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1. Introduction

The ellipsoid is characterised among all convex bodies in ^-dimensional Eu-
clidean space, R", by many different properties. In this paper we give a character-
isation which generalizes a number of previous results mentioned in [2], p. 142.
The major result will be used, in a paper yet to be published, to prove some results
concerning generalizations of the Minkowski theory of reduction of positive
definite quadratic forms.

An n-dimensional convex body K in R" for n ^ 3 is a closed, bounded, and
convex subset of R" which contains exactly n linearly independent points. We call
the sets of boundary and interior points of K respectively the frontier and interior
of K. The notation 'hK' means the dilation of K about the origin in the ratio h.
A tac plane of K at a point of the frontier (also known as a support plane) is a
hyperplane in R" whose intersection with K includes that point, but no interior
points of K. These concepts are discussed in detail in [2]. We denote points and
vectors in R" as a, b1, etcetera, and in particular O is the origin, u always denotes
a unit vector, and ab is the chord joining a and b.

There are exactly two distinct tac planes of K perpendicular to a vector u and
we call the distance between them, the width of K in the direction u. A concept of
major importance in this paper is that of equivalence of convex bodies. Two n-
dimensional convex bodies Kt and K2 are called equivalent if the ratio of the width
of A\ in the direction u to the width of K2 in the direction u is a constant j as u
varies in R". This is written in symbols Kx ~ K2, or more explicitly A"x ~ jK2 •

The major result of this paper is now described (Theorem 1 and Corollary 2).
Let Kbe an n-dimensional convex body in R" where n ^ 3. Suppose that any two pa-
rallel hyperplanes ''sufficiently close'' to a tac plane of K intersect Kin equivalent con-
vex bodies. Then K is an ellipsoid. Examples of equivalent convex bodies are two
bodies of constant width, or two homothetic convex bodies.

2. Equivalent convex bodies

Convex bodies can be discussed very conveniently in terms of their tac func-
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tions. The tac function H ; R" -* R of a convex body K is denned by

H(») = sup • v • x, where xe K.

The properties of this function are discussed in detail in [2] under the name
'Stutzfunktion'. We define the outer normal u of a tac plane U of K as the unit
vector perpendicular to U so that u is directed away from K when u is translated
to a point of contact of U with K. It easily follows that if O is in the interior of K
then H(u) is the distance from O to the tac plane U with outer normal u, and so
H(u) + H( — u) is the width of Kin the direction u. From now on we assume O is in
the interior of K.

If Kt and K2 are convex bodies with tac functions H^ and H2 then we now
see that A\ ~ jK2 if, and only if,

for each u e R". In Lemma 1 we give another 'characterisation' of equivalence. The
result of Lemma 1 is probably well-known but no reference is available, though the
'only if part is in [6], p. 293 for example. It is'easily generalized to R". A tac plane
of K is called regular if it has only a single point in common with K.

LEMMA 1. Let Kt and K2 be two 2-dimensional convex bodies with tac functions

H1 and H2. Let U1 and Vt be tac planes ofKt at a1 and bx both perpendicular to v

and U2 and V2 similarly for K2 at a2 and b2 as shown in Diagram 1. Then for some

j we have Kt ~ jK2 if, and only if a ^ is parallel to a2b2for any choice of v for

which Ult Vx, U2, and V2 are all regular (in these cases at, blt a2, and b2 are

uniquely defined).

.parallel

Diagram 1

PROOF. The tac planes Ut, Vt, U2, and V2 must all be regular for all v in
R2 except possibly a set of measure zero (on this see [2], section 9). We assume
in the following that v is chosen so that the four tac planes are regular. Dt denotes
the partial derivative with respect to the z'th variable.

If we denote the components of a t by au, for / = 1, 2, and similarly for a2,
ftl5 and b2, then according to [2], p. 24, 26 the partial derivatives of Hl and H2

exist at v, and for i = 1,2 and j = 1 , 2 ,

(1) DtHj(v) = aji and D,Hj(-v) = bn.
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It is clear that the width of K} in the direction v, forj = 1 , 2 , (Hj is homogeneous of
degree one) is

(2) (aJ-bJ)-v = Hj(v) + Hj(-v).

Now let us assume that a1b1 is parallel to a2b2 whenever U1, K1; U2, and
V2 are all regular. Then for the regular cases there is a function J so that

(3) {a1-b1) = J(v){a2-b2)

or in components, for / = 1, 2,

(au-bu) = J(y){a2i-b2i).
By (1) this becomes

(4) DAH^-HA-v)) = J(v)D,(H2(v)-H2(-v)).

If we take the scalar product of both sides of equation (3) by t> and use (2), then we
find

(5) H^ + HA-v) = J(v)(H2(v) + H2(-v)).

This shows that / i s differentiable when v # O and if we take the /'th partial deriva-
tive of both sides of equation (5) then we find using (4) that

(6) DtJ(v) = 0 for i = 1, 2.

This result holds for all v except for a set of measure zero. Consider J to be de-
fined for all v # O by (5). A simple analysis argument using (6) and the absolute
continuity of H± and H2 shows that / i s a constant./ on any set of points of R" which
excludes a neighbourhood of O (the one-dimensional case of this result is well
known and is given in [7], p. 90 for example). Hence we deduce from (5) that
Kt ~ jK2 as required.

On the other hand, we now assume that Kt ~ jK2 for some constant j > 0,
so that

(7) HM+H^-v) =j(H2(v) + H2(-v)).

In the regular cases, the partial derivatives of Ht and H2 exist according to [2],
p. 24, 26. Hence the differentiation of both sides of (7), together with (1), gives,
for i = 1, 2,

au-bu =j(a2i-b2i).
Therefore

«i-*i =Ka2-b2),

so that aib1i& parallel to a2b2. This completes the proof.
One further simple result on equivalence is needed.

LEMMA 2. Let Kt and K2 be two 2-dimensional convex bodies with Kt ~ jK2.
For u e R2, let the total lengths of all straight segments parallel to u on the bounda-
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ries of K1 and K2 be ht and h2 respectively. Then hx = jh2 • In particular, if both
tac planes of A^ parallel to u are regular then so are the corresponding tac planes
ofK2.

The result is well-known and follows from Lemma 1 and a result in [2], p. 31.

3. A new characterisation of the ellipsoid

We first state an important characterisation of the ellipsoid due to Blaschke,
in Lemma 3. A proof is given of the w-dimensional generalization in [3], p. 93.

LEMMA 3. Let K be a 3-dimensional convex body. Let T(u) be the union set of
all lines parallel to u which intersect K but not its interior. If the set

C(u) = T(u) n K

lies in a plane for each ue R3 then K is an ellipsoid.
We can now state the major result of this paper. Further results on ellipsoids

are given in Corollaries 2 and 3 in the next section.

THEOREM 1. Let K be a 3-dimensional convex body in R3 with O in its interior
and with all its tac planes regular. Let h be a constant with 0 < h < 1. Suppose
that the 2-dimensional convex bodies Wl n K and W2r\ K are equivalent for all
pairs of parallel planes Wx and W2 both on the same side ofO, provided Wx and W2

intersect the interior of K but not the interior of hK. Then K is an ellipsoid.
The condition that O is in the interior of K is not really necessary, but it is

convenient for the statement and proof of the theorem. The condition ' Wt and
W2 do not intersect the interior of hK' is only used to show that we need only con-
sider such planes which are 'close to the boundary' of K. We might have said in-
stead that 'there is an e > 0 so that Wx and W2 are within a perpendicular distance
e of a tac plane of K which is parallel to WL and W2.

The following simple Corollary can be seen immediately and it incorporates
some previous results in [2], p. 142.

COROLLARY 1. Let K be a 3-dimensional convex body. If Wxr\ K and W2c\ K
are equivalent whenever W^ and W2 are two parallel planes intersecting the interior
of K, then K is an ellipsoid.

The proof of Theorem 1 is long and it is given in the series of Lemmas 4—10
to each of which the hypothesis of the Theorem applies. The aim of the proof is
to show that the set C(w), defined in Lemmas 3, lies in a plane, so that Lemma 3
may be applied to show K is an ellipsoid.

LEMMA 4. Let C(u) and T(u) be defined as in Lemma 3.
(a) Any plane Wparallel to the vector u which intersects the interior of K will

intersect C(u) in two distinct points.
(b) C(w) is a simple closed curve in R3.
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PROOF, (a). T(u) is a convex cylinder, and W clearly intersects T(u) in two
distinct generators of T(u). These two generators must lie in distinct tac planes of
K, and because of the regularity of the tac planes they each have a single point in
common with A'and so with C(»).

(b) If Q is the line through O parallel to the vector u then from the proof of
(a) it follows that any half-plane bounded by Q has a single point in common with
C(u). Choose any one such half-plane and designate it V(O) and let V(s) designate
the half-plane making an angle s with V(O), for 0 :S j 5S In. Let a(s) be the unique
point of C(«) in V(s). Now

C(«) = {a(s)\0 ^ s < 2n},

while a(O) = a(2n) and a(s) # a(t) if 0 ^ s < t < 2%. We must show a(s) is a
continuous function of s. C(u) is a closed set since it is the intersection of the closed
sets K and T(u). If {s,} is a sequence with st -> s then {a(si)} must have at least
one limit point which can only be in V(s). Since C(u) is closed this limit point
must be a(s). This completes the proof.

LEMMA 5. Let W1 and W2 be any two planes as in the hypothesis of Theorem
1 so that Wl n K is equivalent to W2 n K. If W1 intersects C(«) in a^ and bl,
and W2 intersects C(u) in a2 and b2, then ax bt is parallel to a2 b2.

PROOF. There is a line t/t in WY parallel to u which intersects K in a 1, and
similarly lines Vx in Wt and U2 and V2 in W2 intersecting AT in bt, a2, and b2.
Clearly U^ and V1 are parallel tac planes of the 2-dimensional convex body
W1 n K at al and by, and U2 and V2 similarly for W2 n K at a2 and b2. Hence
by Lemma 1 the result follows immediately.

In order to simplify the following proofs we now construct a function
/ : [0, 2n] ~* R. By an orthogonal transformation of R" we can make u = (0, 0, 1).
Then each point of C{u) is the point of contact with AT of a tac plane with an outer
normal (cos r, sin r, 0) for some r e [0,2n], and we write this point f(r). We easily
see the following: / is continuous, / is a surjection, / is injective except at most
countably many points of C(u) where K has more than one tac plane; /induces
the ordering of [0, 2n] on C(u) (excluding/(0)). We loose no generality in assuming
/ is injective at r = 0. Notice that the tac plane of K at f(r) makes an angle r with
the tac plane of K at f(O).

Notice also that a plane perpendicular to (cos r, sin r, 0) cuts C{u) not at all,
or in one of f(r), f(r±n), or in two points f(s) and f(s'). In the last case we call
f(s)f(s') an r-chord. Clearly there is a unique r-chord through each point of C(u)
other than f(r) or f(r±n).

We now prove some continuity properties of r-chords.

LEMMA 6. (a) We may define r as a continuous function of s and s'(s < s') by
f(s)f(s') being an r-chord with s < r < s', in the cases when this r-chord is defined.
If s' is fixed then r is a monotonic increasing function ofs.
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(b) Iff(s') is defined as a function of r and s by f(s)f(s') being an r-chord then
the function is continuous.

PROOF, (a) Let f(s)f(s') be a g-chord with say q < n, then the plane W
parallel to u and containing f(s)f(s') separates the tac planes 7\ and T2 of K at
f(q) and f(q + n). In addition W separates C(u) into two parts, one of which is
{/(x)!^ < x < s'} and so we define r to be whichever of q or q + n lies in this part.
Since/is continuous, the plane Wcontaining/^) and/(s') must vary continuously
with s and s', and therefore also the planes T and 7". Yet T and 7" make angles q
and q + n with a fixed plane parallel to u, so it follows that r also varies continuous-
ly with s and s'.

If s' is fixed and 5 decreases monotonically then W and so 7^ and T2 must
rotate monotonically, and they must rotate in the sense of decreasing r (for other-
wise r would not stay in the interval (s, s'). This completes part (a).

(b) The plane W varies continuously with r and s, and therefore so does its
second point of intersection with C(w), namely f(s'). This completes the proof.

We next describe an important propertyof r-chords.

LEMMA 7. For each re (0,27c) there is a neighborhood (p,p')c (0,2n),
designated N{r), satisfying:

(a) f(r) is in the interior of {f(x)\p < x < p'} on C(u);
(b) f(p) andf(p') are continuous functions ofr;
(c) ifs, t e N(r) andf(s)f(s') and f(t)f(t') are r-chords then they are parallel.

Diagram 2

PROOF. Let W be a plane perpendicular to (cos r, sin r, 0) intersecting C(u)
in f(q) and f(q') with q < q', (so f(q)f(q') is an r-chord). Then W divides C(n)
into two parts one of which is {f(x)\q < x < q'}, and then the other part contains
/(0). However f(r) # /(0) since r ^ 0 and / is injective at r = 0, thus we can
choose W so that it separates /(0) and f(r) and then it follows that q < r < q'.
We choosey and/)' so that f(p)f(p')is an r-chord andp is the minimum value of
q with this property q < r < q', subject also to the condition that W does not
intersect the interior of hK (h as in the hypothesis of Theorem 1). This defines p and
p' uniquely and f(p) =£ f(r) (since h < 1) so that (a) is satisfied. Property (c) fol-
lows from Lemma 5 and the hypothesis of the theorem with N(r) = (p, p'). We still
have to establish property (b).
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Let W now be the plane perpendicular to (cos r, sin r, 0) containing f(p) and
f(p'). It is clear from the construction of f(p) and f(p') that either W contains
/(0) (in which case either p = 0 or p' = 2TC) or if not, then W is a tac plane of hK.
In the first case the continuity follows from Lemma 6 (b)(since one end point of
f(p)f(p) is fixed). In the second case the tac plane W varies continuously with r
and therefore the points of intersection of W with C(u), namely f(p) and f(p'),
vary continuously with r. This completes the proof.

We next show that C(u) is a plane curve and thus complete the proof of
Theorem 1 by applying Lemma 3.

LEMMA 8. C(u) is a plane curve.

PROOF. Let us take a closed subinterval of (0, 2n), say [a, b]. Define the func-
tion D : [a, b] -* R by

(1) D : r M. min. (\f(r)-f(p)\, \f(r)-f(p')\),

where N(r) = (p,p'). Then by Lemma 7 (a) and (b), D is strictly positive and con-
tinuous, so there exists a constant m > 0 so that D(r) > m tor r e [a, b].

Now we choose an open subinterval of [a, b], I say, satisfying \f(x)—f(y)\
^ m whenever x, y el, and also so that the set/( /) is more then one point. We
will show that the set / ( / ) lies in a plane. Notice the following property of / which
follows from the definition (1) and definitions of m and /,

(2) N(r) => / for r e /.

C(U)

Diagram 3

Let r and t e /and letf(s)f(s') be an r-chord with s e I and f(s)f(s") a ?-chord
as in Diagram 3. As s -*• r we have s' -> r by Lemma 6(b), and therefore, since /
is open, there is an s0 e / so that s' e / whenever s0 < s < s'o. Let s* be so that
f(s')f(s") is an j*-chord. By Lemmas 6(a) and (b), s* is a continuous function of
s and so s* -* t as s -> r. Hence there is an 5X with ŝ  ^ J0 so that s* e / whenever
.?! < 5 < ,y{ (and we can also easily ensure f{st) # / (0) -

All ot the r-chords f(s)f(s') are parallel for s1 < s < s[ by Lemma 7 since
sel and tf(r) => / by (2). Similarly the /-chords f(s)f(s") are parallel for
Si < s < s[. Hence the j*-chords f(s')f(s"), for sx < 5 < s[, are parallel to the
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plane U through O spanned by f(s) — f(s') and f(s)—f(s") for any such s.
Let q e I and f(q)f{q') be the s*-chord through f(q). Then f{q)f(q') is

parallel to f(s')f(s"), for s1 < s < s[, by Lemma 7, since in these cases s' e I
and N(s*) => /. Hence all of these points f(q') lie in the plane V through f(q)
parallel to U. By Lemma 6(b) these points f(q') comprise a proper interval on
C(u) containing f(q") in its interior, where f(q)f(q") is a *-chord. Hence by an
appropriate choice of q and t we can show that any point of/, is in the interior of an
interval of points of C(u) lying in a plane. Therefore all of the points f(x), for
x e /, lie in a plane.

It easily follows from the arbitrary choice of the subinterval / of [a, b] and
of the interval [a, b] itselt that all of the points f(x), for x e (0, 2n), lie in a plane
and so C(u) is a plane curve. This completes Lemma 8.

Theorem 1 now follows from Lemmas 3 and 8.

4. Further results on ellipsoids

The result of section 3, namely Theorem 1, is now generalized in several ways.
In Corollary 2 we extend the result to R" without difficulty.

COROLLARY 2. Let Kbe an n-dimensional convex body in R" for n ^ 3 with O
in its interior andwith all ojits tac planes regular. Let u be a constant with 0 < h < 1.
Suppose that the (n — l)-dimensional convex bodies {Wx n K) and (W2n K) are
equivalent for all parallel hyperplanes Wt and W2 both on the same side of O, pro-
vided W^ and W2 intersect the interior of K but not the interior of hK. Then Kis an
ellipsoid.

PROOF. In the case n = 3 this is Theorem 1. The proof uses induction on n.
Let K be an n-dimensional convex body satisfying the hypothesis and assume the
result is true for (n — 1 )-dimensional convex bodies. It is then easy to show that if
U is any hyperplane through O then the (n — l)-dimensional convex body (U n K)
is an ellipsoid. Tt follows that AT is an ellipsoid (see [3], p. 91). This completes the
proof.

The condition that the tac planes be regular is not necessary and we now show
that the hypothesis of Corollary 2 can be restated in terms of the regular tac planes
of an arbitrary convex body K. The hypothesis of the next result is stated in a slight-
ly different form from Corollary 2 for convenience in the proof.

COROLLARY 3. Let K be an n-dimensional convex body in R" with O in its in-
terior and n ^ 3. Let h be a constant with 0 < h < 1. Suppose that the (M— 1)-di-
mensional convex bodies (Wt n K) and (W2r\ K) are equivalent whenever there are
u, / j l 5 and h2 with h ^ /zt < 1, and h ^ h2 < 1, and Wx and W2 are regular tac
planes ofhyKandh2K, respectively, both with outer normal u. Then Kis an ellipsoid.

PROOF. We prove that every tac plane of K is regular, in which case the result
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follows from Corollary 1. We prove this regularity only when n = 3 since the
general case follows by a simple induction argument.

As a first step we show that the equivalence condition of the hypothesis can be
extended to include planes Wt and W2 which are not regular tac planes of h1K
and h2K. We can certainly find a sequence {«;} with «( -*• u as i -> oo so that the
tac planes Wu of htK and W2i of h2K with outer normals ut, for each i, are regu-
lar. This is because the normals of non-regular tac planes form a set of measure
zero in R3 (see [2], section 9). For each i the hypothesis shows that (Wu r* K)
is equivalent to {W2i n A"). However (W1 n K) is the limit as / -» oo of the convex
bodies {Wu n AT) in the sense that the boundary points of (W^n AT) become uni-
formly arbitrarily close to those of(W1 n K) as i -» oo and vice-versa (an accurate
description of this can be given in [terms of a metric on convex bodies as given
in [5] p. 235 for example). Using the definition of equivalence, it follows that
(W^nK) is equivalent to (W2r\K).

We now show that no tac plane of AT can intersect Km just a segment. Suppose
a tac plane with outer normal u intersects K in just a segment. Let Wt be the tac
plane of ht K with outer normal u. If we let ht -> 1 (from below) then we can easily
show that the ratio of the minimum to maximum width of (Wx n K) must
approach zero since the set (Wt n K) must have the segment as its limit. This is
incompatible with the equivalence condition of the hypothesis. Hence any tac
plane of K intersects Kin a single point or a proper plane face.

Suppose that a tac plane Tintersects .Kin a plane face, and 7" is the other tac
plane of AT parallel to T. Let D = Tn K, D' = V n K (considered as 2-dimensio-
nal convex bodies) where D' may be a single point, and choose any proper chord
a1a2 of D. We divide the argument into two cases: (i) every tac plane of AT parallel
ton,a2 intersects D or D'; (ii) there is a tac plane W of Kparallel to ala2 which
does not intersect D or D'.

In case (i) we can clearly find a tac plane Wof Kparallel toata2 which inter-
sects both D and D'. Then W n AT must contain a segment which does not lie in TOT
T'. It follows from the foregoing that this segment lies in a plane face of A" parallel
to a1a2 and distinct from D and D'.

In case (ii) let Wx be the tac plane of M"with the same outer normal as W. We
can show by a simple continuity argument that W may be rechosen parallel to
a1a2 and still distinct from D and D\ so that Wt intersects the interior of D. In
this case we choose W2 to be another plane parallel to W lying strictly between W
and Wt which does not intersect D or D'. Clearly W1 and W2 satisfy the equiva-
lence condition of the hypothesis so that (Wx n K) is equivalent to (W2 r\ K).
However the frontier of (Wt n K) contains a proper segment parallel to a1a2 (in
its intersection with D), and so by Lemma 2 the frontier of (W2 n K) also contains
a proper segment parallel to a1a2. This segment of (W2 n K) does not lie in D or
D' and so, as we showed previously, it lies in a plane face of K distinct from D
and D'.
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In both cases (i) and (ii) we deduce that there is a plane face Fx of K parallel
to axa2 and distinct from D and D'. For another chord bl b2 of D which is not pa-
rallel to «! a2 we find another plane face F2 parallel to bt b2, which is distinct from
D and D'. However Ft and F2 are distinct since the only plane taces of AT parallel
to a1a2 and fttb2 are D and D'. It follows that there are uncountably many dif-
ferent plane faces of K since there are uncountably many mutually nonparallel
chords of D. However K cannot have uncountably many plane faces, and so this
is a contradiction of the supposition that it had one plane face. Hence all tac planes
of K are regular, and this completes the proof of Corollary 3.

Another possible generalization of Theorem 1 would be to relax the condition
that h be a constant and define h locally for each set of parallel planes. More exactly
we would consider the following condition: K is an n-dimensional convex body in
Rn,for n ^ 3, with O in its interior. For each u there is a h(u) with 0 < h(u) < 1.
T(u) is the tac plane of K with outer normal u. Then for each u, W1 n K is equivalent
to W2 n K whenever Wt and W2 are any two hyp'erplanes, both parallel to, and on
the same side ofO, as T(u), where WY and W2Jntersect the interior of K but not the
interior ofh(u)K.

Rather surprisingly AT need not be an ellipsoid now since the body A" composed
of a hemisphere and half-ellipsoid given by

\x\+x2
2+xl g l for xx ^ 0

x\+x2
2+xl ^ 1 for 0 :> xt

satisfies this condition. There is strong evidence that any AT satisfying this condition
must be composed of 'pieces' of second order surfaces.
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