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1. Introduction

Let F be a finite extension of Qp, and let L be a further sufficiently large finite extension

of F , which will serve as the field of coefficients. Let O be the ring of integers in L, � be
a uniformiser in O and O/� = k be the residue field.

To a smooth admissible representation π of GLn(F ) on an O-torsion module, Scholze

in [47] attaches a sheaf Fπ on the adic space Pn−1
Cp

and shows that the cohomology groups

Hi
ét(P

n−1
Cp

,Fπ) are admissible representations ofD×
p , the group of units in a central division

over F with invariant 1/n, and carry a continuous commuting action of GF , the absolute

Galois group of F . His construction is expected to realise both p-adic local Langlands
and p-adic Jacquet–Langlands correspondences. However, these groups seem to be very

hard to compute, and even deciding whether they are zero or not is highly nontrivial.

In order to extend Scholze’s construction to admissible unitary Banach space representa-

tions Π of GLn(F ), the following seems like a sensible thing to do: choose an open bounded
GLn(F )-invariant lattice Θ in Π; then Θ/�m is an admissible smooth representation of

GLn(F ) on an O-torsion module and we can consider the limit lim←−m
Hi

ét(P
n−1
Cp

,FΘ/�m)

equipped with the p-adic topology. We would like to invert p and obtain a Banach
space, but the O-module might not be O-torsion free, and once quotiented out by the

torsion, it might not be Hausdorff. Hence, it seems sensible to define Ši(Π) :=Q(Θ)⊗OL,

where Q(Θ) is the maximal Hausdorff, O-torsion free quotient of lim←−m
Hi

ét(P
n−1
Cp

,FΘ/�m).

Even if we could compute Hi
ét(P

n−1
Cp

,FΘ/�) and show that it is nonzero, we cannot

conclude that Ši(Π) is nonzero. However, it is easy to see that if the neighbouring
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groups Hi−1
ét (Pn−1

Cp
,FΘ/�) and Hi+1

ét (Pn−1
Cp

,FΘ/�) both vanish, then the nonvanishing of

Hi
ét(P

n−1
Cp

,FΘ/�) implies the nonvanishing of Ši(Π) (see Section 3.3).

If F = Qp and n = 2, and π is a principal series representation of GL2(Qp), then

Judith Ludwig shows in [31] the vanishing of Hi
ét(P

1
Cp
,Fπ) when i = 2. All the other

groups for i > 2 are known to vanish in this case due to Scholze. Moreover, it follows

from Scholze’s results that H0(P1
Cp
,Fπ) also vanishes, if πSL2(Qp) is equal to zero. Thus

if we restrict our attention only to those representations π which have all irreducible

subquotients isomorphic to irreducible principal series representations, then the functor
π �→H1

ét(P
1
Cp
,Fπ) is exact. Such subcategories of smooth representations of GL2(Qp) on

O-torsion modules have been studied in [37] and shown to be related to the reducible 2-

dimensional mod p representations of GQp
. The exactness of the functor π �→H1

ét(P
1
Cp
,Fπ)

allows us to use arguments of Kisin [27], who used the exactness of Colmez’s functor to

make a connection between the deformation theory of GL2(Qp)-representations and the

deformation theory of 2-dimensional GQp
-representations. For simplicity, we assume that

p > 2 in this article.

Theorem 1.1. Let r :GQp
→GL2(L) be a continuous representation with r̄ss = χ1⊕χ2,

where χ1,χ2 : GQp
→ k× are characters such that χ1χ

−1
2 �= ω±1, where ω is the mod p

cyclotomic character. Let Π be the admissible unitary L-Banach space representation of
GL2(Qp) corresponding to r via the p-adic local Langlands correspondence for GL2(Qp).

Then Š1(Π) �= 0.

Previously, such a result was known only in the case when r is a (twist of a) potentially
semistable, non-crystabelline representation lying on an automorphic component of a

potentially semistable deformation ring, proved by Chojecki and Knight [12]. They prove

it by patching and showing that locally algebraic vectors in Š1(Π) are nonzero. Their
argument relies on the theorem of Emerton [19], which allows them to interpret classical

automorphic forms as locally algebraic vectors in completed cohomology and enables

them to handle only the representations which are ‘discrete series at p’. For example, their

argument does not work for representations which become crystalline after restriction to
a Galois group of an abelian extension of Qp (principal series at p), or for representations

which do not become potentially semistable after twisting by a character (nonclassical).

Our argument works as follows: by the mod p local Langlands correspondence to r̄ss,
one may associate two principal series representations π1 and π2. We know from [15, 37]

that the semisimplification of Π0/� is isomorphic to π1⊕π2, where Π0 is a unit ball in

Π. Using the exactness results already described, it is enough to show that at least one of
H1

ét(P
1
Cp
,Fπ1

), H1
ét(P

1
Cp
,Fπ2

) does not vanish. To show that, it is enough to find some π

with all irreducible subquotients isomorphic to either π1 or π2, such thatH1
ét(P

1
Cp
,Fπ) does

not vanish. As we have already mentioned, it seems impossible to compute H1
ét(P

1
Cp
,Fπ)

in general. However, Scholze manages to do so for certain representations coming from
geometry. If π = S(Up,O/�n) is a 0th completed cohomology group of a tower of zero-

dimensional Shimura varieties associated to a quaternion algebra D0 over1 Q which is

1In the main body of the article, we work with a totally real field F , such that Fp = Qp for a
place p. We assume that F =Q for the purpose of this introduction.
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split at p and ramified at ∞, Scholze shows in [47] that H1
ét(P

1
Cp
,Fπ) is isomorphic as

a GQp
×D×

p -representation to the 1st completed cohomology group Ĥ1(Up,O/�n) of a

tower of Shimura curves associated to a quaternion algebra D, which is ramified at p

and split at ∞ and has the same ramification as D0 at all the other places. Here Up

denotes some fixed tame level. Scholze also shows that this isomorphism respects the
action by Hecke operators on both sides. We show that a localisation of S(Up,O/�n) at

a maximal ideal m of the Hecke algebra corresponding to an absolutely irreducible Galois

representation ρ̄ : GQ,S → GL2(k), such that the semisimplification of ρ̄|GQp
is equal to

χ1⊕χ2 as before, has all irreducible subquotients isomorphic to π1 or π2 as before. By

applying Scholze’s functor to this representation, we obtain Ĥ1(Up,O/�n)m, which can

be shown to be nonzero using the classical Jacquet–Langlands correspondence.
Let K be any open uniform pro-p subgroup of D×

p ; then its completed group ring O[[K]]

and the localisation O[[K]]⊗O L are both Auslander regular rings, and as a consequence

there is a good dimension theory for their finitely generated modules, generalising the

Krull dimension. If B is an admissible unitary Banach space representation of D×
p , then

its Schikhof dual Bd is a finitely generated O[[K]]⊗O L-module, and we define the δ-

dimension of B to be the dimension of Bd in this sense.

Theorem 1.2. If Π is as in Theorem 1.1, then the δ-dimension of Š1(Π) is one.

This theorem is proved by using the observation of Kisin in [27] that exact functors
take flat modules to flat modules, and the results of Gee and Newton [23] on miracle

flatness in a noncommutative setting.

One can show that a Banach space representation of D×
p has δ-dimension zero if and

only if it is finite-dimensional as an L-vector space. Moreover, the zero-dimensional

representations build a Serre subcategory, and thus one may pass to a quotient

category. Informally, this means that two 1-dimensional Banach space representations
are isomorphic in the quotient category if they differ by a 0-dimensional Banach space

representation. As Kohlhaase has pointed out to me, the quotient category of Banach

space representation of δ-dimension at most one by the zero-dimensional Banach space

representations is Noetherian and has an involution; hence it is also Artinian, and hence
every object in the quotient category has finite length. From this it is easy to deduce the

following:

Corollary 1.3. If Π is as in Theorem 1.1, then Š1(Π) is of finite length in the category
of admissible unitary L-Banach space representations of D×

p if and only if it has finitely

many irreducible subquotients, which are finite dimensional as L-vector spaces.

We got quite excited about this corollary at first, since we hoped that it might imply
that Š1(Π) is of finite length as a Banach space representation of D×

p by some formal

representation theoretic arguments. However, here is an example suggesting that one

should be cautious. If K = Zp, then O[[K]] ∼=O[[x]], a commutative formal power series
ring in one variable, and the Banach space of continuous functions on K has δ-dimension

one and is irreducible in the quotient category, which is equivalent to the category of

finite-dimensional vector spaces over the fraction field of O[[x]]; its Schikhof dual is
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isomorphic to O[[x]][1/p], and all irreducible subquotients are finite-dimensional (see,

however, Theorem 1.5).

1.1. Global p-adic Jacquet–Langlands correspondence

Theorem 1.1 has a global application, which we state in the introduction for F =Q. The
results are proved for a totally real field F such that Fp = Qp (see Theorems 6.11 and

6.17 and Proposition 6.15). Scholze has shown in [47, Corollary 7.3] that

S(Up,O)m := lim←−
n

S(Up,O/�n)m, Ĥ1(Up,O)m := lim←−
n

Ĥ1(Up,O/�n)m

have an action of the same Hecke algebra T(Up)m. Moreover, there is a surjective

homomorphism of local rings Rρ̄ � T(Up)m, where Rρ̄ is the universal deformation ring

of ρ̄.

Theorem 1.4. Let x ∈ m-SpecT(Up)m[1/p] be such that the restriction of the cor-

responding Galois representation ρx : GQ,S → GL2(κ(x)) to GQp
is irreducible. Then

(Ĥ1(Up,O)m⊗L)[mx] is nonzero if and only if (S(Up,O)m⊗O L)[mx] is nonzero.

In this case, there is an isomorphism of admissible unitary κ(x)-Banach space

representations of GQp
×D×

p :

(Ĥ1(Up,O)m⊗O L)[mx]∼= Š1(Π)⊕n, (1)

where Π is the absolutely irreducible κ(x)-Banach space representation corresponding to

ρx|GQp
via the p-adic local Langlands correspondence for GL2(Qp). In particular, the δ-

dimension of (Ĥ1(Up,O)m⊗O L)[mx] is 1.

The first part of this theorem should be thought of as a global Jacquet–Langlands
correspondence between the p-adic automorphic forms onD×

0 andD×. In particular, since

D0 is split at p, one can always find a classical automorphic form, which is a principal

series at p, such that (S(Up,O)m ⊗O L)[mx] is nonzero, where mx is the corresponding

maximal ideal. The theorem tells us that there is a p-adic automorphic form on D×

corresponding to it. Such a form cannot be classical, since the classical Jacquet–Langlands

correspondence cannot cope with principal series.

It was pointed out to me by Sean Howe that in his 2017 University of Chicago PhD
thesis [25], he proves an analogue of the first part of Theorem 1.4 in the setting when

D0 is a quaternion algebra over Q ramified at p and ∞ and D = GL2, for the maximal

ideals corresponding to overconvergent Galois representations. He conjectures that the
analogue of (1) holds in his setting.

Theorem 1.5. Assume the setup of Theorem 1.4. Let D×,1
p be the subgroup of D×

p

of elements with reduced norm equal to 1. Let Š1(Π)1-alg be the subspace of locally

algebraic vectors for the action of D×,1
p on Š1(Π). Then Š1(Π)1-alg is a finite-dimensional

L-vector space. If it is nonzero, then ρx|GQp
is a twist of a potentially semistable

representation, which does not become crystalline after restriction to the Galois group

of any abelian extension of Qp. The quotient Š1(Π)/Š1(Π)1-alg contains an irreducible

closed subrepresentation of δ-dimension 1.
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To the best of my knowledge, the existence of irreducible admissible unitary Banach
space representations of D×

p of dimension 1 has not been known before.

If F = Q, as we assume in this introduction, then, after twisting, Theorem 1.5

follows readily from Theorem 1.4 using Emerton’s results on locally algebraic vectors in
completed cohomology [19]. However, when F is a totally real field, p-adic automorphic

representations must be dealt with, which have locally algebraic vectors at all places above

p except for one, where they have locally algebraic vectors after a twist by a character

which is not locally algebraic.
Let us point out that because D×

p has an open normal pro-p subgroup, every smooth

irreducible representation of D×
p in characteristic p is finite-dimensional as a vector space.

Moreover, if we fix a central character, there are only finitely many isomorphism classes.
It follows from Theorem 1.2 that at least one of H1

ét(P
1
Cp
,Fπ1

) and H1
ét(P

1
Cp
,Fπ2

) must

be an infinite-dimensional k-vector space and admissible as smooth representations of

D×
p . This means that they are built together out of finite-dimensional pieces in some

non-semisimple way. This non-semisimplicity makes the study of the mod-p Jacquet–

Langlands correspondence complicated, and passing to semisimplification seems not

to carry much information, since if the central character is fixed, only finitely many

isomorphism classes of irreducible subquotients can appear.
If we work in characteristic zero, then this problem need not appear. One can show

that any irreducible unitary Banach space representation of D×
p on a finite-dimensional

vector space is of the form SymbL2⊗deta⊗τ ⊗η ◦Nrd, where τ is a smooth irreducible

representation and η :Q×
p →L× is a unitary character. Such representations appear in the

classical Jacquet–Langlands correspondence (up to a twist), and we speculate that if the

Galois representation corresponding to Π does not become potentially semistable after

twisting by a character, then such representations should not appear as subquotients
of Š1(Π). It seems very reasonable to us in view of Corollary 1.3 and Theorem 1.5 to

expect that Š1(Π) is of finite length as a Banach space representation of D×
p . This

raises a natural question: whether one can construct the irreducible representations in
Theorem 1.5 directly and prove local–global compatibility for them. We hope to pursue

these questions in future work.

1.2. Patching

We have decided not to use patching in this article, since it would add another level of

technicalities. However, let us indicate which parts of the article can be improved upon
if one chooses to use patching.

In the miracle flatness theorem of Gee and Newton (see Proposition 4.1 for the form in

which we use it), one needs the commutative ring to be regular, so we cannot apply it to
T(Up)m and S(Up,O)m directly. However, if one patches, under favourable assumptions

one can arrange that the patched ring R∞ is regular and then show that the patched

module M∞ is flat over R∞ by the same argument. This would imply that S(Up,O)m is
flat over T(Up)m. This is how Gee and Newton prove their theorem that big R is equal to

big T. As a consequence, one would know that the multiplicity n in (1) is independent of

x, and one would not need to assume that ρx|GQp
is irreducible. Instead, we use Cohen’s
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structure theorem for complete local rings to prove the flatness of S(Up,O)m over some

(random) formally smooth subring of T(Up)m of the same dimension. As a consequence,

we are forced to assume that ρx|GQp
is irreducible, since we cannot exclude the possibility

that at points corresponding to reducible Galois representations, the fibre contains only

one of the two irreducible Banach spaces that should appear there. Since we can not

exclude the possibility that one of H1
ét(P

1
Cp
,Fπ1

) or H1
ét(P

1
Cp
,Fπ2

) vanishes, this causes
trouble. However, since we do not need precise knowledge of (S(Up,O)m⊗O L)[mx], only

that all irreducible subquotients of Π appear there, arguments of Breuil and Emerton [8]

might be used here to get the same result without patching.
A further improvement could be made in Theorem 1.5. Right now we use in an

essential way the fact that Π corresponds to the restriction to GQp
of a global Galois

representation. One could spread this result out by first showing that the patched module

M∞ is projective as a GL2(Qp)-representation in a suitable category, as in [11], so that
if r : GQp

→ GL2(L) is an irreducible representation satisfying r̄ss = χ1 ⊕χ2, then the

corresponding GL2(Qp)-representation Π can be obtained by specialising M∞ at some

closed point y of R∞[1/p]. If σ is a finite-dimensional D×
p -invariant subspace of Š1(Π),

then it is of the form SymbL2⊗deta⊗τ ⊗η ◦Nrd. Let σ◦ be an D×
p -invariant O-lattice in

σ. Then M ′
∞(σ◦) :=HomD×

p
(Š1(M∞),(σ0)d)d is a finitely generated R∞-module. Arguing

as in [11, Lemma 4.18] and using Theorem 1.5, we see that the Galois representations

corresponding to the closed points in m-SpecR∞[1/p] in the support M ′
∞(σ◦) have the

same p-adic Hodge theoretic properties – so, for example, if η is trivial, then all of

them are potentially semistable and have the same Hodge–Tate weights and inertial
type. Moreover, the restriction of the associated Weil–Deligne representation to the Weil

group of Qp is of ‘discrete series type’. As a part of patching, we obtain an ideal a∞ of

R∞ generated by an M∞-regular sequence y1, . . . ,yh such that M∞/a∞M∞ ∼= S(Up,O)m.
Then Š1(M∞)/a∞Š1(M∞) ∼= Ĥ1(Up,O)m and �,y1, . . . ,yh is a system of parameters

for M ′
∞(σ◦). Thus M ′

∞(σ◦)/a∞M ′
∞(σ◦)[1/p] is nonzero, and we can convert this into

a representation theoretic information using [39, Proposition 2.22] to deduce that there
is some x ∈m-SpecT(Up)[1/p], such that HomD×

p
(σ,(Ĥ1(Up,O)m⊗O L)[mx]) �= 0. Then,

as in the proof of Theorem 6.17, the p-adic Hodge theoretic data of ρx|GQp
(and hence

of r) will determine σ. This allows us to conclude that if HomD×
p
(σ,Š1(Π)) is nonzero,

then Š1(Π)1-alg is isomorphic to a finite direct sum of copies of σ and thus is a finite-

dimensional L-vector space. Arguing as in the proof of Theorem 6.17, we conclude

that Š1(Π)/Š1(Π)1-alg is nonzero, and any irreducible Banach space subrepresentation
has δ-dimension equal to 1. The details of this argument will appear in a subsequent

article.

1.3. Outline

We end this introduction with a brief outline of how the article is structured. Section 3

contains the local part of the article. We first review the results of Ludwig and Scholze,
and then recall some results about the representation theory of GL2(Qp) proved in [37]. In

subsection 3.3, in order to make things transparent for the reader, we dualise everything

at least twice. In section 4 we recall the notion of dimension for finitely generated modules
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over Auslander regular rings and the results of Gee and Newton on miracle flatness in a
noncommutative setting. In section 5 we prove the local–global compatibility results. The

main objective of this section is to be able to apply the results of [37] to the completed

cohomology. These results were known to the authors of [11] at the time of writing that
article. However, the results proved in section 5 form a technical backbone of this article,

so it seems like a good idea to write down the details. The main ingredients are the theory

of capture [15, §2.4], [40, §2.1], which is based on the ideas of Emerton in [18], the results

of Berger and Breuil [5] on the universal unitary completions of locally algebraic principal
series representations and the results of Colmez in [13] on the compatibility of the p-adic

and classical local Langlands correspondences. In section 6 we prove the theorems stated

in the introduction.

2. Notation

Our conventions on local class field theory, the classical local Langlands correspondence

and p-adic Hodge theory agree with those of [11]. In particular, uniformisers correspond
to geometric Frobenii, and the p-adic cyclotomic character ε :GQp

→ Z×
p has Hodge–Tate

weight −1. We will denote its reduction modulo p by ω. We will denote by χcyc :GQ →Z×
p

the global p-adic cyclotomic character.
IfG is a p-adic analytic group, then we use the notation scheme introduced in [20] for the

categories of its representations. In particular, ModsmG (O) denotes the category of smooth

representations of G on O-torsion modules, ModadmG (O) denotes the full subcategory

of admissible representations and Modl.admG (O) denotes the full subcategory of locally
admissible representations of G.

If ζ :Z(G)→O× is a continuous character of the centre of G, then we add a subscript ζ

to indicate that we consider only those representations on which Z(G) acts by the central
character ζ. For example, Modl.admG,ζ (O) is the full subcategory of ModsmG (O) consisting of

locally admissible representations on which Z(G) acts by the character ζ.

The functor M �→ M∨ := Homcont
O (M,L/O) induces an antiequivalence of categories

between the category of discrete O-modules and the category of compact O-modules. We

will refer to this duality as Pontryagin duality and to M∨ as the Pontryagin dual of M .

Pontryagin duality induces an antiequivalence of categories between ModsmG (O) and

a category which Emerton calls profinite augmented G-representations over O [20,
Definition 2.1.6] and which we will denote by ModproG (O). We will denote the full

subcategory of ModproG (O) antiequivalent to ModsmG,ζ(O) by Pontryagin duality by

ModproG,ζ(O). In particular, if G is compact, then ModproG,ζ(O) is the category of compact

O[[G]]-modules on which the centre acts by ζ−1, where O[[G]] is the completed group

algebra of G.
We would like to review Schikhof duality, which we learned from [46]. Let Π be an

L-Banach space and let Θ be an open bounded lattice in Π. The Schikhof dual Θd is

defined as Homcont
O (Θ,O) equipped with the weak topology (or the topology of pointwise

convergence). It isO-torsion free and compact (see the proof of [46, Theorem 1.2]). Also let

Πd :=Homcont
L (Π,L) equipped with the weak topology. It follows from [44, Proposition 3.1]

that Πd ∼=Θd⊗O L.
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Conversely, if M is a linearly compact, torsion-free O-module, then Homcont
O (M,L),

equipped with a supremum norm, is an L-Banach space with the unit ball Md :=

Homcont
O (M,O). Note that Md is complete for the p-adic topology. Since M is O-torsion

free, it is projective in the category of linearly compact O-modules (see [46, Remark 1.1]).

From this we obtain an isomorphism

Md/�n ∼= (M/�n)∨ (2)

(see the proof of [35, Lemma 5.4]). We thus obtain a homeomorphism

Md ∼= lim←−
n

Md/�n ∼= lim←−
n

(M/�n)∨. (3)

It follows from [44, Remark 10.2] applied to Π and the gauge of Θ that Θ/�n is a
free O/�n-module with basis indexed by a choice of k-vector space basis of Θ/�. Thus

HomO(Θ/�n,O/�n)→HomO(Θ/�n,O/�m) is surjective for n≥m. By passing to the

limit, we deduce that Homcont
O (Θ,O) → Homcont

O (Θ,O/�n) is surjective and induces a
homeomorphism

Θd/�n ∼= (Θ/�n)∨. (4)

It follows from (3) applied to M =Θd and (4) that

(Θd)d ∼= lim←−
n

(Θd/�n)∨ ∼= lim←−
n

((Θ/�n)∨)∨ ∼= lim←−
n

Θ/�n ∼=Θ. (5)

If Θ =Md, then (4) and (2) give

Θd/�n ∼= (Md/�n)∨ ∼= ((M/�n)∨)∨ ∼=M/�n. (6)

Since Θd and M are compact O-modules, we obtain a homeomorphism

(Md)d ∼= lim←−
n

Θd/�n ∼= lim←−
n

M/�n ∼=M. (7)

We are most interested in the situation when Π is a unitary L-Banach space

representation of a p-adic analytic group G. In this case, Θd is a topological O[[K]]-
module, where K is a compact open subgroup of G (see [46, Section 2]). We say that Π is

admissible if Θd is finitely generated as an O[[K]]-module. The functor Π �→ Πd induces

an antiequivalence of categories between the category of admissible unitary L-Banach
space representations of K and the category of finitely generated O[[K]]⊗O L-modules

[46, Theorem 3.5].

Colmez in [13, §IV] has defined an exact covariant functor V from the category

of finite-length smooth representations of G := GL2(Qp) with a central character on
O-torsion modules to the category of smooth-finite length representations of GQp

on

O-torsion modules. We modify this functor as follows. Let Cζ(O) be the full subcategory

of ModproG (O) antiequivalent to Modl.admG,ζ (O) by the Pontryagin duality. If M is in Cζ(O),
then we can write M = lim←−n

Mn, where the projective limit is taken over all quotients

of finite length. Then define V̌(M) := lim←−n
V(M∨

n )
∨(ζ), where ζ is viewed as a character

of GQp
via local class field theory. This normalisation differs from [37] by a twist of

cyclotomic character and coincides with the normalisation of [11]. In particular, if π is a
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principal series representation IndGBωχ1⊗χ2, then V̌(π∨) = χ1, viewed as a character of

GQp
via the local class field theory.

Let Π be an admissible unitary L-Banach space representation of G with central

character ζ, and let Θ be an open bounded G-invariant lattice in Π. It is easy to see
that Θd is an object of Cζ(O) (see [37, Lemma 4.11]). Thus we can apply the functor

V̌ to Θd to obtain a continuous GQp
-representation on a compact O-module. We define

V̌(Π) := V̌(Θd)⊗O L. The definition of V̌(Π) does not depend on the choice of Θ, since
any two are commensurable. The functor Π �→ V̌(Π) is contravariant. If Π is absolutely

irreducible and occurs as a subquotient of a unitary parabolic induction of a unitary

character, then we say that Π is ordinary. Otherwise, we say that Π is nonordinary. In this
case it is shown in [15, 37] that V̌(Π) is a 2-dimensional representation of GQp

and (taking

into account our normalisations) detV̌(Π) = ζε−1. A deep theorem of Colmez proved in

[13] relates the existence of locally algebraic vectors in Π to the property of V̌(Π) being

potentially semistable with distinct Hodge–Tate weights. With our conventions, Colmez’s
result says that HomU (det

a⊗SymbL2,Π) �= 0 for some open subgroup U of GL2(Zp) if

and only if V̌(Π) is potentially semistable with Hodge–Tate weights (1−a,−a− b).

If A is a commutative ring, then denote by m-SpecA the set of its maximal ideals.
If x ∈m-SpecA, then κ(x) will denote its residue field. We will typically be considering

m-SpecA when A=R[1/p], whereR is a complete local NoetherianO-algebra with residue

field k. In this case, κ(x) is a finite extension of L.

3. Local part

Let F be a finite extension of Qp. Fix an algebraic closure F of F and let GF =Gal(F/F ).

Let Cp be the completion of F and let F̆ be the completion of the maximal unramified

extension of F in F . Let G=GLn(F ) and let D/F be a central division algebra over F

with invariant 1/n.

3.1. Results of Ludwig and Scholze

We continue to denote by L a (sufficiently large) finite extension of F with the ring of

integers O, uniformiser � and residue field k. To a smooth representation π of G on an

O-torsion module, Scholze associates a Weil-equivariant sheaf Fπ on the étale site of the
adic space Pn−1

F̆
(see [47, Proposition 3.1]). If π is admissible, then he shows that for

any i≥ 0 the étale cohomology groups Hi
ét(P

n−1
Cp

,Fπ) carry a continuous D××GF -action,

which makes them into smooth admissible representations of D×. Moreover, they vanish
for i > 2(n− 1) (see [47, Theorems 3.2 and 4.4]). Scholze’s construction is expected to

realise both the p-adic Jacquet–Langlands and p-adic local Langlands correspondences.

The trouble is that these groups seem to be impossible to calculate in most cases. It is

known that the natural map

H0
ét(P

n−1
Cp

,FπSLn(F )) ↪→H0
ét(P

n−1
Cp

,Fπ) (8)
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is an isomorphism (see [47, Proposition 4.7]). In particular, if πSLn(F ) = 0, then H0

vanishes.

We want to extend the results of Scholze to the category of locally admissible

representations. Recall that a smooth representation of G or D× on an O-torsion module

is locally admissible if it is equal to the union of its admissible subrepresentations. In this
case we can write π= lim−→π′, where the limit is taken over all admissible subrepresentations

of π. The proof of [47, Proposition 3.1] shows that the natural map

lim−→Fπ′ →Fπ

is an isomorphism, since it induces an isomorphism on stalks at geometric points. In our

setting, cohomology commutes with direct limits. For all i≥ 0 we have isomorphisms

Hi
ét(P

n−1
Cp

,Fπ)∼= lim−→
K

Hi((Pn−1
Cp

/K)ét,Fπ)

∼= lim−→
K

lim−→
π′

Hi((Pn−1
Cp

/K)ét,Fπ′)

∼= lim−→
π′

Hi
ét(P

n−1
Cp

,Fπ′), (9)

where the first isomorphism follows from [47, Proposition 2.8] and the limit is taken

over all compact open subgroups of D×; the second isomorphism follows from the fact

that the site (Pn−1
Cp

/K)ét is coherent (see [47, Lemma 2.7(v)]), so cohomology commutes

with filtered direct limits [3, Exposé VI, Corollary 5.2]; and the last isomorphism is [47,
Proposition 2.8] again. Since quotients of admissible representations of p-adic analytic

groups are admissible, from (9) and Scholze’s results we deduce that Hi
ét(P

n−1
Cp

,Fπ) is a

locally admissible representation of D×, which vanishes for i > 2(n−1).

If n= 2, then the cohomology vanishes for i > 2. If we additionally assume that F =Qp

and π is a principal series representation, Ludwig has shown in [31, Theorem 4.6] that

H2
ét(P

1
Cp
,Fπ) vanishes. Thus we get the following:

Corollary 3.1. If π is a locally admissible representation of GL2(Qp) such that all its

irreducible subquotients are principal series, then

Hi
ét(P

1
Cp
,Fπ) = 0, ∀i �= 1.

3.2. Representation theory of GL2(Qp)

From now on we assume that n = 2 and F = Qp, so that G = GL2(Qp). Recall some
representation theory of G. The category Modl.admG (O) of smooth locally admissible G-

representations on O-torsion modules decomposes into a direct sum of indecomposable

subcategories called blocks. Blocks containing an absolutely irreducible k-representation
of G correspond to semisimple representations r̄ss :GQp

→GL2(k), such that r̄ss is either

absolutely irreducible or a direct sum of 1-dimensional representations.

Let us describe these blocks explicitly. Denote by [π] the isomorphism class of a
representation π of G. If r̄ss is absolutely irreducible, then let Br̄ss = {[π]}, where π

is the supersingular representation of G corresponding to r̄ss under the semisimple mod

p local Langlands correspondence [6]. If r̄ss = χ1⊕χ2, then χ1 and χ2 are considered as
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characters of Q×
p via the local class field theory, and let

π1 := IndGBχ1ω⊗χ2, π2 := IndGBχ2ω⊗χ1, (10)

where ε :Q×
p →L× is the character, which maps x to x|x|, and ω :Q×

p → k× is its reduction

modulo �. Then let Br̄ss be the set of isomorphism classes of irreducible subquotients of
π1 and π2. It can have from one up to four elements, depending on χ1χ

−1
2 .

Let Modl.admG (O)r̄ss be the full subcategory of the category of locally admissible

representations Modl.admG (O) of G, such that π is in Modl.admG (O)r̄ss if and only if the
isomorphism classes of all the irreducible subquotients of π lie in Br̄ss . It follows from the

Ext1-calculations in [37, Proposition 5.34] and [38, Corollary 1.2] that Modl.admG (O)r̄ss is

a direct summand of the category Modl.admG (O), in the sense that every π ∈Modl.admG (O)
can be written uniquely as

π = πr̄ss ⊕πr̄ss, (11)

where πr̄ss is the maximal G-invariant subspace of π, such that the isomorphism classes of

all its irreducible subquotients lie in Br̄ss , and πr̄ss is the maximal G-invariant subspace

of π such that none of its irreducible subquotients lie in Br̄ss .

In this article we am especially interested in the case when r̄ss = χ1⊕χ2 and χ1χ
−1
2 �=

ω±1. In this case, both representations π1 and π2 in (10) are irreducible principal series

representations, and so every π ∈Modl.admG (O)r̄ss satisfies the hypothesis of Corollary 3.1.

Let Modl.admGQp×D×(O) be the category of locally admissible representations of D× on O-
torsion modules with a continuous commuting GQp

-action. We immediately deduce the

following:

Corollary 3.2. If r̄ss = χ1⊕χ2 and χ1χ
−1
2 �= ω±1, then the functor

S1 : Modl.admG (O)r̄ss −→Modl.admGQp×D×(O), π �→H1
ét(P

1
Cp
,Fπ)

is exact and covariant.

3.3. Dual categories and Banach space representations

Let CG(O) be the category antiequivalent to Modl.admG (O) via Pontryagin duality, and

let CGQp×D×(O) be the category antiequivalent to Modl.admGQp×D×(O) via the Pontryagin

duality. Define a covariant homological δ-functor {Ši}i≥0 by

Ši : CG(O)→ CGQp×D×(O), M �→Hi
ét(P

1
Cp
,FM∨)∨,

whereM∨ =Homcont
O (M,L/O) denotes the Pontryagin dual of M . Note that (M∨)∨ ∼=M .

We introduce these dual categories because it is much more convenient to work with
compact torsion-free O-modules than with discrete divisible O-modules.

Denote the category of unitary admissible L-Banach space representations of G by

BanadmG (L). If Π is in BanadmG (L) and Θ is an open bounded G-invariant lattice in Π,

then it follows from [37, Lemma 4.4] that the Schikhof dual

Θd := Homcont
O (Θ,O)
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equipped with the weak topology is an object of CG(O). We refer the reader to Section 2

for properties of the Schikhof dual. We thus can apply the functors Ši to it to obtain a

compact O-module Ši(Θd) with a continuous GQp
×D×-action. Denote the Schikhof dual

of this module by Ši(Θd)d and equip it with the p-adic topology.

Lemma 3.3. There is an exact sequence of topological O-modules

0→ lim←−
m

(Hi−1
ét (P1

Cp
,FΘ⊗OL/O)/�

m)→ lim←−
m

Hi
ét(P

1
Cp
,FΘ/�m)→ Ši(Θd)d → 0

which identifies Ši(Θd)d with the maximal Hausdorff O-torsion-free quotient of

lim←−m
Hi

ét(P
1
Cp
,FΘ/�m).

Proof. Since

Θd/�nΘd ∼= (Θ/�nΘ)∨, ∀n≥ 1, (12)

we have a natural isomorphism (Θd)∨ ∼=Θ⊗O L/O, and thus

Ši(Θd)∼=Hi
ét(P

1
Cp
,FΘ⊗OL/O)

∨ ∼= (lim−→
n

Hi
ét(P

1
Cp
,FΘ/�n))∨. (13)

Hence

Ši(Θd)d ∼= lim←−
m

Homcont
O (Ši(Θd),O/�m)∼= lim←−

m

(Ši(Θd)/�m)∨

∼= lim←−
m

((Hi
ét(P

1
Cp
,FΘ⊗OL/O)[�

m])∨)∨)∼= lim←−
m

(Hi
ét(P

1
Cp
,FΘ⊗OL/O)[�

m]),

where the transition maps in the projective system are induced by multiplication by �.

The short exact sequence 0 → Θ/�m → Θ⊗O L/O �m

→ Θ⊗O L/O → 0 yields an exact

sequence:

0→Hi−1
ét (P1

Cp
,FΘ⊗OL/O)/�

m →Hi
ét(P

1
Cp
,FΘ/�m)→Hi

ét(P
1
Cp
,FΘ⊗OL/O)[�

m]→ 0.

The exact sequence is obtained by passing to the limit by noting that the system satisfies

the Mittag-Leffler condition.

If we let M :=Hi−1
ét (P1

Cp
,FΘ⊗OL/O), M̂ its p-adic completion and M ′ the image of M

in M̂ , then M ′ is a dense O-torsion submodule of M̂ . Equip M̂/M ′ with the quotient

topology. Then for all topological O-modules N which are Hausdorff and O-torsion free,
we have

Homcont
O (M̂,N)∼=Homcont

O (M̂/M ′,N) = 0.

Since Ši(Θd)d is Hausdorff and O-torsion free, this implies the last assertion.

Define

Ši(Π) := Ši(Θd)d⊗O L.
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The definition does not depend on the choice of Θ, since any two are commensurable. To
motivate this definition, observe that (12) implies that we have natural isomorphisms

((Θ⊗O L/O)∨)d ∼=Θ, ((Θ⊗O L/O)∨)d⊗O L∼=Π.

Lemma 3.4. If Π is an admissible unitary L-Banach space representation of G, then

Ši(Π) is an admissible unitary L-Banach space representation of D× for all i≥ 0.

Proof. By applying {Ši}i≥0 to the exact sequence 0 → Θd �→ Θd → Θd/�Θd → 0, we

obtain a long exact sequence:

0→ Š2(Θd)
�→ Š2(Θd)→ Š2(Θd/�)→ Š1(Θd)

�→ Š1(Θd)

→ Š1(Θd/�)→ Š0(Θd)
�→ Š0(Θd)→ Š0(Θd/�)→ 0. (14)

The terms for i ≥ 3 vanish, because of the results of Scholze explained in the

previous section. Moreover, since Π is an admissible Banach space representation, we
know that Θ/� is an admissible smooth G-representation. Scholze’s result implies that

Hi
ét(P

1
Cp
,FΘ/�) are admissible smooth D×-representations. Thus the Pontryagin dual is

a finitely generated O[[K]]-module, where K is any compact open subgroup of D×. Since
O[[K]] is Noetherian, we deduce from (14) that Ši(Θd)/� is a finitely generated O[[K]]-

module, and the topological Nakayama’s lemma for compact O[[K]]-modules implies that

Ši(Θd) is a finitely generated O[[K]]-module (see [10, Lemma 1.4, Corollary 1.5]). The
assertion follows from the theory of Schneider and Teitelbaum [46, Theorem 3.5].

Now note that even if we could show that Š1(Θd/�) is nonzero, we cannot rule out

using (14) alone that Ši(Π) = 0 for all i ≥ 0. A priori it could happen that Š2(Θd) and
Š0(Θd) are both zero and Š1(Θd) is killed by some power of �. This is where Ludwig’s

theorem enters.

Let r̄ss be as in the previous section. Let BanadmG (L)r̄ss be the full subcategory of the
category of BanadmG (L) such that Π is in BanadmG (L)r̄ss if and only if the isomorphism

classes of all the irreducible subquotients of Θ/� lie in Br̄ss . Note that this last condition

depends only on Π, and not on the choice of open bounded G-invariant lattice Θ (see
[37, Lemma 4.3]). One can deduce from the result for Modl.admG (O) that BanadmG (L)r̄ss is

a direct summand of BanadmG (L) (see [37, Proposition 5.36]).

Proposition 3.5. Assume that r̄ss = χ1⊕χ2 with χ1χ
−1
2 �= ω±1, and let π1 and π2 be the

principal series representation defined in (10), so that Br̄ss consists of the isomorphism

classes of π1 and π2. Then the following assertions are equivalent:

(i) Both H1
ét(P

1
Cp
,Fπ1

) and H1
ét(P

1
Cp
,Fπ2

) vanish.

(ii) H1
ét(P

1
Cp
,Fπ) = 0 for all π in Modl.admG (O)r̄ss .

(iii) Š1(Π) = 0 for all Π ∈ BanadmG (L)r̄ss .

(iv) If Π ∈ BanadmG (L)r̄ss is absolutely irreducible and nonordinary, then Š1(Π) = 0.
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Proof. Any locally admissible representation of GL2(Qp) is equal to the union of its

subrepresentations of finite length (see [20, Theorem 2.3.8]). If (i) holds, then (ii) follows

from (9) and Corollary 3.2. If (ii) holds, then (13) implies (iii), which trivially implies
(iv). For the proof that (iv) implies (i), recall that Π is nonordinary if and only if it does

not occur as a subquotient of a unitary parabolic induction of any unitary character

of the maximal torus in G. If Θ is an open bounded G-invariant lattice in Π, then
the semisimplification of Θ/� is isomorphic to π1⊕π2 by [37, Theorem 11.1]. Ludwig’s

theorem implies that H2
ét(P

1
Cp
,FΘ/�) = 0, and the isomorphism (8) implies that the same

holds forH0. The topological Nakayama’s lemma together with (14) implies that Ši(Θd)=
0 for i= 0 and i= 2. We deduce that we have a short exact sequence:

0→ Š1(Θd)
�→ Š1(Θd)→H1

ét(P
1
Cp
,FΘ/�)∨ → 0. (15)

Thus Š1(Θd) is O-torsion free. Since Š1(Θd) is a compact O-module, this implies that
Š1(Θd) is isomorphic to a product of copies of O. In particular, if Š1(Θd) �= 0, then

Š1(Π) �= 0. Thus (iv) implies that Š1(Θd) = 0 and (15) implies that H1
ét(P

1
Cp
,FΘ/�) = 0.

Since the semisimplification of Θ/� is isomorphic to π1⊕π2, Corollary 3.2 implies (i).

Remark 3.6. We will show later that part (i) of Proposition 3.5 does not hold by showing

that completed cohomology gives a counterexample to (ii). However, we can not rule out
that one of the groups can vanish in (i) (unless of course π1

∼= π2). Most likely both groups

are nonzero, since there is no natural way to distinguish one of the principal series in the

block.

Let us record a further consequence of Corollary 3.2. Let CG(O)r̄ss be the full

subcategory of CG(O), which is antiequivalent to Modl.admG (O)r̄ss via Pontryagin duality.
We refer the reader to [10] for the basics on pseudocompact rings and completed tensor

products.

Proposition 3.7. Assume that r̄ss = χ1 ⊕ χ2 with χ1χ
−1
2 �= ω±1. Let M ∈ CG(O)r̄ss

and let A be a pseudocompact ring together with a continuous action on M via a ring

homomorphism A → EndC(O)(M). Then for all right pseudocompact A-modules m, we
have a natural isomorphism:

Š1(m⊗̂AM)∼=m⊗̂A Š1(M).

In particular, if M is a pro-flat A-module, in the sense that the functor m �→m⊗̂AM is

exact, then so is Š1(M).

Proof. Since the functor S1 : Modl.admG (O)r̄ss −→Modl.admGQp×D×(O) commutes with direct

sums and is exact by Corollary 3.2, the functor Š1 : CG(O)r̄ss → CGQp×D×(O) commutes
with products and is also exact. Since any pseudocompact A-module m can be presented

as

∏
i∈I

A→
∏
j∈J

A→m→ 0
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for some sets I and J , the proposition is a formal consequence of these two properties
(see the proof of [39, Proposition 2.4], which is based on ideas of Kisin in [27]).

Lemma 3.8. Let A be a complete local Noetherian O-algebra with residue field k and let
M be a pseudocompact A-module. Then M is pro-flat if and only if it is flat.

Proof. Let T̂or
A

i (∗,M) be the ith left derived functor of ∗⊗̂AM . If m is a finitely

generated A-module, then, since A is Noetherian, m has a resolution by free A-modules

of finite rank. Since An ⊗A M ∼= Mn ∼= An ⊗̂AM , we conclude that T̂or
A

i (m,M) ∼=
TorAi (m,M) for all finitely generated m. If M is pro-flat, then applying this observation

to m = A/I for any ideal I of A, we deduce that the map I⊗AM →M is injective and

hence M is flat. If M is flat, then taking m = k we obtain that T̂or
A

1 (k,M) = 0, and a

standard application of the topological Nakayama’s lemma shows that M is topologically

free, and hence pro-flat (see [17, Proposition 0.3.8 in Exposé V IIB ]).

4. Fibres and flatness

In this section we explain a variation on [23, Proposition A.30], where the authors prove a

version of ‘miracle flatness’ in a noncommutative setting. Let Λ be an Auslander regular
ring (we refer the reader to [23, §A.1] or [49] for the definition). If M is a finitely generated

Λ-module, then the grade of M over Λ is defined as

jΛ(M) := inf{i : ExtiΛ(M,Λ) �= 0}

and the dimension of M over Λ is defined as

δΛ(M) := gld(Λ)− jΛ(M),

where gld(Λ) is the global dimension of Λ. We say that M is Cohen–Macaulay if

ExtiΛ(M,Λ) is nonzero for a single degree i. In particular, finite free modules are Cohen–
Macaulay.

Let K be a compact torsion-free p-adic analytic pro-p group. Then the rings k[[K]],

O[[K]], O[[K]]⊗O L are Auslander regular of global dimension dimK, 1 + dimK and
dimK, respectively, where dimK is the dimension of K as a p-adic manifold. If K is

any compact p-adic analytic group, then the ring O[[K]] might not be Auslander regular

in general, but we can choose an open pro-p subgroup K1 and, for a finitely generated

O[[K]]-module M , define δO[[K]](M) := δO[[K1]](M). Then δO[[K]](M) does not depend on
a choice ofK1 and has the expected properties of a dimension function. We will sometimes

omit O[[K]] from the notation and write just δ(M).

Proposition 4.1. Let A=O[[x1, . . . ,xr]] and let M be an A[[K]]-module which is finitely

generated as an O[[K]]-module. Then

δO[[K]](k⊗AM)+dimA≥ δO[[K]](M). (16)
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If M is A-flat, then

δO[[K]](k⊗AM)+dimA= δO[[K]](M). (17)

If M is Cohen–Macaulay as an O[[K]]-module, then (17) implies that M is A-flat.

Proof. The first assertion follows from [23, Lemma A.15], which says that if we mod out

one relation then the dimension either goes down by one or stays the same. The other

assertions follow from [23, Proposition A.30] by observing that gld(A[[K]]) = dimA+
gld(k[[K]]) and δA[[K]](M)= δO[[K]](M), δk[[K]](k⊗AM)= δO[[K]](k⊗AM) by [23, Lemma

A.19]. Note that the ring A[[K]] is again Auslander regular.

Corollary 4.2. Let R be a complete local Noetherian O-algebra with residue field k. Let

M be an R[[K]]-module which is finitely generated over O[[K]]. Assume that M is O-

torsion free, M is Cohen–Macaulay over O[[K]] and the action of R on M is faithful.

Then

δO[[K]](k⊗RM)+dimR≥ δO[[K]](M), (18)

and equality holds if and only if there is a subring A⊂R such that R is a finite A-module,
A is formally smooth over O and M is A-flat.

Proof. Since R acts faithfully on M and M is O-torsion free, R is O-torsion free. By

Cohen’s structure theorem for complete local rings, there is a subring A ⊂ R such that
R is finite over A and A ∼= O[[x1, . . . ,xr]] (see [32, Theorem 29.4 (iii)] and the remark

following it). Note that this implies that dimA= dimR.

Since k⊗A M ∼= (k⊗A R)⊗R M , it admits k⊗R M as a quotient, and since k⊗A R
is an R-module of finite length, it has a filtration of finite length with graded pieces

isomorphic to subquotients of k⊗RM . [23, Lemma A.8] implies that δO[[K]](k⊗AM) =

δO[[K]](k⊗RM). The corollary now follows from the proposition.

Lemma 4.3. Let M be a finitely generated k[[K]]-module. Then δk[[K]](M) = 0 if and

only if M is a finite-dimensional k-vector space.

Proof. We can assume that K is a uniform pro-p group of dimension d. Let m be the

maximal ideal of k[[K]]; then the graded ring gr•m(k[[K]]) is a polynomial ring in d-

variables [50, Theorem 8.7.10], and gr•m(M) is a finitely generated gr•m(k[[K]])-module
of dimension equal to δk[[K]](M) [2, Proposition 5.4]. In particular, the degree of the

Hilbert polynomial of gr•m(M) is equal to δk[[K]](M). If M is a finite-dimensional k-vector

space, then δk[[K]](M) = 0. Conversely, if δk[[K]](M) = 0, then the Hilbert polynomial
of gr•m(M) is constant and thus mjM = mj+1M for some j. Nakayama’s lemma implies

that mjM = 0. Since M is finitely generated over k[[K]], we deduce that M is a finite-

dimensional k-vector space.
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5. Local–global compatibility

Let p be a prime and let F be a totally real number field with a fixed place p above p,
such that Fp = Qp, and a fixed infinite place ∞F . Let D0 be a quaternion algebra with

centre F , ramified at all the infinite places of F and split at p. Let Σ be a set of finite

ramification places of D0. Fix a maximal order OD0
of D0, and for each finite place v �∈Σ

an isomorphism (OD0
)v ∼=M2(OFv

). For each finite place v of F , we will denote by N(v)

the order of the residue field at v, and by �v ∈ Fv a uniformiser.

Denote by A
f
F ⊂ AF the finite adeles and the adeles, respectively. Let U =

∏
vUv be

a compact open subgroup contained in
∏

v(OD0
)×v . We assume that Up = GL2(Zp) =K

and that Uv is a pro-p group at other places above p. We can write

(D0⊗F A
f
F )

× =
∐
i∈I

D×
0 tiU(Af

F )
× (19)

for some ti ∈ (D0⊗F A
f
F )

× and a finite index set I, where we have identified (Af
F )

× with

the centre of (D0⊗F A
f
F )

×. In the arguments that follow, we are free to replace U by a
smaller open subgroup by shrinking Uv at any place v different from p. In particular, we

can assume that

(U(Af
F )

×∩ t−1
i D×

0 ti)/F
× = 1 (20)

for all i ∈ I (see, e.g., [40, Lemma 3.2]). We will use standard notation for subgroups of

U , so, for example, Up
p =

∏
v|p,v 
=p

Uv, U
p =

∏
v�pUv.

If A is a topological O-algebra, let S(Up,A) be be the space of continuous functions

f :D×
0 \(D0⊗F A

f
F )

×/Up →A.

The group (D0 ⊗Qp)
× acts continuously on S(Up,A) by right translations. It follows

from (20) that the map f �→ [u �→
∑

i∈I f(tiu)] induces an isomorphism of U(Af
F )

×-
representations

S(Up,A)
∼=−→

⊕
i∈I

C(UpF×\U(Af
F )

×,A), (21)

where C denotes the space of continuous functions. Let ψ : (Af
F )

×/F× → O× be a

continuous character such that ψ is trivial of (Af
F )

× ∩Up. We can consider ψ as an A-
valued character, via O× →A×. Let Sψ(U

p,A) be the A-submodule of S(Up,A) consisting

of functions such that f(gz) = ψ(z)f(g) for all z ∈ (Af
F )

×. The isomorphism (21) induces
an isomorphism of Up-representations:

Sψ(U
p,A)

∼=−→
⊕
i∈I

Cψ(Up,A), (22)

where Cψ denotes the continuous functions on which the centre acts by the character ψ.

One may think of Sψ(U
p,A) as the space of algebraic automorphic forms on D×

0 with
tame level Up and no restrictions on the level or weight at places dividing p. We want

to introduce a variant by fixing the level and weight at places dividing p, different from

p. Let λ be a continuous representation Up
p on a free O-module of finite rank, such that
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(Af
F )

×∩Up
p acts on λ by the restriction of ψ to this group. Let

Sψ,λ(U
p,A) := HomUp

p
(λ,Sψ(U

p,A)).

We will omit λ as an index if it is the trivial representation. Note that a presentation
O[[Up

p ]]
⊕n →O[[Up

p ]]
⊕m � λ gives us an exact sequence:

0→ Sψ,λ(U
p,A)→ Sψ(U

p,A)⊕m → Sψ(U
p,A)⊕n. (23)

If A is an O/�n-module, then there is an open subgroup V p
p of Up

p which acts trivially

on λ/�n. If we let V p := UpV
p
p , then by taking V p

p -invariants of (23) we have an exact
sequence

0→ Sψ,λ(U
p,A)→ Sψ(V

p,A)⊕m → Sψ(V
p,A)⊕n. (24)

If the topology on A is discrete – for example, if A= L/O or A=O/�n – then we have

Sψ(U
p,A)∼= lim−→

Up
p

Sψ(U
p,A). (25)

The action of (D0⊗Qp)
× on Sψ(U

p,A) by right translations induces a continuous action

of (D0⊗F Fp)
× ∼= GL2(Qp) =G on Sψ(U

p,A) and Sψ,λ(U
p,A). Let ζ : Q×

p →O× be the
character obtained by restricting ψ to F×

p .

Lemma 5.1. The representations Sψ(U
p,L/O), Sψ,λ(U

p,L/O) lie in Modl.admG,ζ (O).

Moreover, Sψ,λ(U
p,L/O) is admissible.

Proof. The first assertion follows from (22), which also implies that we have an
isomorphism of K-representations

Sψ,λ(U
p,L/O)∼=

⊕
i∈I

λ∨⊗OCζ(K,L/O), (26)

where λ∨ := Homcont
O (λ,L/O) denotes the Pontryagin dual of λ. Since the set I is finite

and λ is a finite O-module, we deduce the second assertion.

Lemma 5.2. The restrictions of Sψ(U
p,L/O) and Sψ,λ(U

p,L/O) to K are injective in

ModsmK,ζ(O).

Proof. This follows from (22) and (26).

Let S be a finite set of places of F containing Σ, all the places above p, all the infinite

places and all the places v, where Uv is not maximal and all the ramification places of
ψ. Let Tuniv

S = O[Tv,Sv]v 
∈S be a commutative polynomial ring in the indicated formal

variables. If A is a topological O-algebra, then Sψ(U
p,A) and Sψ,λ(U

p,A) become Tuniv
S -

modules with Sv acting via the double coset Uv

(
�v 0
0 �v

)
Uv and Tv acting via the double

coset Uv

(
�v 0
0 1

)
Uv.

Let GF,S be the absolute Galois group of the maximal extension of F in F which

is unramified outside S. Let ρ̄ : GF,S → GL2(k) be a continuous absolutely irreducible
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representation. Let m be the maximal ideal of Tuniv
S generated by � and all elements

which reduce modulo � to Tv − tr ρ̄(Frobv),SvN(v)−det ρ̄(Frobv) for all v �∈ S. Denote
by Sψ(U

p,L/O)m and Sψ,λ(U
p,L/O)m the localisations at m, and assume that they are

nonzero for fixed ψ and λ.

Lemma 5.3. The representations Sψ(U
p,L/O)m and Sψ,λ(U

p,L/O)m are direct sum-

mands of Sψ(U
p,L/O) and Sψ,λ(U

p,L/O), respectively. In particular, their restrictions

to K are injective in ModsmK,ζ(O). Moreover, if S(Up,L/O)m (resp. Sλ(U
p,L/O)m) is

nonzero, then Sψ(U
p,L/O)m (resp. Sψ,λ(U

p,L/O)m) is nonzero if and only if det ρ̄ ≡
ψχcyc(mod �).

Proof. If U ′
p is an open subgroup of Up, then Sψ(U

p,O/�n)U
′
p is a finitely generated

O/�n-module and the Chinese remainder theorem implies that (Sψ(U
p,O/�n)U

′
p)m is a

direct summand of Sψ(U
p,O/�n)U

′
p . By passing to a direct limit over all such U ′

p and

n ≥ 1, we obtain the assertion for Sψ(U
p,L/O). The argument for Sψ,λ(U

p,L/O) is the
same. The second assertion follows from Lemma 5.2. Since Sψ(U

p,L/O) is a a union of

Tuniv
S -submodules, which are O-modules of finite length, its localisation at m is nonzero

if and only if the m-torsion subspace Sψ(U
p,L/O)[m] is nonzero. The same argument

applied to S(Up,L/O) shows that S(Up,L/O)[m] is nonzero. Since the Hecke operators

Sv act on S(Up,L/O)[m] with eigenvalue det ρ̄(Frobv)N(v)−1 for all v �∈ S, we deduce

from Chebotarev’s density theorem that (Af
F )

× acts on S(Up,L/O)[m] by the character

χcycdet ρ̄. Hence, Sψ(U
p,L/O)[m] is nonzero if and only if det ρ̄ ≡ ψχcyc(mod �). The

same argument applies to Sψ,λ(U
p,L/O)m.

Let

Sψ(U
p,O)m := lim←−

n

Sψ(U
p,O/�n)m, Sψ,λ(U

p,O)m := lim←−
n

Sψ,λ(U
p,O/�n)m,

equipped with the p-adic topology. It follows from (22) that for all n ≥ 1, the map

Sψ(U
p,O)m/�

n → Sψ(U
p,O/�n)m is an isomorphism, and (26) implies that the same

holds for Sψ,λ(U
p,O)m. It follow from the discussion in Section 3.3 that we have natural

homeomorphisms

Sψ(U
p,O)m ∼= ((Sψ(U

p,L/O)m)
∨)d, Sψ,λ(U

p,O)m ∼= ((Sψ,λ(U
p,L/O)m)

∨)d. (27)

Let r̄ denote the restriction of ρ̄ to the decomposition group at p, which we identify
with the absolute Galois group of Qp.

Proposition 5.4. Sψ(U
p,L/O)m and Sψ,λ(U

p,L/O)m lie in Modl.admG,ζ (O)r̄ss .

Proof. We first observe that the centre of G acts on both Sψ(U
p,L/O)m and

Sψ,λ(U
p,L/O)m by the restriction of ψ to F×

p , which is equal to ζ by definition.

Since for any π ∈Modl.admG (O), socGπ ↪→ π is essential, where socG denotes the maximal
semisimple subrepresentation, it follows from (11) that it is enough to show that all

irreducible subrepresentations of Sψ,λ(U
p,L/O)m and Sψ(U

p,L/O)m lie in Br̄ss . Since

any such representation is killed by �, we can replace L/O with k.
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It is enough to prove the statement for Sψ(U
p,k)m with Up

p arbitrary small, since then

(24) and (25) imply the assertion in general.

Let π be an irreducible subrepresentation of Sψ(U
p,k)m. After enlarging L, we can

assume that π is absolutely irreducible. Let σ be an irreducible K-subrepresentation of π.

Then σ̄ is isomorphic to Symb k2⊗deta for uniquely determined integers 0≤ b≤ p−1, 0≤
a≤ p−2. It follows from [4] that EndG(c-Ind

G
K σ)∼= k[T,S±1], where the Hecke operators

T and S correspond to the double cosets K
(
p 0
0 1

)
K and K

(p 0
0 p

)
K, respectively. Moreover,

there are λ,μ ∈ k such that π is a quotient of

c-IndGK σ/(T −λ,S−μ).

We claim that λ, μ and the possible values of (a,b) can be read off from the restriction
of ρ̄ to the decomposition group at p. It then follows from [4, 6], which describe the

irreducible quotients of c-IndGK σ/(T −λ,S−μ), that π lies in Br̄ss . These arguments are

by now fairly standard and appear in the weight part of Serre’s conjecture, so we give

only a sketch.
We first modify the setting slightly: if ψ′ : (Af

F )
×/F× →O× is a character congruent to

ψ modulo �, λ′ is a representation of Up
p on a finite O-module with central character ψ′

and Up
p is a pro-p group, then the Up

p -invariants of λ
′/� are nonzero, and thus Sψ(U

p,k)m
is a G-invariant subspace of Sψ′,λ′(Up,k)m. We can choose ψ′ = χb+2a

cyc α, where a and b

are as before, α is the Teichmüller lift of the character ψχ−b−2a
cyc (mod �), χcyc is the

p-adic cyclotomic character and λ′ = ⊗ι(Sym
bO2 ⊗ deta), where the tensor product is

taken over all embeddings ι : F ↪→ L which do not factor through Fp. Note that since Up
p

is assumed to be pro-p, the character ψχ−b−2a
cyc (mod �) is trivial on Up

p ∩ (Af
F )

×, which

implies that α is trivial on Up
p ∩ (Af

F )
× and thus λ′ has central character ψ′. Note that

since ζ is also the central character of σ̄, we have ζ(x) ≡ xb+2a(mod �) for all x ∈ Z×
p .

To ease the notation, we drop the superscript ′ from ψ′ and λ′.
Since Sψ,λ(U

p,k)m is an admissible representation by Lemma 5.1, the k-vector space

HomG(π,Sψ,λ(U
p,k)m)

is finite-dimensional. We can thus assume that π is contained in Sψ,λ(U
p,k)[m]. Let

σ◦ := SymbO2⊗deta , σ := SymbL2⊗deta .

Since Sψ,λ(U
p,L/O)m is admissible and injective in ModsmK,ζ(O) by Lemmas 5.1 and 5.2,

using (27) we see that HomK(σ◦,Sψ,λ(U
p,O)m) is a free O-module of finite rank, which

is congruent to HomK(σ̄,Sψ,λ(U
p,k)m) modulo �. It follows from [16, Lemme 6.11] that

after L is replaced with a finite extension,

HomK(σ◦,Sψ,λ(U
p,O)m)⊗O L

contains an eigenvector φ for all the Hecke operators in Tuniv
S with eigenvalues lifting

those given by m. By evaluating φ, we obtain an automorphic form f on D×
0 such that

the associated Galois representation ρf lifts ρ̄ and its restriction to the decomposition

group at p is crystalline with Hodge–Tate weights (1− a,− a− b), where we adopt the

conventions of [11], so that the cyclotomic character has Hodge–Tate weight equal to −1.
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Note that the difference of the two Hodge–Tate weights is equal to b+1, which is between
1 and p. In particular, σ̄ is a Serre weight for r̄. The possibilities for the pair (a,b) are

listed in the proof of [11, Lemma 2.15]. The compatibility of local and global Langlands

correspondences implies that the G-subrepresentation of Sψ,λ(U
p,O)m ⊗O L generated

by the image of φ is of the form Ψ⊗σ, where Ψ is a smooth unramified principal series

representation. Moreover, the Satake parameters of Ψ can be read off from the Weil–

Deligne representation associated to ρf |GFp
(see [11, Proposition 2.9]). It follows from

[7] that λ and μ are reductions modulo � of the Satake parameters of Ψ, rescaled by
a suitable power of p (see the proof of [11, Lemma 2.15]). It then follows from [4, 6],

which describe the irreducible quotients of c-IndGK σ/(T −λ,S−μ), that π lies in Br̄ss .

The last part of the argument can be summed up as the compatibility of p-adic and
mod-p Langlands correspondences.

Let Rps
tr r̄ be the universal deformation ring parameterising 2-dimensional pseudochar-

acters of GQp
lifting tr r̄. We have two actions of Rps

tr r̄ on Sψ(U
p,L/O)m. The first action

is given by the composition

θ1 :R
ps
tr r̄ →Runiv

ρ̄ → T(Up)m → EndcontG (Sψ(U
p,O)m),

where Runiv
ρ̄ is the universal global deformation ring of ρ̄, and the first arrow is obtained

by considering the restriction of the trace of the universal deformation of ρ̄ to GFp
. The

second arrow is obtained by associating Galois representations to automorphic forms (see
[47, Proposition 5.7]). The third arrow is given by [47, Corollary 7.3]. The second action,

θ2 :R
ps
tr r̄ → EndcontG (Sψ(U

p,O)m),

is given by interpreting Rps
tr r̄ as the centre of the category Modl.admG (O)r̄ss using [37].

In order to apply the results of [37], if r̄ss = χ⊕χω for some character χ : GQp
→ k×

then we assume that p ≥ 5. In [37] we worked with a fixed central character, but this

can be unfixed by using the ideas of [11, §6.5, Corollary 6.23]. Since the centre of the

category acts naturally on every object in the category, Proposition 5.4 implies that Rps
tr r̄

acts naturally on Sψ(U
p,L/O)m, and using (27) we obtain a natural action of Rps

tr r̄ on

Sψ(U
p,O)m, which we denote by θ2.

Proposition 5.5. Assume that ψ is of finite prime-to-p order and ψ is trivial on the

subgroup Up∩(Af
F )

×. Then the two actions θ1 and θ2 of Rps
tr r̄ on Sψ(U

p,L/O)m coincide.

Proof. The result follows from three ingredients: the theory of capture [15, §2.4], [40,
§2.1], which is based on the ideas of Emerton in [18]; the results of Berger and Breuil [5]

on the universal unitary completions of locally algebraic principal series representations;

and the results of Colmez in [13] on the compatibility of the p-adic and classical local
Langlands correspondence.

It follows from (27) that it is enough to show that the two actions coincide on

Sψ(U
p,O)m. Let Π(U

p) be the L-Banach space representation of G defined by

Π(Up) := Sψ(U
p,O)m⊗O L.
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Since Sψ(U
p,O)m is O-torsion free, it is enough to show that θ1 and θ2 agree on Π(Up).

Since the Schikhof dual of Sψ(U
p,O)m is isomorphic to Sψ(U

p,L/O)∨m, Lemmas 5.2 and 5.1

imply that Sψ(U
p,O)dm is projective in the category ModproK,ζ(O) and is finitely generated

over O[[K]].

Let η : Z×
p →O× be a nontrivial character of order 2. Let α : Z×

p →O× be a character

of order p. Let J :=
( Z×

p Zp

p2Zp Z×
p

)
and let χ be a character of J defined by

χ(
(
a b
c d

)
) := ζ(a)α(a)α(d)−1.

Let τ := IndKJ χ and let Va := τ⊗LSym
2aL2⊗det−a, a≥ 0. Note that the central character

of Va is equal to ζ. It follows from the proof of [40, Proposition 2.7] that if ϕ is a continuous
K-equivariant endomorphism of Π(Up) which kills

HomK(Va,Π(U
p)) and HomK(Va⊗η ◦det,Π(Up))

for all a≥ 0, then ϕ is zero. Thus it is enough to show that the two actions of Rps
tr r̄ on the

previously noted modules coincide, so that θ1(r)−θ2(r) annihilates them for all r ∈Rps
tr r̄

and all a≥ 0.

In the following, let V = Vsm ⊗ Valg, where Valg = Sym2aL2 ⊗ det−a and Vsm = τ or

τ⊗η◦det. Since V is a locally algebraic representation of K, we have HomK(V ,Π(Up)) =
HomK(V ,Π(Up)l.alg), where Π(Up)l.alg is the subspace of locally algebraic vectors in

Π(Up). This subspace can be identified with a subspace of classical automorphic forms

on D×
0 (see [19, §3], [28, §3.1.14] and [48, Lemma 1.3]). In particular, the action

of T(Up)m[1/p] on Π(Up)l.alg, and hence on HomK(V ,Π(Up)), is semisimple. Since

Sψ(U
p,O)dm is finitely generated as an O[[K]]-module, the vector space HomK(V ,Π(Up))

is finite-dimensional. Thus for a fixed V , after replacing L by a finite extension we can

assume that HomK(V ,Π(Up)) has a basis of eigenvectors for the action of T(Up)m[1/p].
Let φ ∈ HomK(V ,Π(Up)) be such an eigenvector. Then it is enough to show that φ is

an eigenvector for the action Rps
tr r̄ via θ2 and that the annihilators of φ for the two actions

coincide, since then θ1(r)−θ2(r) will kill φ for all r ∈Rps
tr r̄.

Let x ∈ m-SpecRps
tr r̄[1/p] be the kernel for the action Rps

tr r̄[1/p] on φ via θ1. Then

by unravelling the definition of θ1, we get that x corresponds to the pseudocharacter

tr(ρf |GFp
), where ρf is the Galois representation attached to the automorphic form

f , corresponding to the Hecke eigenvalues given by the action of T(Up)m[1/p] on φ.

Moreover, by the same argument as in the proof of Proposition 5.4, ρf |GFp
is potentially

semistable with Hodge–Tate weights (1+a,−a). As in the proof of Proposition 5.4, the

G-subrepresentation of Π(Up) generated by the image of φ is of the form Ψ⊗Valg, where
Ψ is an irreducible smooth representation with HomK(Vsm,Ψ) �= 0. The theory of types

(see [24]) implies that Ψ ∼= (IndGBψ1 ⊗ψ2| · |−1)sm, where ψ1,ψ2 : Q×
p → L× are smooth

characters, such that if Vsm = τ then ψ1|Z×
p
= ζα, ψ2|Z×

p
= α−1, and if Vsm = τ ⊗ η ◦det

then ψ1|Z×
p
= ζαη, ψ2|Z×

p
= α−1η. Hence ρf |GFp

is potentially crystalline. Moreover, Ψ

determines the Weil–Deligne representation associated to ρf |GFp
via the classical local

Langlands correspondence.
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The universal unitary completion of Ψ⊗Valg is absolutely irreducible, by [5, 5.3.4] and

[8, 2.2.1], and will coincide with the closure of Ψ⊗Valg in Π(Up), which we denote by Π.

The action of Rps
tr r̄[1/p] on Π(Up) via θ2 preserves Π, since it acts as the centre of the

category. Schur’s lemma implies that the annihilator of Π is a maximal ideal of Rps
tr r̄[1/p],

which we denote by y. Note that we have shown that the action of Rps
tr r̄[1/p] via θ2

preserves φ and the annihilator is equal to y. So we have to show that x= y.
If Π is nonordinary, then r := V̌(Π) is an absolutely irreducible two-dimensional

potentially crystalline representation of GQp
lifting r̄, and it follows from [37, Proposition

11.3] that y corresponds to trr. The compatibility of p-adic and classical Langlands
correspondences, proved by Colmez in [13], implies that r and ρf |GFp

have the same

Weil–Deligne representations. Moreover, the Hodge–Tate weights of r are determined by

Valg and are equal to those of ρf . Since the Hodge–Tate weights of r and ρf |GFp
are equal,

it follows from [14, §4.5] that r ∼= ρf |GFp
and so x= y.

If Π is ordinary, then V̌(Π) is one-dimensional, and we denote the character by δ. It

follows from [37, Corollaries 8.15 and 9.37, Proposition 10.107] that y corresponds to

the pseudocharacter δ⊕δ−1ζε−1. Since Ψ is irreducible, we can assume that val(ψ1(p))≥
val(ψ2(p)), since interchanging the characters will give an isomorphic representation. Then

it follows from [37, Lemma 12.5] that Π is isomorphic to a parabolic induction of a unitary

character γ1 ⊗ γ2, such that γ1(x) = ψ1(x)x
−a, γ2(x) = ψ2(x)|x|−1xa for all x ∈ Q×

p . It

follows from the definition of V̌ that V̌(Π) ∼= γ1ε
−1, so that δ⊕ δ−1ζε−1 = γ1ε

−1⊕ γ2,

where for ease of notation we use local class field theory to identify characters of GQp

with unitary characters of Q×
p . Note that to match the conventions of [11] we twist the

definition of V̌ in [37, §5.7] by the inverse of the cyclotomic character. The cyclotomic

character ε corresponds to the character x �→ x|x| via local class field theory. We have

that γ1ε
−1 = ψ1| · |aε−a−1 is crystalline with Hodge–Tate weight a+1 and Weil–Deligne

representation ψ1| · |−1; similarly, γ2 is crystalline with Hodge–Tate weight −a and Weil–

Deligne representation equal to ψ2| · |−1. The Weil–Deligne representation attached to ρf is

the Weil–Deligne representation attached to Ψ by the classical Langlands correspondence,
which is equal to ψ1| · |−1⊕ψ2| · |−1, see the calculation in the proof of Proposition 2.9 in

[11]. It follows from [14, §4.5] that r and ρf |GFp
have the same semisimplification. Hence

x= y.

Corollary 5.6. The two actions of Rps
tr r̄ on Sψ(U

p,L/O)m and Sψ,λ(U
p,L/O)m via θ1

and θ2 coincide.

Proof. If χ : (Af
F )

×/F× →O× is a continuous character trivial on Up∩(Af
F )

× and trivial

modulo �, then the map f �→ [g �→ f(g)χ(det(g))] induces an isomorphism of T(Up)m[G]-

modules

Sψ(U
p,L/O)⊗χ◦det

∼=−→ Sψχ2(Up,L/O).

This induces an isomorphism between the G-endomorphism rings

ϕ : EndG(Sψ(U
p,L/O))

∼=−→ EndG(Sψχ2(Up,L/O)).
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Moreover, for i = 1,2 we have φ ◦ θi = θi ◦ twχ, where twχ is the automorphism of Rps
tr r̄

obtained by sending a deformation to its twist by χ. Thus if the assertion for ψ is proved,

we can deduce the assertion for ψχ2 for all χ as before.

Let ψ̄ be the reduction of ψ modulo � and let [ψ̄] be the Teichmüller lift of ψ̄; then the
character ψ−1[ψ̄] takes values in 1+p and thus we can take its square root by the usual

binomial formula. If χ :=
√

ψ−1[ψ̄], then ψχ2 = [ψ̄] has order prime to p. Proposition 5.5

implies that for all open pro-p subgroups V p
p of Up

p , the two actions on S[ψ̄](U
p,L/O)

V p
p

m

coincide. By passing to the direct limit we obtain that the two actions on S[ψ̄](U
p,L/O)

coincide, and by twisting we obtain the same result with ψ instead of [ψ̄].

Corollary 5.7. Let x ∈ m-SpecT(Up)m[1/p] be such that the restriction of the corre-

sponding Galois representation ρx :GF,S →GL2(κ(x)) to GFp
is irreducible. Then there

is an isomorphism of L-Banach space representations of G,

(Sψ,λ(U
p,O)⊗O L)[mx]∼=Π⊕n (28)

for some integer n≥ 0, where Π ∈ BanadmG (L) corresponds to ρx|GFp
via the p-adic local

Langlands correspondence for GL2(Qp).

Proof. Let y : Rps
tr r̄ → L be the homomorphism corresponding to tr(ρx|GFp

). It follows
from [37, Corollaries 6.8, 8.14 and 9.36, Proposition 10.107] that (28) holds for any

Π′ ∈ BanadmG (L)r̄ss of finite length on which Rps
tr r̄ acts as the centre of the category

via y. Corollary 5.6 and Lemma 5.8 imply that we can apply this observation to
Π′ = (Sψ,λ(U

p,O)⊗O L)[mx].

Lemma 5.8. Let Rps
tr r̄ act on τ ∈ Modl.admG (O)r̄ss as the centre of the category

Modl.admG (O)r̄ss . If the G-socle of τ is of finite length, then k ⊗Rps
tr r̄

τ∨ is of finite
length in C(O). In particular, the assertion holds for any admissible representation τ

in Modl.admG (O)r̄ss .

Proof. There are only finitely many isomorphism classes of irreducible objects in Br̄ss .

Let π1, . . . ,πk be a set of representatives. For each i, let πi ↪→ Ji be an injective envelope

of πi in Modl.admG (O). Dually, let Pi := J∨
i so that Pi � π∨

i is a projective envelope of
π∨
i in C(O). Since the category Modl.admG (O)r̄ss is locally finite, we can embed τ into an

injective envelope of its G-socle which is isomorphic to a direct sum of finitely many copies

of Ji. This implies that dually there is a surjection ⊕k
i=1P

⊕mi
i � τ∨, where mi are finite

multiplicities. Thus it is enough to prove the statement for τ = Ji, 1≤ i≤ k. It follows from
[37, Lemma 3.3] that k⊗Rps

tr r̄
Pi is of finite length if and only if HomC(O)(Pj,k⊗Rps

tr r̄
Pi) is

a finite-dimensional k-vector space for 1≤ j ≤ k. Since Pj is projective, the natural map

k⊗Rps
tr r̄

HomC(O)(Pj,Pi)→HomC(O)(Pj,k⊗Rps
tr r̄

Pi)

is an isomorphism. Thus it is enough to show that HomC(O)(Pj,Pi) is a finitely generated

Rps
tr r̄-module for 1 ≤ i,j ≤ k. This assertion follows from [37, Proposition 6.3 and
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Corollary 8.11 in conjunction with Proposition B.26, Corollaries 9.25 and 9.27 and
Lemma 10.90].

Lemma 5.9. Let τ ∈ Modl.admG (O)r̄ss and suppose that we are given a faithful action
on τ of a local Rps

tr r̄-algebra R with residue field k via R ↪→ EndG(τ). Assume that the

composition Rps
tr r̄ →R→ EndG(τ) coincides with the action of Rps

tr r̄ on τ as the centre of

category Modl.admG (O)r̄ss . If the G-socle of τ is of finite length, then R is finite over Rps
tr r̄.

Proof. Let Pi be as in the proof of Lemma 5.8 and let P =⊕n
i=1Pi. Then P is a projective

generator for the category C(O)r̄ss , and thus R acts faithfully on m := HomC(O)(P,τ
∨).

The proof of Lemma 5.8 shows that m⊗Rps
tr r̄

k is a finite-dimensional k-vector space.
Since m is a compact Rps

tr r̄-module, we deduce that m is finitely generated over Rps
tr r̄

and hence also over R. If v1, . . . ,vn are generators of m as an R-module, then the map

r �→ (rv1, . . . ,rvn) induces an embedding ofR-modulesR ↪→m⊕n. SinceRps
tr r̄ is Noetherian,

we deduce that R is a finitely generated Rps
tr r̄-module.

Lemma 5.10. Let J be an injective envelope of an irreducible representation in
Modl.admG,ζ (k). Then J does not admit an admissible quotient.

Proof. The action of Rps
tr r̄ on J as the centre of the category factors through the quotient

Rps,ψ
tr r̄ /�. If σ is a smooth irreducible representation of K, then HomK(σ,J)∨ is either

zero or a finitely generated Cohen–Macaulay module of Rps,ψ
tr r̄ /� of dimension 1; in most

cases this follows from [39, Theorem 5.2], since it implies that the element denoted by
x in that theorem is a regular parameter. The rest of the cases are handled in [26,

Proposition 3.9] by a similar argument. It is proved in [37, Proposition 5.16] that J is

injective in ModsmG,ζ(k). Since restriction is right adjoint to compact induction, which is

an exact functor, we deduce that J is injective in ModsmK,ζ(k). Thus if σ ∈ModsmK,ζ(k) is of
finite length, then HomK(σ,J)∨ is either zero or a successive extension of 1-dimensional

Cohen–Macaulay modules corresponding to the irreducible subquotients σ′ of σ for which

HomK(σ′,J) is nonzero. Hence if HomK(σ,J)∨ is nonzero, then it is Cohen–Macaulay of
dimension 1. Note that by taking σ = IndKKn(Z∩K)ζ, where Kn is the nth congruence

subgroup of K, (JKn)∨ is Cohen–Macaulay of dimension 1.
If τ is a quotient of J , then we can choose n≥ 1 such that the map JKn → τKn is nonzero.

By taking Pontryagin duals, we obtain a nonzero map of Rps
tr r̄-modules (τKn)∨ → (JKn)∨.

If τ is admissible, then τKn is a finite-dimensional k-vector space, and hence (JKn)∨ will
contain a nonzero submodule killed by the maximal ideal of Rps

tr r̄. This is not possible, as

(JKn)∨ is Cohen–Macaulay of dimension 1.

Proposition 5.11. Let τ and R ↪→EndG(τ) be as in Lemma 5.9. Assume that τ is killed

by � and has a central character. If τ is admissible, then the Krull dimension of R is

less than or equal to 2.

Proof. Since τ is admissible, its G-socle is of finite length. Lemma 5.9 implies that R

is a finite Rps
tr r̄-module. Since we are interested only in the Krull dimension, we can

https://doi.org/10.1017/S1474748020000547 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000547


1092 V. Paškūnas

assume that R is the image of Rps
tr r̄ in EndG(τ). Since τ has a central character, the

map Rps
tr r̄ → EndG(τ) factors through the quotient Rps

tr r̄ � Rps,ψ
tr r̄ , which parameterises

pseudocharacters with a fixed determinant. Since� kills τ , we get a surjection Rps,ψ
tr r̄ /��

R. Now Rps,ψ
tr r̄ /� is an integral domain of Krull dimension 3 (see [37, §A]), so we have to

show that Rps,ψ
tr r̄ /� does not act faithfully on τ .

Let π1, . . . ,πk be as in the proof of Lemma 5.8, but let πi ↪→ Ji now denote an injective

envelope of πi in Modl.admG,ζ (k), so that the rest of the proof works with a fixed central
character. Let P := ⊕k

i=1Pi, where Pi := J∨
i , and let E = EndC(k)(P ). Then P is a

projective generator of Cζ(k)r̄ss , and if we let m := HomC(k)(P,τ
∨), then evaluation

induces a natural isomorphism m⊗̂E P
∼=−→ τ∨. Thus it is enough to show that Rps,ψ

tr r̄ /�

does not act faithfully on m.

The action of Rps,ψ
tr r̄ /� on m is faithful if and only if m⊗Rps

tr r̄
Q is nonzero, where Q

is the quotient field of Rps,ψ
tr r̄ /�. Let us assume that this is the case. After replacing

m by a subquotient, we can assume that m is a cyclic E-module and the map m →
m⊗Rps

tr r̄
Q is injective. We claim that the algebra E⊗Rps

tr r̄
Q is semisimple. Granting the

claim, we deduce that the surjection E⊗Rps
tr r̄

Q�m⊗Rps
tr r̄

Q has a section of E⊗Rps
tr r̄

Q-

modules. By composing it with the injection m ↪→ m⊗Rps
tr r̄

Q, we obtain an injection
m ↪→E⊗Rps

tr r̄
Q of E-modules. Since m is finitely generated over E, we can multiply this

embedding by an element of Rps,ψ
tr r̄ to obtain an injection of E-modules m ↪→E. Since P is

a projective generator for the block, applying ⊗̂E P gives an injection τ∨ ↪→ P and dually

a surjection J � τ . Thus one of the Ji’s admits an admissible quotient contradicting

Lemma 5.10.

To prove the claim, observe that if r̄ does not have scalar semisimplification,
then E ⊗Rps

tr r̄
Q is a matrix algebra over Q. If r̄ is irreducible, then this follows

from [37, Proposition 6.3]; if r̄ is reducible generic, then it follows from [37,

Corollary 8.11] together with [41, Propositions 4.3, 3.12]; and if r̄ss = χ ⊕ χω,
then it follows from the explicit description of the endomorphism ring of a

projective generator of Cζ(O)r̄ss given after [37, Corollary 10.94]: both generators

c0 and c1 of the reducible locus in Rps,ψ
tr r̄ are nonzero in Rps,ψ

tr r̄ /� and hence
in Q.

Let us assume that r̄ has scalar semisimplification. After twisting, we can assume that

ζ is trivial and use [37, Corollary 9.27] to identify E with the ring opposite to R/�,
where R is the ring defined in [37, Equation (125)]. Then Rps,ψ

tr ρ̄ gets identified with the

subring denoted by O[[t1,t2,t3]] in [37]. Let C be the finite Rps,ψ
tr ρ̄ -algebra defined in [37,

Definition 9.7], let x be a generic point of C⊗Rps
tr ρ̄

Q and let κ(x) be its residue field. We

claim that E⊗Rps
tr ρ̄

κ(x)∼=M2(κ(x)). The proof of [37, Lemma 9.20] shows that the element

denoted by (uv− vu)(uv− vu)∗ is nonzero in Q. The proof of [37, Lemma 9.21] goes on

to show that the specialisation at x of the representation ρ : E →M2(C), constructed in

[37, Proposition 9.8], is absolutely irreducible over κ(x). The double centraliser theorem
implies that the map E⊗Rps

tr ρ̄
κ(x)→M2(κ(x)) is surjective. Since the algebra E⊗Rps

tr ρ̄
κ(x)

is 4-dimensional as a κ(x)-vector space (see [37, Lemma 9.18]), we obtain the claim.
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Remark 5.12. A different proof of Proposition 5.11 could be given using [26, Proposi-

tion 5.6].

Corollary 5.13. Let τ and R ↪→ EndG(τ) be as in Lemma 5.9. Assume that τ has a

central character and is �-divisible (equivalently, τ∨ is �-torsion free). Then the Krull

dimension of R is at most 3.

Proof. Since τ∨ is �-torsion free, we have an exact sequence 0→ τ∨
�→ τ∨ → τ∨/�→ 0.

Let P be the projective generator of Cζ(O)r̄ss as in the proof of Proposition 5.11. We
have an exact sequence of R-modules

0→HomC(O)(P,τ
∨)

�→HomC(O)(P,τ
∨)→HomC(O)(P,τ

∨/�)→ 0.

As explained in the proof of Lemma 5.9, HomC(O)(P,τ
∨) is a finitely generated faithful

R-module. If we let R be the quotient of R which acts faithfully on HomC(O)(P,τ
∨/�),

then its Krull dimension is equal to the dimension of the support of HomC(O)(P,τ
∨/�) in

SpecR, which is one less than the dimension of the support of HomC(O)(P,τ
∨) in SpecR,

as � is regular on the module, and thus is equal to dimR− 1, as the action of R on

HomC(O)(P,τ
∨) is faithful.

It follows from Proposition 5.11 applied to R and τ [�] that the Krull dimension of R

is at most 2, and thus the Krull dimension of R is at most 3.

Corollary 5.14. The image of T(Up)m in EndcontG (Sψ,λ(U
p,O)m) is a finite Rps

tr r̄-algebra

of Krull dimension at most 3.

Proof. This follows from Lemma 5.9 and Corollary 5.13 applied to τ = Sψ,λ(U
p,L/O)m.

Remark 5.15. The proof of Corollary 5.14 goes back to the Workshop on Galois
Representations and Automorphic Forms at Princeton in 2011, and was motivated

by discussions with Matthew Emerton there. It remained unpublished, since after we

communicated the result to Frank Calegari [42], he and Patrick Allen proved much more
general results concerning the finiteness of global deformation rings over local deformation

rings [1]. However, one advantage of our argument is that we do not have to assume

anything about the image of the global Galois representation ρ̄.

Lemma 5.16. If π ∈Modl.admG,ζ (O) is irreducible and not a character, then

δO[[K]](π
∨) = 1.

Proof. This follows from the proof of [43, Corollary 7.5]. Alternatively, one can use [29,

Propositions 5.4, 5.7, Theorem 5.13]. However, the proof dearest to my heart is to show

that dimπKn grows as Cpn, for some constant C, as Kn runs over principal congruence
subgroups ofK. If π is principal series, then this can be done by hand; the result for special

series can be deduced from this. The most interesting case, when π is supersingular, can

be deduced from the exact sequence in [36, Theorem 6.3]. We sketch the argument using
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the notation of that theorem. Indeed, using the exact sequence, it is enough to estimate
the growth of dimMKn . [36, Lemma 4.10] implies that it is enough to estimate the growth

of dimMKn
σ and dimMKn

σ̃ . By [36, Proposition 4.7], the restrictions of Mσ and Mσ̃ to

N0 :=
(
1 Zp

0 1

)
are isomorphic to the space of smooth functions from N0 to k. This implies

that

dimMKn∩N0
σ = dimMKn∩N0

σ̃ = pn.

This gives an upper bound on the growth of Kn-invariants, which has to be of the right

order, since both Mσ and Mσ̃ are infinite-dimensional k-vector spaces.
Yet another alternative is to use results of Morra [33], who actually computes the

dimensions dimπIn , where In is a certain filtration of Iwahori subgroups by open normal

subgroups.

Proposition 5.17. Let R be the image of T(Up)m →EndcontG (Sψ,λ(U
p,O)m). Then there

is a subring A⊂R, such that A∼=O[[x,y]], R is finite over A and Sψ,λ(U
p,O)dm is a flat

A-module.

Proof. Lemmas 5.1 and 5.3 and (27) imply that Sψ,λ(U
p,O)dm is projective in ModproK,ζ(O)

and finitely generated over O[[K]]. Thus Sψ,λ(U
p,O)dm/� is isomorphic as an O[[K1]]-

module to a finite direct sum of copies of k[[K1/Z1]], where Z1 is the centre of K1. This

implies that Sψ,λ(U
p,O)dm is a Cohen–Macaulay O[[K1]]-module of dimension 4. The

fibre F := k⊗R Sψ,λ(U
p,O)dm is a quotient of k⊗Rps

tr r̄
Sψ,λ(U

p,O)dm. Corollary 5.6 and

Lemma 5.8 imply that F is of finite length as a G-representation. Lemma 5.16 implies

that the fibre has dimension less than or equal to one. If it is zero, then all irreducible
subquotients of F are characters, and by looking at the graded pieces of the m-adic

filtration on Sψ(U
p,O)dm, where m is the maximal ideal of R, we can deduce that all the

irreducible subquotients of Sψ(U
p,O)dm are characters. Since the central character is fixed

and p > 2, there are no nontrivial extensions between 1-dimensional G-representations

over k. This would imply that SL2(Qp) acts trivially on Sψ,λ(U
p,O)dm, which is impossible,

since it would imply that SL2(Zp) acts trivially on a projective object in ModproK,ζ(O).

Hence, the dimension of the fibre is 1. It follows from Corollary 5.14 that the Krull
dimension of R is at most 3. The assertion follows from Corollary 4.2.

6. Main result

Keep the notation of the previous section. Let D be the quaternion algebra over F , which

is ramified at p and split at ∞F and has the same ramification behaviour as D0 at all

the other places. Fix an isomorphism

D0⊗F A
p,∞F

F
∼=D⊗F A

p,∞F

F .

This allows us to view the subgroup Up of (D0 ⊗F A
f
F )

×, considered in the previous

section, as a subgroup of (D⊗F A
f
F )

×. Let Dp := D⊗F Fp. Then Dp is the nonsplit

quaternion algebra over Fp =Qp. Let Up =O×
Dp

and U =UpU
p. If K is an open subgroup

of U := UpU
p, then let X(K) be the corresponding Shimura curve for D/F defined over

https://doi.org/10.1017/S1474748020000547 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000547


On some consequences of a theorem of J. Ludwig 1095

F . Let

Ĥi(Up,L/O) := lim−→
Kp

Hi
ét(X(KpU

p)F ,L/O),

where the limit is taken over open subgroups of Up. [47, Theorem 6.2] gives an

isomorphism of GQp
×D×

p -representations:

Si(S(Up,L/O))∼= Ĥi(Up,L/O), (29)

where Si is the functor π �→Hi
ét(P

1,Fπ). Let v be a finite place of F different from p and
let gv ∈ (D0⊗F Fv)

×. We view gv also as an element of (D⊗F Fv)
× using the identification

above. Multiplication with gv induces an isomorphism S(Up,L/O)∼= S(g−1
v Upgv,L/O). It

follows from the identifications explained at the end of the proof of [47, Proposition 6.5]

that the following diagram of GQp
×D×

p -representations commutes:

Si(S(Up,L/O))
Si(·gv)��

∼=(29)

��

Si(S(g−1
v Upgv,L/O))

∼=(29)

��
Ĥi(Up,L/O)

·gv �� Ĥi(gvU
pg−1

v ,L/O).

Thus, if we let

Ĥi(Up,L/O) := lim−→
Kp

Hi
ét(X(KpU

p)F ,L/O),

where the limit is taken over open subgroups of Up, then we deduce that (29) induces an

isomorphism of Tuniv
S [GQp

× (D⊗QQp)
×]-modules:

Si(S(Up,L/O))∼= Ĥi(Up,L/O). (30)

Let ρ̄ : GF,S → GL2(k) be an absolutely irreducible representation as in the previous
section, and let m be the corresponding maximal ideal in Tuniv

S . Let

r̄ := ρ̄|GFp

and recall the assumption that Fp = Qp. It follows from in [47, Corollary 7.5] that (30)

induces an isomorphism of T(Up)m[GQp
× (D⊗QQp)

×]-modules:

S1(S(Up,L/O)m)∼= Ĥ1(Up,L/O)m. (31)

Lemma 6.1. Let λ be a continuous representation of Up
p on a finite free O-module and

let I be an ideal of T(Up)m. Then (31) induces an injection

S1(HomUp
p
(λ,S(Up,L/O)m[I])⊂HomUp

p
(λ,Ĥ1(Up,L/O)m)[I], (32)

such that the subgroup of O×
Dp

of elements of reduced norm 1 acts trivially on the cokernel.

Moreover, if the semisimplification of r̄ is not of the form χ⊕χω, then the cokernel is

zero.
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Proof. If λ is the trivial representation, then the first assertion is [47, Proposition 7.7].

The assertion for general λ follows from this by presenting λ as an O[[Up
p ]]-module and

arguing as in (23) and (24).
If (32) is not an isomorphism, then it follows from the proof of [47, Proposition 7.7] that

(after Up is replaced with an open subgroup) there is a subquotient of S(Up,L/O)m with

nonzero SL2(Qp)-invariants. Since this representation is locally admissible, we deduce that
Sψ(U

p,L/O)m has a subquotient with nonzero SL2(Qp)-invariants, for some character

ψ : (Af
F )

×/F× →O×. Proposition 5.4 implies that the block corresponding to r̄ss contains

a character. Thus we are in the setting of [37, §10], and so r̄ss ∼= χ⊕χω.

Let ψ : (Af
F )

×/F× →O× be a continuous character such that ψ is trivial of (Af
F )

×∩Up.

To ease the notation, we will use the same symbol to denote the restriction of ψ to
the intersection of (Af

F )
× with various subgroups of (D⊗F A

f
F )

×, with the exception of

ζ :=ψ|F×
p
. We will also view ψ as a character of GF,S via the class field theory and denote

by the same letter its restriction to various decomposition groups.
Let Ĥ1

ψ(U
p,L/O) be the maximal submodule of Ĥ1(Up,L/O) on which (Af

F )
× acts

by the character ψ. By Chebotarev’s density theorem, this coincides with the common

eigenspace of all Hecke operators Sv for the eigenvalue ψ(Frobv).

If λ is a continuous representation of Up
p on a finite free O-module with central character

ψ, then let

Ĥ1
ψ,λ(U

p,L/O)m := HomUp
p
(λ,Ĥ1

ψ(U
p,L/O)m).

Lemma 6.2. The map (31) induces isomorphisms of T(Up)m[GQp
×D×

p ]-modules

S1(Sψ,λ(U
p,L/O)m)∼= Ĥ1

ψ,λ(U
p,L/O)m (33)

and of T(Up)m[GQp
× (D⊗QQp)

×]-modules

S1(Sψ(U
p,L/O))∼= Ĥ1

ψ(U
p,L/O). (34)

Proof. It follows from [34, Proposition 5.6] that Ĥ1
ψ(U

p,L/O)m is injective in the category

ModsmUp,ψ(O). Arguing as in the proof of Lemma 5.2, we obtain that Ĥ1
ψ,λ(U

p,L/O)m is
injective in ModsmUp,ζ(O). Hence, if H is an open pro-p subgroup of

D×,1
p := {g ∈D×

p : Nrd(g) = 1}

which intersects the centre of D×
p trivially, then (Ĥ1

ψ,λ(U
p,L/O)m)

∨ is a free O[[H]]-

module of finite rank. Since D×
p is a p-adic analytic group, we can choose H to be torsion

free, in which case O[[H]] is an integral domain and thus does not contain a nonzero

O-submodule on which H acts trivially. Thus, the cokernel of (31), applied with I equal

to the ideal generated by Sv −ψ(Frobv) for all v �∈ S, is zero, and we get (33). The last
isomorphism follows from (33) using (25).
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Arguing as in [18, Lemma 5.3.8], we obtain isomorphisms

(Ĥ1
ψ(U

p,L/O)m)
Kp [�n]∼=H1

ψ(X(UpKp),O/�n)m, (35)

(Ĥ1
ψ(U

p,L/O)m)
Kp

p [�n]∼= Ĥ1
ψ(U

pKp
p,O/�n)m. (36)

Thus if we let

Ĥ1
ψ(U

p,O)m := lim←−
n

Ĥ1
ψ(U

p,O/�n)m, Ĥ1
ψ,λ(U

p,O)m := lim←−
n

Ĥ1
ψ,λ(U

p,O/�n)m,

then these are O-torsion free, and by inverting p we obtain admissible unitary Banach
space representations of (D⊗Q Qp)

× and D×
p , respectively. Moreover, we have natural

homeomorphisms of O-modules

(Ĥ1
ψ(U

p,O)m)
d ∼= (Ĥ1

ψ(U
p,L/O)m)

∨, (Ĥ1
ψ,λ(U

p,O)m)
d ∼= (Ĥ1

ψ,λ(U
p,L/O)m)

∨. (37)

In the following, to ease the notation we will omit the outer brackets in the duals.

Proposition 6.3. There is an isomorphism of T(Up)m[GQp
×D×

p ]-modules

Š1(Sψ,λ(U
p,O)dm)

∼= Ĥ1
ψ,λ(U

p,O)dm.

Proof. This follows from the definition of the functor Š1, together with (33) and (37).

Proposition 6.4. Ĥ1
ψ(U

p,O)dm is a finitely generated O[[Up]]-module which is projective

in ModproUp,ψ
(O). Ĥ1

ψ,λ(U
p,O)dm is a finitely generated O[[Up]]-module which is projective

in ModproUp,ζ
(O).

Proof. The projectivity and finite generation follow from (37), together with the

injectivity and admissibility statements for Ĥ1
ψ(U

p,L/O)m and Ĥ1
ψ,λ(U

p,L/O)m already
explained.

Assume that ψ and ρ̄ are such that Sψ(U
p,L/O)m �= 0 (see Lemma 5.3). After twisting

by a character, we can assume that the restriction of ψ to (Af
F )

×∩Up is a locally algebraic

character.

Theorem 6.5. The functor S1 is not identically zero on Modl.admG (O)r̄ss .

Proof. Let ψ be such that Sψ(U
p,L/O)m is nonzero and the restriction of ψ to (Af

F )
×∩

Up is a locally algebraic character. We can write ψ = ψsmψalg, where ψsm is a smooth

character of (Af
F )

×∩Up and ψalg is the restriction to (Af
F )

×∩Up of the central character

of an irreducible algebraic representation Walg evaluated at L of the algebraic group
(ResFQ D×

0 )⊗QL, where Res denotes the restriction of scalars.

Since Sψ(U
p,L/O)m is an object of Modl.admG (O)r̄ss by Proposition 5.4, using (34) it

is enough to check that Ĥ1
ψ(U

p,L/O)m is nonzero, and (37) implies that it is enough to

check that Ĥ1
ψ(U

p,O)m is nonzero. The locally algebraic vectors in the Banach spaces

Ĥ1
ψ(U

p,O)m ⊗O L and Sψ(U
p,O)m ⊗O L are related to classical automorphic forms on
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D× and D×
0 , respectively (see [19, §3] and [34, Theorem 5.3]). The assumption that

Sψ(U
p,L/O)m �= 0 implies that Sψ(U

p,O)m ⊗O L is nonzero, and if Vp is an open pro-

p subgroup of of Up, then it follows from Lemma 5.3 that Sψ(U
p,O)m ⊗O L as a Vp-

representation is isomorphic to a finite direct sum of copies of Cψ(Vp,L) in the notation

of Section 5. Thus if γ is a representation of Vp on a finite-dimensional L-vector space

with the central character ψ, then HomVp
(γ,Sψ(U

p,O)m⊗O L) is nonzero.

We choose Vp of the form V p
p ×Vp, such that ψsm is trivial on Vp ∩ (Af

F )
× and Vp =(

1+p
m

p
m−1

p
m 1+p

m

)
, for somem≥ 1. Let θ :Vp →L× be the character which maps

(
1+pma pm−1b
pmc 1+pmd

)
to α(b+ c), where α : OFp

/pm−1 → L× is any nontrivial additive character. Then θ is

trivial on Vp∩(Af
F )

× and is a supercuspidal type, by which we mean that if π is a smooth

irreducible representation of GL2(Fp) and HomVp
(θ,π) �= 0, then π is supercuspidal (see

[21, Proposition 3.19] or [47, Proposition 7.1] for a more general setting). Extend θ to a

character of Vp by mapping V p
p to 1. If we let γ := θ⊗Walg as a representation of Vp, then it

has a central character ψ by construction and thus HomVp
(γ,Sψ(U

p,O)m⊗OL) is nonzero,

as already explained. An eigenvector for the Hecke operators on this finite-dimensional
vector space will give a classical automorphic form on D×

0 . Since θ is a supercuspidal

type, the automorphic form will be supercuspidal at p (see the proof of [21, Theorem 5.1]

or the proof of [47, Corollary 7.3]). Since the automorphic form is supercuspidal at p,
we can transfer it to an automorphic form on D× by the classical Jacquet–Langlands

correspondence, which in turn gives a nonzero vector in the locally algebraic vectors of

Ĥ1
ψ(U

p,O)m⊗O L.

Remark 6.6. If r̄ is irreducible, then Br̄ consists of one isomorphism class of a

supersingular representation π. It follows from Theorem 6.5 that S1(π) �= 0. This implies

that S1(π′) �= 0 for any π′ ∈Modl.admG (O)r̄.

From now on, assume that r̄ss = χ1⊕χ2, with χ1χ
−1
2 �= ω±1. Let π1, π2 be the principal

series representations defined in (10). Proposition 3.5 implies that at least one of Š1(π∨
1 )

and Š1(π∨
2 ) is nonzero.

For a finitely generated O[[Up]]-module M , abbreviate δ(M) := δO[[Up]](M). If B is an

admissible unitary Banach space representation of D×
p , then we choose an open bounded

D×
p -invariant lattice Θ in B and an open uniform pro-p group K of D×

p . Then Θd⊗O L
is a finitely generated module over the Auslander regular ring O[[K]]⊗O L. Let δ(B) be

the dimension of Θd⊗O L over O[[K]]⊗O L and note that it is equal to δO[[K]](Θ
d)−1.

We will sometimes refer to δ(M) and δ(B) as the δ-dimension.

Proposition 6.7. The maximum of δ(Š1(π∨
1 )) and δ(Š1(π∨

2 )) is equal to 1.

Proof. LetA be the ring in Proposition 5.17 and letK be an open uniform pro-p subgroup
of D×

p . It follows from Propositions 3.7 and 6.3 that Ĥ1
ψ,λ(U

p,O)dm is A-flat. Since it is

nonzero, the fibre F := k⊗A Ĥ1
ψ,λ(U

p,O)dm is also nonzero, and (17) implies that its

δ-dimension is equal to δ(Ĥ1
ψ,λ(U

p,O)dm)−3. It follows from Proposition 6.4 that the δ-

dimension of Ĥ1
ψ,λ(U

p,O)dm is equal to 4 (see the argument in the proof of the analogous
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statement for Sψ,λ(U
p,O)dm in Proposition 5.17). Hence the δ-dimension of the fibre is

equal to 1.

As explained in the proof of Proposition 5.17, the fibre k⊗A Sψ,λ(U
p,O)dm is of finite

length in C(O)r̄ss and all irreducible subquotients are isomorphic to either π∨
1 or π∨

2 .

Moreover, both π∨
1 and π∨

2 occur as subquotients. Since Š1 is exact, by Corollary 3.2 we
deduce that F has a filtration of finite length with graded pieces isomorphic to either

Š1(π∨
1 ) or Š1(π∨

2 ), which implies the assertion.

Corollary 6.8. Let r :GQp
→GL2(L) be a continuous representation with detr = ψε−1

and r̄ss = χ1 ⊕χ2. Let Π ∈ BanadmG (L) correspond to r via the p-adic local Langlands

correspondence for GL2(Qp). Then Š1(Π) �= 0 and δ(Š1(Π)) = 1.

Proof. Let Θ be an open bounded G-invariant lattice in Π. Then (Θ⊗O k)ss ∼= π1⊕π2

(see [37, §11]). We can assume that Θ⊗O k is an extension of π1 by π2. Then Š1(Θd/�)

is an extension of Š1(π∨
2 ) by Š1(π∨

1 ). Proposition 6.7 implies that δ(Š1(Θd/�)) = 1.
Proposition 3.7 applied with A=O implies that Š1(Θd) is O-torsion free and δ(Š1(Θd)) =

δ(Š1(Θd/�))+1 = 2. Hence, δ(Š1(Π)) = 1.

Lemma 6.9. Let B be an admissible unitary D×
p -representation. Then B is a finite

dimensional L-vector space if and only if its δ-dimension is 0.

Proof. Let K be an open uniform pro-p subgroup of D×
p and let Θ be an open bounded

D×
p -invariant lattice in B. Then

δ(B) = δ(Θd)−1 = δ(Θd/�),

and the assertion follows from Lemma 4.3.

Corollary 6.10. If Π is as in Corollary 6.8, then Š1(Π) is of finite length in the category
of admissible unitary L-Banach space representations of D×

p if and only if it has finitely

many irreducible subquotients which are finite-dimensional as L-vector spaces.

Proof. Since Š1(Π) is admissible, it has an irreducible subrepresentation, which we

denote by B1 (see [35, Lemma 5.8]). If Š1(Π) is not of finite length, then by repeating

the argument we obtain an ascending chain of Banach space subrepresentations {Bi}i≥0

such that B0 = 0 and the quotients Bi+1/Bi for i≥ 0 are irreducible. Let K be a compact
open subgroup of D×

p without torsion. Then Mi := (Š1(Π)/Bi)
d for i≥ 0 is a descending

chain of finitely generated modules over a Noetherian Auslander regular ring O[[K]]⊗OL.

According to [30, Theorem 4.2], there is n0 such that

δ(Mi/Mi+1)≤ δ(M0)−1 = 0, ∀i≥ n0,

where the last equality follows from Corollary 6.8. Lemma 6.9 implies that the quotients

Bi+1/Bi for i≥n0 are finite-dimensional L-vector spaces. This contradicts the assumption

that there are only finitely many such subquotients.
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Theorem 6.11. Let x ∈ m-SpecT(Up)m[1/p] be such that the restriction of the cor-

responding Galois representation ρx : GF,S → GL2(κ(x)) to GFp
is irreducible. Then

(Ĥ1
ψ,λ(U

p,O)m⊗O L)[mx] is nonzero if and only if (Sψ,λ(U
p,O)m⊗O L)[mx] is nonzero.

In this case, there is an isomorphism of admissible unitary κ(x)-Banach space
representations of GFp

×D×
p :

(Ĥ1
ψ,λ(U

p,O)m⊗O L)[mx]∼= Š1(Π)⊕n, (38)

where Π is the absolutely irreducible κ(x)-Banach space representation corresponding to
ρx|GFp

via the p-adic local Langlands correspondence for GL2(Qp). In particular, the δ-

dimension of (Ĥ1
ψ,λ(U

p,O)m⊗O L)[mx] is 1.

Proof. The assumption on r̄ implies that (32) is an isomorphism. It follows from

Proposition 6.3 that

Š1((Sψ,λ(U
p,O)m⊗O L)[mx])∼= (Ĥ1

ψ,λ(U
p,O)m⊗O L)[mx],

as GFp
×D×

p -representations. The isomorphism (38) is obtained by applying Š1 to (28).

The assertion about the dimension follows from Corollary 6.8.

Remark 6.12. Since mx contains the ideal generated by Sv −ψ(Frobv) for all v �∈ S,

Theorem 6.11 implies Theorem 1.4.

Proposition 6.13. A unitary D×
p -representation B on a finite-dimensional L-vector

space with a central character is semisimple. Moreover,

B∼=
n⊕

i=1

m⊕
j=1

Symai L2⊗detbi ⊗τj ⊗ηij ◦Nrd,

where ai ∈ Z≥0, bi ∈ Z, τj is irreducible smooth and ηij : Q
×
p → O× is a character. If

the central character ζB is locally algebraic, then we can take ηij to be either trivial or
ηij(x) =

√
pr(x|x|), where pr : Z×

p → 1+pZp denotes the projection.

Proof. We closely follow the proof of [45, Proposition 3.2]. Note first that any continuous
action of a p-adic analytic group on a finite-dimensional L-vector space is automatically

locally analytic, and hence induces an action of the universal enveloping algebra of its Lie

algebra. Let D×,1
p = {g ∈D×

p : Nrd(g) = 1} and let h be its Lie algebra. The Lie algebra

of D×
p is just Dp. Assume L to be sufficiently large, so that Dp splits over L. Thus we

have an isomorphism of L-Lie algebras h⊗Qp
L ∼= sl2. This induces an isomorphism of

enveloping algebras U(h)⊗Qp
L∼=U(sl2) and an embedding D×,1

p ↪→ SL2(L). Let J be the
kernel of the map U(sl2)→ EndL(B). Since B is a finite-dimensional L-vector space, the

codimension of J is finite, and as explained in the proof of [45, Proposition 3.2], the algebra

U(sl2)/J is semisimple, and evaluation induces an isomorphism of U(sl2)-modules:

⊕
a≥0

SymaL2⊗LHomU(sl2)(Sym
aL2,B)

∼=−→ B. (39)
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We can upgrade this isomorphism to an isomorphism of D×,1
p -representations as

follows. Let D×,1
p act on SymaL2 via the embedding D×,1

p ↪→ SL2(L) defined ear-

lier and on HomL(Sym
aL2,B) by conjugation. Since HomL(Sym

aL2,B) is a finite-
dimensional L-vector space, the corresponding representation is locally analytic. It

follows from [45, Proposition 2.1] that the smooth vectors for this action are equal to

HomU(sl2)(Sym
aL2,B), which makes it into a smooth representation of D×,1

p . If we put

the diagonal action of D×,1
p on SymaL2⊗LHomU(sl2)(Sym

aL2,B), then the evaluation

map isD×,1
p -equivariant and hence the same holds for (39). SinceD×,1

p is a compact group,

the category of smooth representations on L-vector spaces is semisimple. Moreover, if τ
is an irreducible smooth representation of D×,1

p , then SymaL2⊗ τ is irreducible by [45,

Proposition 3.4]. Thus we have shown that the restriction of B to D×,1
p is semisimple.

Since the centre F×
p acts by a central character by assumption, the restriction of B to

D×,1
p F×

p is semisimple. Since D×,1
p F×

p is of finite index in D×
p , this implies that B is a

semisimple representation of D×
p .

Assume that B is absolutely irreducible, and let a be such that

HomU(sl2)(Sym
aL2,B) �= 0.

Let pr :O× → 1+p denote the projection to the principal units. We use the same symbol

for Z×
p → 1+ pZp. Since p > 2, we can define a continuous square root on 1+ p by the

usual binomial formula. Let η :Q×
p →O× be the character η(x) =

√
pr(ζB(x))−1pr(x|x|)a,

where ζB is the central character of B. Then the restriction of the central character of
B⊗ η ◦Nrd to 1 + pZp is equal to x �→ xa. If H is an open subgroup of D×,1

p , then

(1+ pZp)H is an open subgroup of D×
p and so their Lie algebras will coincide. Hence,

HomU(gl2)
(SymaL2,B⊗η◦Nrd) �=0, and arguing as before, we conclude that B⊗η◦Nrd∼=

SymaL2⊗ τ , where τ is a smooth irreducible representation of D×
p .

If ζB is locally algebraic, then ζB(x) = xcζsm(x) for all x ∈Q×
p , where ζsm is a smooth

character. After possibly twisting B by the character x �→
√
x|x| (or its inverse), we can

assume that a− c is even. Then HomU(gl2)
(SymaL2⊗detb ,B) �= 0, where a− c= 2b, and

we can conclude as before.

Remark 6.14. The characters appearing in Proposition 6.13 are not uniquely deter-

mined, since we can write the character deta as a product of a unitary character pr(deta)
and a smooth character (detapr(deta)−1).

We say that an irreducible component of a potentially semistable deformation ring is

of discrete series type if the closed points in the generic fibre corresponding to Galois

representations, which do not become crystalline after restricting to the Galois group of
an abelian extension, are Zariski dense in that component.

Proposition 6.15. Assume the setup of Theorem 6.11. Let Š1(Π)1-alg be the subset of

D×,1
p -locally algebraic vectors in Š1(Π), where D×,1

p is the subgroup of D×
p of elements

with reduced norm equal to 1. Then Š1(Π)1-alg is a finite-dimensional L-vector space.
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Moreover, if Š1(Π)1-alg is nonzero, then a twist of ρx|GFp
by a character defines a point

lying on an irreducible component of discrete series type of some potentially semistable

deformation ring of r̄.

Proof. After twisting by a character χ : (Af
F )

×/F× → 1+ p, which is trivial on Up ∩
(Af

F )
×, we can assume that the restriction of ψ to (Af

F )
×∩Up is locally algebraic.

Let σ := σalg⊗σsm be an irreducible locally algebraic representation of Up =O×
Dp

with

central character ζ, where σalg = SymbL2 ⊗ deta and σsm is smooth. To σsm one can

attach an inertial type τ : IQp
→ GL2(L) such that τ extends to a representation of the

Weil group WQp
, the kernel of τ is an open subgroup of IQp

and the following holds: if π′

is a smooth irreducible representation of D×
p , π is a smooth irreducible representation of

GL2(Qp) corresponding to π′ via the classical Jacquet–Langlands correspondence, and
recp(π) is the Weil–Deligne representation corresponding to π via the classical local

Langlands correspondence, then HomUp
(σsm,π

′) �= 0 if and only if recp(π)|IQp
∼= τ (see

[22, Theorem 3.3]). Note that in that case, either π is supercuspidal, τ extends to an
irreducible representation of WQp

and the monodromy operator of recp(π) is zero, or π is

special series and the monodromy operator of recp(π) is nonzero. Moreover, the inertial

type τ determines σsm up to conjugation by a uniformiser �D of D.

Let w = (1− a, − a− b) and let R�
r̄ (w,τ,ψ) be the framed deformation ring of r̄

parameterising potentially semistable lifts of r̄ which have Hodge–Tate weights equal

to w, inertial type τ and determinant ψε−1. Let R�
r̄ (w,τ,ψ)ds be the closure of closed

points in the generic fibre which do not correspond to crystabelline representations. In
the supercuspidal case, R�

r̄ (w,τ,ψ)ds and R�
r̄ (w,τ,ψ) coincide. In the special series case,

R�
r̄ (w,τ,ψ)ds is the union of irreducible components of R�

r̄ (w,τ,ψ) of discrete series

type, and the potentially crystalline locus has codimension 1. Mapping a deformation
to its trace induces a natural map Rps

tr r̄ →R�
r̄ (w,τ,ψ)ds, and we let Rps

tr r̄(w,τ,ψ)ds be its

image.

We claim that the action of Rps
tr r̄ on HomUp

(σ,Ĥ1
ψ(U

p,O)m⊗OL) via the homomorphism

Rps
tr r̄ → T(Up)m factors through the quotient Rps

tr r̄(w,τ,ψ)ds. It follows from Proposi-

tion 6.4 that as a Up
p -representation, HomUp

(σ,Ĥ1
ψ(U

p,O)m⊗OL) is isomorphic to a finite

direct sum of copies of the Banach space Cψ(U
p
p ) of continuous functions f : Up

p → L, on

which the centre acts by ψ and Up
p acts by right translations. Since the action of Rps

tr r̄

is continuous, it is enough to show that it factors through Rps
tr r̄(w,τ,ψ)ds on a dense

subspace. For this, choose an open subgroup V p
p of Up

p such that the restriction of ψ to

the centre of V p
p is algebraic, and let λ be an algebraic representation of V p

p with central
character ψ. The union of λ-isotypic subspaces inside Cψ(U

p
p ) as a Kp

p -representation

taken over all open subgroups Kp
p of V p

p will be dense, since locally constant functions

are dense in the space of continuous functions. Thus it is enough to prove that the action
of Rps

tr r̄ on HomKp
pUp

(λ⊗σ,Ĥ1
ψ(U

p,O)m⊗OL) factors through Rps
tr r̄(w,τ,ψ)ds for all open

subgroups Kp
p . It follows from Emerton’s spectral sequence in [19, Corollary 2.2.8] (see

[34, Proposition 5.2]) that we have an isomorphism of T(Up)m-modules:

HomUp
(σsm,H

1(X(Kp
pUp),VW )m[ψsm])∼=HomKp

pUp
(λ⊗σ,Ĥ1

ψ(U
p,O)m⊗O L),
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where VW is a local system on X(Kp
pUp) corresponding to the algebraic representation

W := (λ⊗ σ)∗, ψsm = ψψ−1
alg and ψalg is the central character of λ⊗ σ. The left-hand

side of the equation is a semisimple T(Up)m[1/p]-module, and the eigenvalues correspond
to an automorphic form (see [19, §3]) satisfying local conditions imposed by σsm at p,

W at infinite places. The compatibility of local and global Langlands correspondences

implies that if ρx is the Galois representation attached to such an automorphic form,

then trρx|GFp
gives a point in SpecRps

tr r̄(w,τ,ψ)ds. This finishes the proof of the claim.
Fix x ∈m-SpecT(Up)m[1/p], let y be its image in SpecRps

tr r̄ and assume that

HomU(sl2)(Sym
bL2,(Ĥ1

ψ,λ(U
p,O)⊗O L)[mx]) �= 0.

It follows from Proposition 6.13 that

HomUp
(σ⊗η ◦Nrd,(Ĥ1

ψ,λ(U
p,O)⊗O L)[mx]) �= 0,

where σ is as before and η is either trivial or
√
pr(χcyc). If η is trivial, then the claim

implies that y lies in SpecR�
r̄ (w,τ,ψ)ds. Note that the assumption on r̄ implies that any

reducible potentially semistable lift r with Hodge–Tate weights w is crystabelline and its
WD(r)|WQp

is a direct sum of distinct characters. Such representations cannot correspond

to points on irreducible components of discrete series type. Hence ρx|GFp
is irreducible

and thus determined by its trace.
If η is not trivial, then by twisting by its inverse and using the claim again we

deduce that tr(ρx|GFp
⊗η−1) gives a point in m-SpecR�

r̄ (w,τ,ψη−2)ds[1/p]. Note that the

character ψη−2 = ψpr(χcyc)
−1 is locally algebraic, but the representation λ⊗ η−1 ◦Nrd

is not. That is why we cannot appeal directly to the results of Emerton in this case.
Thus, ρx|GFp

determines the integers a and b, the representation σsm up to its conjugate

by the uniformiser �D of D×
p and whether η is trivial or not, by comparing whether

the Hodge–Tate weight of detρx|GFp
has the same parity as the Hodge–Tate weight of

ψ|GFp
. This implies that Š1(Π)1-alg is isomorphic as a representation of Up to a finite

direct sum of copies of σ⊗ η ◦Nrd or its conjugate by �D. In particular, Š1(Π)1-alg is

finite-dimensional.

Remark 6.16. If F =Q, then the proof of Proposition 6.15 can be simplified, since after

twisting we can directly appeal to the results of Emerton on locally algebraic vectors in

completed cohomology.

Theorem 6.17. Assume the setup of Theorem 6.11 and the notation of Proposition 6.15.
The quotient Š1(Π)/Š1(Π)1-alg contains an irreducible closed subrepresentation of δ-

dimension 1.

Proof. Since the δ-dimension of Š1(Π) is 1 by Proposition 6.8 and the δ-dimension

of Š1(Π)1-alg is 0 by Proposition 6.15 and Lemma 6.9, the quotient Š1(Π)/Š1(Π)1-alg

is nonzero and has δ-dimension 1. Since it is admissible, it will contain an irreducible
subrepresentation B. We have δ(B)≤ 1. If δ(B) = 1, then we are done; otherwise, δ(B) = 0

and so B is a finite-dimensional L-vector space by Lemma 6.9. The extension of Š1(Π)1-alg

by B inside Š1(Π) is a finite-dimensional L-vector space, and Proposition 6.13 implies
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that the action of D×,1
p on it is locally algebraic. Since Š1(Π)1-alg is the maximal subspace

of Š1(Π) with this property, we conclude that B = 0.
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Addendum Gabriel Dospinescu has pointed out to us that the claim in the proof of

Proposition 6.7 that both π∨
1 and π∨

2 occur as subquotients of k⊗ASψ,λ(U
p,O)dm has not

been justified. Contrary to the assertion made in the proof of Proposition 6.7 the proof

of Proposition 5.17 does not contain the proof of the claim. This can be fixed as follows.
Let M := Sψ,λ(U

p,O)dm. If M ⊗A k contains π∨
1 , but not π∨

2 , then it follows from [37,

Corollary 7.7] that M ∼= (IndG
B
OrdB(M

∨))∨. This would contradict the projectivity of

M in ModproK,ζ(O), for example by looking at the growth of co-invariants by congruence
subgroups of K.

We would like thank Gabriel Dospinescu for his careful reading of the paper.
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[9] C. Breuil and A. Mézard, Multiplicités modulaires et représentations de GL2 (Zp) et
de Gal(Qp/Qp) en l = p, Duke Math. J. 115 (2002), 205–310.

[10] A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4
(1966), 442–470.

[11] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas and S. W. Shin,
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