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Abstract. Asteroseismology depends absolutely on the detection of authentic pulsation signa-
tures in stars. A variety of mathematical and statistical tools have been developed to extract
such signatures from photometric and spectroscopic time series. The earliest tools were devel-
oped on the platform of Fourier analysis, and Fourier-based methodology still plays a major
part in the detection of pulsation signatures in the present day. Alternative approaches have
been gaining ground in recent years. This article offers a brief but broad review of the various
methodologies for detecting authentic periodic signals that have been developed over the past
few decades, including examples of their pitfalls and successes.
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1. Introduction
Asteroseismology has vastly expanded the scope, range and depth of our understanding

of stellar structure and evolution in recent years. As but one prominent example of this,
Bedding et al. (2011) found a very powerful correlation between the spacing of g-modes
and the dominant nuclear energy source (i.e. helium-core or hydrogen-shell fusion) in
red giants. Such breakthroughs depend critically on the accuracy of the oscillation pa-
rameters (frequencies, amplitudes and phases) that are determined from the analysis of
observational data. Fourier-based methods of analysis have been used successfully for
over a hundred years, starting with the work of Schuster (1897). However, these methods
have their pitfalls and other mathematical and statistical points of departure have re-
ceived increasing attention as asteroseismology has matured to its present strength. This
article briefly reviews practically the full range of asteroseismologically relevant meth-
ods that have been presented in the general literature. Their basic premises, strengths
and weaknesses are briefly summarized and examples of their successful applications are
presented.

The scope of published methods may be naturally classified under the two headings
of Fourier-based methods and Dispersion/Entropy-based methods, respectively. These
two classes will be discussed separately, as sections 2 and 3. The impact of Bayesian
approaches on existing methods of period-finding is discussed in section 4. Section 5
contains a summary of ancillary issues of importance and some suggestions for further
exploration of this topic.

At the outset, it might be useful to emphasise that the spectrum of a time series repre-
sents the respective probability amplitudes (quantified via one or other measure statistic)
of regular variations present in the time series, as a function of variation frequency. This
article considers the various methods available for computing such a spectrum.
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2. Fourier-based methods
The popularity of Fourier-based methods is due to the mathematical properties of

harmonic functions, which make them attractive as the basis of algorithms designed
to search for periodicity in the frequency domain. The original Fourier-based method
is the Fourier transform, which applies to a continuous function in the time domain.
Measurements taken of real signals are, of necessity, not continuous but discrete. Real
measurements are also not infinitely long in total extent. The adaptation of the Fourier
transform to discrete data (i.e. a discrete sampling of a supposed underlying continuous
function) constitutes the Discrete Fourier Transform (DFT), originally applied in cases
where the discrete sampling is exactly equally-spaced in the time domain. Both the origi-
nal DFT and the efficiently-computable Fast Fourier Transform (FFT) can be attributed
to Gauss (Heideman et al. 1984). Astronomical measurements are almost never exactly
equally-spaced. Therefore, a modification to the equally-spaced DFT for application to
non-equally-spaced data (which also have a finite total extent), was proposed by Deeming
(1975). As pointed out by Ferraz-Mello (1981), amongst others, there is no mathemat-
ical foundation supporting the Deeming formula. Although it appears to work well in
many cases, it remains, in its essence, a heuristic device. Given the importance of ac-
curacy and precision of period detections in asteroseismology, attention should be given
to alternatives to the raw Deeming formula that provide answers with a higher level of
confidence. Ferraz-Mello (1981) introduced the so-called Date-Compensated DFT which
introduces a non-zero constant mean into the calculated transform. The major advan-
tage of this refinement of the Deeming formula for a non-equally-spaced DFT (called
the Deeming DFT in the remainder of this article) is a more accurate estimation of
the amplitudes of harmonic signals present in the observed data, especially when the
number of observations is relatively small. Ferraz-Mello also introduced a weighting al-
gorithm to deal with observations that do not all have exactly the same measurement
error. The Deeming DFT and its refinements have been used very extensively in the prac-
tice of asteroseismology over many decades, through to the present. It works very well
when applied to quasi-equally-spaced data (like the data in the Kepler database). How-
ever, as stated already, it remains a heuristic device and it should always be used with
circumspection.

Assigning a statistical significance to suspected oscillation frequencies harvested from a
Deeming DFT is problematic, as the statistical conclusions that attach to purely equally-
spaced time series do not apply to non-equally-spaced data. This makes it impossible to
attach statistical significance a priori to peaks in Deeming DFT periodograms. Scargle
(1982) attempted to address this particular problem by deriving an alternative algorithm
to the Deeming DFT, as discussed below. Breger et al. (1993) offered a helpful rule of
thumb to estimate the statistical significance of periodogram peaks obtained with a
Deeming DFT: if the harmonic wave associated with a frequency peak has an amplitude
greater than 4 times the residual noise level in the periodogram (see section 5.4 of Aerts
et al. (2010) for a detailed discussion), it is statistically significant. It is unfortunate that
this commonly used rule of thumb is being called a “four-sigma detection” with growing
regularity, since this might create considerable confusion in the future. The terms “four-
sigma detection”, “five-sigma detection”, etc. have a very well-established meaning in
the theory of normal distributions and such phrases are commonly used in many areas
of modern science. The Breger rule of thumb means something totally different and it
should rather be referred to as the “4:1 rule” or something similar. Useful as the rule has
proven to be, the brief experiments conducted by Koen (2010) show that the quantitative
statistical meaning of the “4:1 rule” can vary wildly from one dataset to the next. The
present author has independently found similar results (unpublished). The discussion in
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Aerts et al. (2010) reminds the reader of the very particular and limited context wherein
Breger found the “4:1 rule” to be valid. Considerable caution is required when applying
it in general.

Scargle’s seminal paper (Scargle 1982) followed on foundations laid by Barning (1963),
Vańıček (1969) and Lomb (1976). Scargle claimed that the algorithm that he put forward
(commonly called the Lomb-Scargle periodogram or LS periodogram for short) retrieves
the statistical properties of the classical (equally-spaced) DFT; therefore, the probability
of obtaining a peak of height X in the LS periodogram of a time series consisting of
normally-distributed noise is proportional to exp(−X). However, this claim encounters
an insurmountable practical difficulty, as has been pointed out repeatedly (see, for ex-
ample, Horne & Baliunas (1986), Koen (1990), Frescura et al. (2008) and Scargle’s own
recognition of the problem in his paper): when computing the periodogram for more than
one frequency, using non-equally-spaced data, one requires the exact number of statis-
tically independent frequencies in the set of frequency values at which the periodogram
is being calculated. There is no way to determine this number (see Horne & Baliunas
1986 and the follow-up work by Frescura et al. 2008). Various workers have concluded
that Monte Carlo procedures are the only reliable way of determining the statistical sig-
nificance of peaks in a LS periodogram (for instance, see the papers just quoted). An
interesting and thorough discussion of this question appears in Vio et al. (2010).

Mathematically, the Lomb-Scargle periodogram calculates the goodness-of-fit of a har-
monic (i.e. sinusoidal) function compared with the data, for a selected grid of frequencies.
It therefore works particularly well at extracting the frequencies of small-amplitude os-
cillations in general (since small excursions from an equilibrium state are always well
approximated by a harmonic variation). It has been used with considerable success for
more than thirty years and remains one of the most widely-used methods of extracting
oscillation frequencies from astronomical data. It should be noted that the LS peri-
odogram and the Deeming DFT do not always produce similar results; a good example
of discrepant results is discussed in the very thorough study of the LS periodogram by
Vio et al. (2013). The LS periodogram is generally less susceptible to aliasing than the
Deeming DFT is – see e.g. Reegen (2007). Furthermore, Frescura et al. (2008) demon-
strated that it is vitally important to “oversample” the frequency grid when calculating
the LS periodogram.

A substantial overhaul of the classical LS periodogram is contained in the work of
Cumming et al. (1999) and Zechmeister & Kürster (2009). Cumming et al. introduced
a floating mean into the LS periodogram calculation, meaning that a constant term is
included in the fit for each trial frequency. Their detailed study led them to conclude that
“allowing the mean to float is crucial if the number of observations is small, the sampling
is uneven, or there is a period comparable to the duration of the observations or longer”.
Uneven sampling is almost ubiquitous in the data used in asteroseismology, hence their
conclusions deserve careful scrutiny. These authors caution that periodic signals could
be totally missed, or their amplitudes miscalculated, when the floating mean is omitted.
Zechmeister & Kürster added a weighting procedure, to accommodate observations that
do not all have exactly the same precision. They chose the name “Generalised Lomb-
Scargle periodogram” for their more refined procedure, abbreviated as GLS (although
they point out one previous use of the same phrase in a different context). They concluded
that, compared to the classical LS periodogram, GLS provides a more accurate frequency
determination, is less susceptible to aliasing, and gives a much better determination
of the spectral intensity. A recent, comprehensive comparison of various period-finding
methods by Graham et al. (2013a) provides strong endorsement for the accuracy of the
GLS algorithm.
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A detailed study of an alternative approach for calculating statistical significances of
detected periodicities in unequally-spaced data was presented as the SigSpec algorithm
by Reegen (2007), who claimed period-finding accuracy on a par with LS but with less
susceptibility to aliasing. The most prominent new feature of SigSpec is its inclusion of
phase information, while it also incorporates the floating mean and weighting refinements
of GLS. SigSpec has been widely used in the literature, often in conjunction with other
period-finding methods. Zechmeister & Kürster (2009) demonstrated many equivalences
between the GLS and SigSpec approaches to period-finding.

A quite different methodology for period-finding, SparSpec, was presented by Bour-
guignon et al. (2007). The authors explain that the name “SparSpec” derives from the
method’s character as a “multisine fitting [. . . ] addressed as the sparse representation
of data in an overcomplete dictionary of frequencies”. They model the given data us-
ing the sum of an arbitrarily large number of pure frequencies, discretised on a fixed
grid, and seek that particular representation that produces the fewest non-zero ampli-
tudes. Following various detailed tests, the authors conclude that SparSpec: i) correctly
locates the frequencies embedded in some test data while classical methods fail to do
so; ii) outperforms the familiar sequential prewhitening methods in countering sampling
artifacts; iii) accurately estimates both frequencies and amplitudes; and iv) is less sen-
sitive to low-frequency perturbations, e.g. to those caused by orbital movements, than
familiar methods. Bourguignon et al. (2007) actively encourage the community to apply
their code and test its efficacy. Bourguignon et al.’s (2007) SparSpec paper includes a
thorough application of the CLEAN and CLEANest methods. CLEAN refers to the al-
gorithm presented by Roberts et al. (1987), with the picturesquely phrased aim to “undo
the damage inflicted” by the incomplete sampling of the physical signal. Essentially, the
aim of the CLEAN approach is to subtract the spectral window from the so-called “dirty
spectrum”. Foster (1995) followed this up with CLEANest, specifically tailored to deal
with very long time series. Foster (1996) contains a thorough study of wavelet theory
applied to period-finding in time series, with the specific aim to treat variable periods
and/or amplitudes.

In summary, the Fourier-based methods readily available for period-finding at present
include the Deeming DFT (often employed in the form of the Period04 package), the
classical LS periodogram (available in various packages but also very simple to self-code),
GLS, SigSpec and SparSpec. A positive feature of the various modern alternatives to the
classical methods is their common presentation to potential users in a very accessible
format. The SigSpec and SparSpec codes are readily available on the web, together with
substantial user manuals. Refinements to classical methods, like GLS, are simple enough
to self-code, with the algorithms readily provided in the source papers.

3. Dispersion/Entropy-based methods
A useful overview of the mathematical basis for these methods appears in Aerts

et al. (2010). In brief terms, these methods identify the most probable period (or fre-
quency) of a regular variation present in a time series by minimising the scatter in
phase bins associated with each respective period in a chosen grid (instead of calculating
transforms of time series or fitting functions to them, as the Fourier-based methods do).
The original dispersion/entropy-based method (“D/E method” in what follows) is the
“String-length” (STR) method introduced by Lafler & Kinman (1965), expressly to deal
with light curves that deviate substantially from sinusoidal shapes. The meaning of their
test statistic Θ is quite transparent: For a time series consisting of measurements mj ,
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with mean M̄ ,

Θ =
∑

i(mi − mi+1)2
∑

i(mi − M̄)2 (3.1)

This simple algorithm for a dispersion-based statistic was followed by a succession of
increasingly sophisticated approaches, continuing to the present day (see below). How-
ever, the simple STR approach has also received continuing attention. Dworetsky (1983)
pointed out the advantages offered by STR when dealing with sparsely sampled sig-
nals, while Clarke (2002) refined the original STR statistic, to render it independent of
sample size. In summary: STR handles non-sinusoidal signals rather well, but the statis-
tic produces a plot that is rich in false peaks (“aliases” of a kind) and the method is
computing-intensive.

Not long after Lafler & Kinman’s introduction of STR, Jurkevich (1971) proposed
what he called “a statistically more natural” approach, containing a set of statistics with
a stronger foundation in formal statistical theory. This procedure was generalised by
Stellingwerf (1978) in the format that has been very widely used as “Phase Dispersion
Minimisation” or PDM. Similarly to STR, PDM produces very noisy plots of the PDM
statistic against frequency (this type of plot is the D/E methods’ equivalent of the Fourier-
based methods’ periodogram).

An important development in D/E methods is the “Analysis of Variance” (or AoV) al-
gorithm proposed by Schwarzenberg-Czerny (1989; SC89). This algorithm is rooted very
deeply in fundamental statistical theory and Schwarzenberg-Czerny obtains very impres-
sive results when applying AoV to a variety of test cases. SC89 also makes pertinent state-
ments about STR and PDM. The AoV method appears to be remarkably more powerful
at extracting periodicities from time series (at a given significance level) than many other
methods. SC89 also points out that Fourier-based methods are superior to D/E methods
for the detection of sinusoidal signals; however, the converse is true when dealing with sub-
stantially non-sinusoidal signals (e.g. sharp pulses). Schwarzenberg-Czerny (1996; SC96)
extends AoV to the so-called “multi-harmonic” case. He exploits a correspondence be-
tween Fourier series and series of complex polynomials to set up an algorithm which
appears exceptionally powerful at damping aliases (and therefore at detecting weaker
physical signals in the data). The comparative study by Graham et al. (2013a), men-
tioned earlier, concluded that the SC96 methodology (labelled AoVMHW) has great
merit as an accurate and sensitive period-finding procedure. Baluev (2009) conducted a
meticulous statistical study of AoVMHW, focusing on the treatment of non-sinusoidal
light curves, and confirmed the merits of AoVMHW as a versatile and powerful period-
finding method. Baluev (2008) constitutes a similar treatment of the LS periodogram.
The work in both of these papers is carried further in Baluev (2013a), where the Von
Mises function is exploited to obtain thought-provoking results. Baluev (2013a) also sup-
plies a weblink to the C++ code for his algorithm with an invitation for its widespread
use.

A couple of period-finding algorithms based on various definitions of entropy have
been introduced recently. Cincotta et al. (1995) use the Shannon entropy to select an
optimal period. The analytical theory behind SE is presented in Cincotta et al. (1999).
They test their algorithm with simulated data containing non-sinusoidal variability and
find that their method (SE, for Shannon entropy) is more sensitive than the classical
periodograms at period detection and that it is very good at resolving closely spaced
frequencies. As with the other D/E methods, the actual shape of a periodic variation in
the data is not important and the method is well suited to the detection of non-sinusoidal
variations. One substantial advantage of the method is its mathematical simplicity and
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rapid computability. However, it is quite vulnerable to gap aliasing. On the contrary, the
“Conditional Entropy” (CE) method introduced by Graham et al. (2013b) is found to be
“particularly robust against common aliasing issues”. The authors back these claims up
with persuasive test results. Essentially, CE is a simple but effective modification of SE.
The authors put CE through a robust test run in their paper comparing various period-
finding methods (Graham et al. 2013a), where it emerges as a very powerful tool for the
accurate detection of periods in large survey databases. Huijse et al. (2012) present a
useful summary of some other D/E methods while introducing their CKP (Correntropy
Kernelised Periodogram) algorithm.

In summary, the following D/E-methods have been well-tested in the past or recently
added to the range of options: STR, PDM, AoV, AoVMHW, SE, CE and CKP.

4. The impact of Bayesian approaches
Asteroseismology relies on the meticulous matching of theoretical calculations of pul-

sation parameters with the values of those parameters derived from observational data.
Besides the actual values of frequencies, amplitudes, phases and modal indices we derive
from data, a key quantity is how reliable the derived values are. Many procedures exist
for estimating the statistical significance of data-derived quantities. Bayesian statistics
offers a methodology for estimating data-derived quantities as well as modeled quantities.
An informative example of estimating modeled quantities is found in Bazot et al. (2012),
while Brewer & Stello (2009) present a good example of assigning probabilities to data-
derived quantities. Marsh et al. (2008) present an application to solar oscillations. Bour-
guignon & Cartanfan (2008) demonstrate efficient period extraction with Bayesian meth-
ods when traditional methods fail, while White et al. (2010) offer a balanced comparison
of Bayesian and Fourier methods and point out the former’s advantage in avoiding spu-
rious aliases. Wang et al. (2012) find distinct advantages in applying Bayesian methods
to non-sinusoidal light curves. Stoica et al. (2009) (also see He et al. 2009) combine their
RIAA method with a Bayesian analysis.

5. Ancillary issues and suggestions
The thorough study by Cumming et al. (1999) makes important conclusions regarding

the appropriate normalization of the LS periodogram. Koen (2006, 2010b) explores the
interpretation of the Nyquist frequency for irregularly spaced time series. Eyer & Bartholdi
(1999) and Pelt (2009) also consider the topic. Süveges (2012) presents an interesting
treatment of the statistical significance of periodogram peaks. Further treatments of
various aspects of period-finding may be found in Jetsu & Pelt (1999), Palmer (2009),
Pelt et al. (2011) and Leroy (2012).

The content of the many published papers on period-finding in astronomical time
series is very diverse. Meticulous statistical studies of this issue are rare; however, a few
authors have each produced a substantial set of papers that explore important questions
regarding the statistical content and meaning of various aspects of observed time series.
The reader is referred to the following papers of these authors (in alphabetic order) as an
overview: Baluev (2008, 2009, 2012, 2013a, 2013b), Koen (1990, 1999, 2000, 2006, 2009,
2010b), Koen & Lombard (1993), Schwarzenberg-Czerny (1989, 1991, 1996, 1997, 1998,
1999). The work of Stahn & Gizon (2008) on the analysis of time series containing many
gaps is also worth consulting.

The aim of this article has been to be as inclusive as possible in pointing the reader
to the full scope of methods for extracting oscillation frequencies from time series. There
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are many important features that attend to the respective methods and many subtle
points that thread through them. A detailed study of the papers cited here (and their
references) is recommended for further elucidation.

The organisers are thanked for the invitation to compile this review. Financial support
from the University of Johannesburg/DHET and the IAU is gratefully acknowledged.
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