra A represented on the
Hilbert space H as bounded operators, along with an unbounded self-adjoint operator
D : DomD ⊂H→H such that [D, a] is bounded for all a ∈A and (1 +D2)−1/2 is
a compact operator on H.

Spectral triples generalize the analytic data associated to the index problem for
elliptic first-order differential operators on manifolds. For example, if (M, g) is a
closed oriented Riemannian manifold, then (C∞(M), L2(M, 3•T ∗

CM), d + d∗) is a
spectral triple, whose Hilbert space consists of square-integrable differential forms. If
(M, g) carries a spinc structure with spinor bundle S → M and Dirac operator D/ , one
may use the Dirac spectral triple (C∞(M), L2(M, S), D/ ) instead. More generally,
spectral triples with noncommutative algebras provide the basic data in Connes’
programme for noncommutative metric geometries.

Recently, in [4], it was shown that a spectral triple (A,H,D) withA commutative
(and unital) is the Dirac triple of a spinc manifold if and only if it satisfies certain
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additional conditions of an algebraic or operatorial nature. These conditions are a
mild strengthening and generalization of those proposed by Connes in [2]. (A spectral
triple with A commutative and satisfying some version of these conditions could thus
be called a commutative geometry, hence the title.)

In this note we show precisely why orbifolds of the form M/G, with G a finite
group acting unfreely by isometries on M , fail to satisfy these conditions. For such
orbifolds we can define a commutative spectral triple, and although we do not show
it here, these spectral triples do satisfy the majority of those conditions. However,
the crucial orientation condition, which provides a volume form, tangent bundle and
ultimately gives the local coordinates, fails for the spectral triples of the orbifolds.

After a brief recollection of our conditions, we go directly to the demonstration of
the failure of the orientation condition. To finish, we briefly comment on more general
orbifolds.

2. Geometric conditions for commutative spectral triples

In [4] we have shown that under a small number of postulates, mildly extending
those of [2], any spectral triple (A,H,D) whose algebraA is commutative and unital
satisfiesA= C∞(M) where M is a smooth closed manifold carrying a spin (or spinc)
structure,H is its L2-spinor space andD is a Dirac operator plus an endomorphism of
the spinor bundle.

Recall that a (unital) spectral triple consists of a unital algebra A faithfully
represented on a Hilbert space H, and a selfadjoint operator D on H, with compact
resolvent, such that A preserves its domain DomD and [D, a] extends to a bounded
operator on H for each a ∈A.

Assume furthermore that A is commutative. Denote by A its norm completion
in B(H) and by M = sp(A) = sp(A) its character space (Gelfand spectrum); here A
is assumed to be a separable C∗-algebra. The following postulates, of an algebraic or
operatorial nature, are needed for the reconstruction of the manifold, spin (or spinc)
structure and Riemannian metric.

(1) Dimension: For some p ∈ {1, 2, 3, . . .}, the operator 〈D〉
−1

:= (1 +D2)−1/2

lies in Lp,∞ and 〈D〉
−p

∈ L1,∞ has positive Dixmier traces: Trω〈D〉
−p > 0 for

all ω.
When p is even, H is Z2-graded by a selfadjoint unitary 0 commuting with A
and anticommuting withD. When p is odd,H is ungraded and we put 0 = 1 for
convenience.

(2) Regularity: (A,H, D) is QC∞ in the sense of [1]: if δ(x) := [|D|, x] for
x ∈ B(H), then A ∪ [D,A] ⊆

⋂
∞

m=1 Dom δm . Moreover, A is complete in the
locally convex topology given by the seminorms qm(a) := ‖δma‖ and q ′

m(a) :=

‖δm([D, a])‖, for m = 0, 1, 2, . . . .

(3) Finiteness: The prehilbert space H∞ =
⋂

m≥1 DomDm is a finitely generated
projective A-module.
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(4) Absolute continuity: If a > 0 in A, then Trω a〈D〉
−p > 0 for all ω.

(5) First order: [[D, a], b] = 0 for a, b ∈A.
(6) Orientability: There is a Hochschild p-cycle

c =

n∑
α=1

a0
α ⊗ a1

α ⊗ · · · ⊗ a p
α ∈ Z p(A,A) (2.1a)

which is represented on H by 0, that is,

πD(c) ≡

n∑
α=1

a0
α[D, a1

α] . . . [D, a p
α ] = 0. (2.1b)

(7) Closedness: Trω(0[D, a1] . . . [D, ap]〈D〉
−p) = 0 for all a1, . . . , ap ∈A.

(8) Spinc or Morita equivalence: The C∗-module completion of H∞ is a Morita
equivalence bimodule between A and the norm completion of the algebra CD(A)

generated by A and [D,A].
(9) Spin or reality: There is an antiunitary operator J on H such that Ja∗ J−1

= a
for all a ∈A, J 2

= ±1, JDJ−1
= ±D and J0 J−1

= ±0 if p is even, with the
same signs (depending only on p mod 8) as occur when A= C∞(M) with M
a p-dimensional spin manifold, D is a Dirac operator and J is the charge
conjugation.

(10) Connectivity: There is an orthogonal family of projectors p j ∈A such that
IdA =

∑
j p j , and a ∈A with [D, a] = 0 if and only if a =

∑
j λ j p j for some

{λ j } ⊂ C.

For a detailed discussion of how each of these conditions contributes to the
reconstruction of the smooth manifold M , we refer to [4]. For instance, the
orientability condition plays a role in ensuring that all operators appearing under
Dixmier traces above are ‘measurable’, which means that it does not matter which
Dixmier trace is used. Another point to note is that, by the Serre–Swan theorem, there
is a complex vector bundle S → M (that turns out to be the spinor bundle) for which
H∞ ⊂ 0(M, S), the latter being the A-module of continuous sections of S.

Naturally, the conclusion that M is a smooth manifold is rather strong and one may
wonder whether some ‘almost-manifolds’ could also be allowed. For instance, one
can build a spectral triple on an orbifold, satisfying many, but not all, of the above
postulates. While one normally uses Lie groupoids [3] to describe orbifolds, which
entails noncommutative algebras, one could construct a spectral triple on a quotient
space M/G using the algebra A= C∞(M)G of smooth invariant functions, which
satisfies many of the properties listed above. We next show that this attempt fails,
precisely on account of the orientability condition.

3. A G-invariant spectral triple

Consider the following example of a commutative spectral triple: let (M, g) be a
compact smooth p-dimensional manifold without boundary, gifted with a Riemannian
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metric g and a spin structure (so that, in particular, M is orientable), and let G
be a finite group acting by isometries on M . We suppose that M is connected;
if not, it has finitely many components and we may restrict our attention to the
subgroup of G that preserves a given component. Assume that this action lifts to
an action of G on the spinor bundle S → M , for which the Dirac operator D/g is
G-invariant. Now let A := C∞(M)G be the algebra of G-invariant smooth functions
on M , H := L2(M, S)G be the Hilbert space of G-invariant L2-spinors, and let D be
the restriction of D/g to a selfadjoint operator onH. Then (A,H,D) is a spectral triple
over a commutative unital algebra.

(It might happen that an isometric action of G on M lifts only to that of an
extension G̃ of G by Z2, acting by automorphisms of the spinor bundle. Since G̃
is also a finite group, the arguments below are not materially affected by this variant,
so we may as well assume that the isometric action of G lifts directly to the spinor
bundle.)

We claim that this example cannot satisfy the orientation condition unless G acts
freely on M .

THEOREM 3.1. Let (A,H,D) be the p-dimensional spectral triple (C∞(M)G,

L2(M, S)G,D) described above. Assume that the action of the finite group G
is not free. Then there is no set of functions {a j

α ∈ C∞(M)G
| j = 0, 1, . . . , p;

α = 1, . . . , n}, such that the orientability condition (2.1) is satisfied.

REMARK 3.2. If the action of G on M is free, then the orbit space X = M/G is a
smooth Riemannian manifold and this spectral triple may be identified with a Dirac
spectral triple over C∞(X). In particular, all of the defining conditions listed in [4]
will hold automatically for (A,H,D). However, if the action is not free, then M/G
is instead an orbifold. We do not need to consider this quotient space as such, but
much of the standard terminology of orbifold theory is useful. We follow the notation
of [3], for the most part.

PROOF. The idea of the proof is as follows. If the action of G is not free, then
there is at least one point x ∈ M for which the stabilizer subgroup Gx is nontrivial.
The differential dg of g ∈ Gx acts as an orthogonal transformation of the cotangent
bundle T ∗

x M . We show that the differential d f of any invariant function f ∈ C∞(M)G

lies in the subspace fixed by dg for any such g. Since this subspace is of strictly
lower dimension than p, there are not enough invariant functions to construct a
p-dimensional volume form at x . We finish the proof by relating this defect to the
failure of the orientability condition.

The isotropy subgroup of x ∈ M is Gx := {h ∈ G | h · x = x} ≤ G, and the fixed set
of h ∈ G is 6h := {x ∈ M | h · x = x} ⊂ M . The singular locus is
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6G :=

⋃
h 6=1

6h = {x ∈ M | Gx 6= 1},

so that G acts freely on its complement. The exponential map at x ∈ M coming from
the metric g gives a diffeomorphism expx : U → W from a small open neighbourhood
of 0 ∈ Tx M to a neighbourhood W of x in M . If h ∈ G, then dhx is an orthogonal
linear transformation from Tx M to Th·x M , such that

exph·x ◦ dhx = h ◦ expx : U → h · W. (3.1a)

When h ∈ Gx , we may take W to be Gx -invariant and may assume that each dhx
preserves U , so that

expx ◦ dhx = h ◦ expx : U → W (3.1b)

in that case. Note [3, Lemma 2.10] that if h ∈ Gx , then {y ∈ 6h | dhy = 1 on Ty M}

is both closed and open in M by (3.1a), so that if M is connected, then h 7→ dhx :

Gx → Aut(Tx M) is injective for all x ∈ M . Together with (3.1b), this shows that 6h
has empty interior if h 6= 1. Thus, the singular locus 6G is a closed subset of M with
empty interior.

By transposition, each dhx acts on the cotangent spaces, taking T ∗

h·x M to T ∗
x M ,

again orthogonally with respect to the transposed metric g−1. In other words, dh has
a right action on covectors.

Any G-invariant function f equals its average over any cyclic subgroup of G:

f (x) =
1
|h|

|h|−1∑
j=0

f (h j
· x),

where |h| denotes the order of h. If h ∈ Gx , taking commutators with the Dirac
operator gives

[D, f ](x) = c(d f (x)) =
1
|h|

|h|−1∑
j=0

c(d f (x) G dh j
x ),

where c denotes Clifford multiplication and G denotes the right action of dhx on T ∗
x M .

Note that (3.1b) implies that the notation dh j
x is unambiguous: expx ◦(dhx )

j
= h j

◦

expx = expx ◦(dh j )x , so that (dhx )
j
= (dh j )x on Tx M .

Let x ∈ 6G . The Cartan–Dieudonné theorem, showing that every orthogonal
transformation on Tx M is the product of at most p reflections, allows us to choose,
for each h ∈ Gx , an orthonormal basis for Tx M such that

dhx = diag(Rθ1, Rθ2, . . . , Rθk , ±1, . . . , ±1),

where each Rθ j is a two-by-two rotation matrix (which itself is a product of two
reflections).
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Consider first the case where G acts on M by orientation-preserving isometries, so
that each dhx is a rotation in SO(Tx M). Then we can write

[D, f ] (x) = c(d f (x)) = c(u) + c(v1) + · · · + c(vk),

where u ∈ T ∗
x M is invariant under dhx and vr G dhx = R−θr vr , for r = 1, . . . , k.

Then

[D, f ] (x) =
1
|h|

|h|−1∑
j=0

c(d f (x) G dh j
x )

=
1
|h|

|h|−1∑
j=0

c(u + R j
−θ1

v1 + · · · + R j
−θk

vk)

= c(u) +
1
|h|

k∑
r=1

(|h|−1∑
j=0

R j
−θr

)
vr = c(u),

since
∑|h|−1

j=0 R j
−θr

= 0: that follows since the order of each rotation R−θr divides |h|.
Hence, if f is any G-invariant function, [D, f ](x) is fixed by the rotation dhx and

so it is (Clifford multiplication by) a covector perpendicular to all of the planes of
rotation of h.

Therefore, if Gx 6= 1 and if a0, a1, . . . , ap are G-invariant functions, then
a0[D, a1] . . . [D, an] has vanishing skewsymmetrization at x :

1
p!

∑
σ∈Sp

(−1)σ
∑
α

a0(x)[D, aσ(1)](x) . . . [D, aσ(p)](x) = 0, (3.2)

since, under the usual linear isomorphism C`(T ∗
x M, gx ) ' 3•T ∗

x M , the left-hand side
corresponds to a p-covector in 3pV , where V =

⋂
h∈Gx

ker(Gdhx ) has dimension less
than p.

In particular, on inserting the entries of the Hochschild p-cycle (2.1a) in
equation (3.2), we obtain

0′(x) =
1
p!

∑
σ∈Sp

(−1)σ
∑
α

a0
α(x)[D, aσ(1)

α ](x) . . . [D, aσ(p)
α ](x) = 0, (3.3)

for all x ∈ 6G . We have written 0′ for the skewsymmetrized version of the represented
cycle (2.1b). Here 0′ may be regarded as an endomorphism of theA-moduleH∞ and
thereby as a continuous section in 0(M, End S).

Next consider the case where some Gx contains a reflection.
Let x ∈ 6G and h ∈ Gx be such that dhx is a reflection in the hyperplane v⊥, for

some unit covector v ∈ T ∗
x M . Thus, if f is G-invariant, then

c(d f (x)) = [D, f ] (x) =
1
2 (c(d f (x)) + c(d f (x) G dhx ))

=
1
2 c(d f (x)) +

1
2 (c(d f (x)) − 2gx (v, d f (x))c(v))

= c(d f (x)) − gx (v, d f (x))c(v).
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Thus gx (v, d f (x)) = 0, so d f (x) is a covector in the hyperplane v⊥. Again, any p
such covectors have null exterior product, so that 0′(x) = 0 in this case also.

Suppose now that there are finitely many G-invariant functions {a j
α | j = 0, . . . , p,

α = 1, . . . , n} such that c as given by (2.1a) is a Hochschild p-cycle, and that
equation (2.1b) holds with 0 being proportional to Clifford multiplication by the
volume element, as happens whenD is the Dirac operator. By using local orthonormal
bases of 1-forms, one can check that the skewsymmetrization of this section of the
Clifford algebra bundle is, up to a constant, Clifford multiplication by the Riemannian
volume form volg on M . As such, the skewsymmetrization is nowhere vanishing and
the norm of 0′(y) ∈ End Sy has a positive lower bound. Since we have shown that
for G-invariant functions there is always a neighbourhood of the singular locus 6G
on which ‖0′(y)‖ is smaller than any such lower bound, the orientability condition
cannot be satisfied. 2

The argument extends to any compact orbifold, since these are locally of the form
M/G with G finite. Indeed, such an orbifold X is a topological space that may be
covered by finitely many orbifold charts [3], each of the form U/G where U is an
open connected subset of Rp and G is a finite group of diffeomorphisms of U ; one may
impose a Riemannian metric on U for which G acts by isometries. Overlapping charts
may use different finite groups, but all are linked by compatibility homomorphisms.
The singular locus of the orbifold is the union of finitely many sets 6G in each such
chart, and the above argument shows that the candidate for a volume form, if it comes
from a G-invariant p-form on each U , must always vanish on the singular locus, and
therefore cannot satisfy (2.1b).

While the argument is local, it is not clear that for a general orbifold we have a
good candidate for a (commutative) algebra of functions: this is highly dependent
on the pasting conditions [3]. When dealing with quotients M/0, where 0 is an
infinite discrete group acting locally freely on M (that is, all isotropy subgroups are
finite), there is such a candidate algebra but no simple method of suitably encoding
the local freedom. It is therefore more appropriate to employ the groupoid algebra in
these situations.
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