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1. Introduction

The study of Hochschild cohomology for von Neumann algebras can be traced back to
a well-known theorem, due separately to Kadison [6] and Sakai [10], which states that
every derivation δ : M → M on a von Neumann algebra M is inner, that is, there
exists an element a ∈ M such that δ(x) = xa − ax for all x ∈ M . This corresponds
to the vanishing of the first continuous Hochschild cohomology group, H1(N, N). It is
natural to conjecture that the higher cohomology groups Hn(N, N) are also trivial. This
programme was taken up in the 1970s, in a series of papers by Johnson, Kadison and
Ringrose [5,7,8], who affirmed the conjecture for type-I algebras and hyperfinite algebras.
In the mid 1980s, a parallel theory of completely bounded cohomology was initiated.
The groups Hn

cb(N, N) are computed under the additional assumption that all cocycles
and coboundaries, usually assumed to be norm continuous, are completely bounded.
Christensen and Sinclair showed that Hn

cb(N, N) = 0 for all von Neumann algebras N

(see [11] for details of the proof). It was proved in [2] that continuous and completely
bounded cohomologies coincide for all von Neumann algebras stable under tensoring
with the hyperfinite II1 factor R. Thus, it is known that the continuous Hochschild
cohomology vanishes for all von Neumann algebras of type I, II∞ and III, and for all
type-II1 algebras stable under tensoring with R. This leaves open the case of the general
type-II1 von Neumann algebra. By direct integral techniques, it is enough in the separable
case to compute the groups Hn(N, N) when N is a factor.

As in the Kadison–Sakai theorem, the vanishing of Hochschild cohomology groups
gives structural information about certain bounded n-linear maps on the von Neumann
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algebra, in particular, that they can be formed from the (n−1)-linear maps. The vanishing
of certain other higher cohomology groups also yields some nice perturbation results for
von Neumann algebras (see [11, Chapter 7]). The Hochschild cohomology groups have
been shown to be trivial for a few large classes of type-II1 factors, including those with
property Γ [3], and those which contain a Cartan maximal abelian subalgebra (masa) and
have a separable predual [12]. The purpose of this paper is to extend the latter result to
include arbitrary II1 factors with a Cartan masa. The techniques in [12] depended heavily
on separability, and so could not be modified to encompass non-separable algebras. The
techniques in the present paper originated in [3, 15], and can be viewed as part of a
general strategy to relate properties of non-separable type-II1 factors to their separable
subalgebras.

2. Notation and background

2.1. Finite von Neumann algebras

The setting of this paper is a finite von Neumann algebra N with a faithful, normal trace
τ . We will call such an algebra separable if one of the following equivalent conditions
holds [16]:

(i) there exists a countable set of projections in N generating a weakly dense subalge-
bra of N ;

(ii) the Hilbert space L2(N, τ) (on which N is faithfully represented) is separable in its
norm;

(iii) the predual of N is a separable Banach space.

The weakly closed unit ball of N is then separable in this topology, being a compact
metric space.

If A ⊆ M ⊆ N is an inclusion of von Neumann subalgebras, we denote the normalizer
of A in M by

N (A, M) = {u ∈ U(M) : uAu∗ = A},

where U(M) denotes the unitary group of M . We will write N (A) for N (A, N), and refer
to this set as the normalizer of A. Dixmier [4] classified the masas A of a von Neumann
algebra M as singular, Cartan or semi-regular, according to whether N (A, M)′′ = A,
N (A, M)′′ = M or N (A, M)′′ is a proper subfactor of M . (See [14] for a comprehensive
exposition of the theory of masas in von Neumann algebras.)

The following facts about finite von Neumann algebras are standard, but are critical
to what follows, so we include some discussion for the reader’s convenience. Recall that
if Q is a von Neumann subalgebra of a finite von Neumann algebra N with trace τ , then
there exists a bounded conditional expectation EQ : N → Q which is characterized by
the following two properties:

(i) for all x ∈ N and q1, q2 ∈ Q, EQ(q1xq2) = q1EQ(x)q2 (Q-bimodularity);

(ii) for all x ∈ N , τ(EQ(x)) = τ(x) (EQ is trace preserving).
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We emphasize that EQ is unique among all maps from N into Q with these two properties,
and not just those assumed to be continuous and linear. This observation leads to the
following result, which is essentially in [1], and can be found in [14].

Proposition 2.1. Let N be a finite von Neumann algebra and let Q be a von Neumann
subalgebra of N , with faithful, normal trace τ . For any x ∈ N , EQ′∩N (x) is the unique
element of minimal ‖ · ‖2-norm in the weak closure of

KQ(x) = conv{uxu∗ : u ∈ U(Q)}.

It is important to consider whether the weak closure of the set KQ(x) is taken in N or
L2(N). The embedding of N into L2(N) is continuous, when both spaces are given their
respective weak topologies. Thus, the (compact) weak closure of any ball in N is weakly
closed (hence also ‖ · ‖2-closed, by convexity) in L2(N). Conversely, the preimage of a
weakly closed (equivalently, ‖ · ‖2-closed) ball in L2(N) is weakly closed in N . Thus, the
weak closure in N , the weak closure in L2(N) and the ‖ · ‖2 closure in L2(N) of KQ(x)
all coincide. We will use the common notation Kw

Q(x) for all three closures.

Lemma 2.2. Let N be a finite von Neumann algebra with a normal, faithful trace τ .
Let M be a separable subalgebra of N . Suppose there exists a subset S ⊆ N of unitaries
such that S′′ = N . Then there exists a countable subset F of S such that F ′′ ⊇ M .

Proof. We first claim that C∗(S) is ‖ · ‖2-dense in L2(N). Let x ∈ N . Since C∗(S) is
strongly dense in N , by the Kaplansky density theorem, there exists a net {xα} in C∗(S)
such that ‖xα‖ � ‖x‖ and xα converges to x ∗-strongly. Then also (xα − x)∗(xα − x)
converges to 0 weakly. Moreover, ‖(xα − x)∗(xα − x)‖ is uniformly bounded and τ is a
normal state (hence weakly continuous on bounded subsets of N by [9, Theorem 7.1.12]);
then ‖xα − x‖2

2 = τ((xα − x)∗(xα − x)) converges to 0. Thus, x ∈ C∗(S)
‖·‖2 , and the

claim follows.
Note that L2(M) is a separable Hilbert subspace of L2(N). Let {ξn}∞

n=1 be a dense
subset. For each n, there is a sequence {snk}∞

k=1 in C∗(S) such that snk converges in
‖ · ‖2-norm to ξn. The operators snk lie in the norm closure of Alg(F ) for some countable
subset F of S. It follows that L2(M) ⊆ L2(Alg(F )) ⊆ L2(F ′′). We claim that this
implies M ⊆ F ′′. Let EM : N → M and EF ′′ : N → F ′′ denote the respective trace-
preserving conditional expectations, obtained by restricting the Hilbert space projections
eM : L2(N) → L2(M) and eF ′′ : L2(N) → L2(F ′′) to N . For any x ∈ M , we have

x = eF ′′(x) + (1 − eF ′′)(x) = eF ′′(x),

since L2(M) ⊆ L2(F ′′). But then x = EF ′′(x), so M ⊆ F ′′. �

2.2. Cohomology

In this section we collect the basic definitions and results of Hochschild cohomology that
will be used in the next section. The reader may wish to consult [11] for a more detailed
exposition. Let M be a von Neumann algebra and let X be a Banach M -bimodule (in
the next section, we will restrict our attention to the case when X = M). Let Ln(M, X)
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denote the vector space of n-linear bounded maps φ : Mn → X. Define the coboundary
map ∂ : Ln(M, X) → Ln+1(M, X) by

∂φ(x1, . . . , xn+1) = x1φ(x2, . . . , xn+1) +
n∑

j=1

(−1)jφ(x1, . . . , xj−1, xjxj+1, . . . , xn+1)

+ (−1)n+1φ(x1, . . . , xn)xn+1.

An algebraic computation shows that ∂2 = 0. We thus obtain the Hochschild complex
and define the nth continuous Hochschild cohomology group to be

Hn(M, X) =
ker ∂

Im ∂
.

The maps φ ∈ ker ∂ are called (n + 1)-cocycles, and the maps in Im ∂ are called
n-coboundaries. It is easy to check that the 2-cocycles are precisely the bounded deriva-
tions from M into X.

Various extension and averaging results are of central importance in computing cohom-
ology groups. The most basic extension theorem states that normal cohomology and
continuous cohomology are equal when the space X is assumed to be a dual normal
M -module (see [13, Theorem 3.3]). In that result, it is shown that a continuous cocycle
can be modified by a coboundary so that the resulting cocycle is separately normal in
each variable. Thus, we will assume in what follows that all n-cocycles are separately nor-
mal in each variable. We denote the vector space of bounded, separately normal n-linear
maps from M to X by Ln

w(M, X). The general strategy of averaging arguments in cohom-
ology is to replace a continuous n-cocycle φ with a modified cocycle φ + ∂ψ which has
more desirable continuity and modularity properties. The coboundary ∂ψ is obtained by
an averaging process over a suitable group of unitaries in the underlying von Neumann
algebra. In the present work, it will be essential that modifications to a given cocycle
are made while preserving certain norm estimates on the original cocycle. The averaging
result we need is the following, which can be found in [11].

Lemma 2.3. Let R be a hyperfinite von Neumann subalgebra of a von Neumann
algebra M . Then there is a bounded linear map Ln : Ln

w(M, M) → Ln−1
w (M, M) such

that φ + ∂Lnφ is a separately normal R-module map for any n-cocycle φ. Moreover,
‖Ln‖ � �(n), a constant depending only on n.

We will also need two extension results, the first of which is essentially [11, Lemma
3.3.3].

Lemma 2.4. Let A be a C∗-algebra on a Hilbert space H with weak closure Ā and
let X be a dual Banach space. If φ : An → X is bounded, n-linear and separately normal
in each variable, then φ extends uniquely, without changing the norm, to a bounded,
separately normal n-linear map φ̄ : (Ā)n → X.

Lemma 2.5. Let A be a C∗-algebra, and denote its weak closure by Ā. Then for
each n there exists a linear map Vn : Ln

w(A, X) → Ln
w(Ā, X) such that, when φ is as in

Lemma 2.4, Vnφ = φ̄. Moreover, ‖Vn‖ � 1 and ∂Vn = Vn+1∂ for all n � 1.
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Proof. For φ in Ln
w(A, X), we define Vnφ = φ̄. This is well defined and linear by the

uniqueness in Lemma 2.4. Moreover, since the extension in Lemma 2.4 is norm preserving,
we have ‖Vn‖ � 1. Now, for any x1, x2, . . . xn+1 ∈ A, we have

∂Vnφ(x1, . . . , xn+1) = ∂φ(x1, . . . , xn+1) = Vn+1∂φ(x1, . . . , xn+1).

Both of the maps ∂Vnφ and Vn+1∂φ are separately normal, so are uniquely defined on
(Ā)n. Thus, we have

∂Vnφ(x1, . . . xn+1) = Vn+1∂φ(x1, . . . , xn+1)

for all x1, . . . , xn+1 in Ā. This completes the proof. �

3. Main results

A corollary of the following result is that the study of Cartan masas can, in many
instances, be reduced to the separable case. The techniques of the proof come from [15,
Theorem 2.5], in which a similar result is proved for singular masas in II1 factors.

Proposition 3.1. Let N be a II1 factor with Cartan masa A, and let M0 be a separable
von Neumann subalgebra of N . Let φ : Nn → N be a separately normal n-cocycle. Then
there exists a separable subfactor M such that M0 ⊆ M ⊆ N , M ∩ A is a Cartan masa
in M and φ maps Mn into M .

Proof. For a von Neumann algebra Q and x ∈ Q, denote by Kn
Q(x) and Kw

Q(x),
respectively, the operator and ‖ · ‖2-norm closures of the set KQ(x). Recall that when
Q is a von Neumann subalgebra of M , for any x ∈ M , EQ′∩M (x) picks out the element
of minimal ‖ · ‖2-norm in Kw

Q(x). We will construct, inductively, a sequence of separable
von Neumann algebras

M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ N

and abelian subalgebras Bk ⊆ Mk so that M = (
⋃∞

k=1 Mk)′′ has the required properties.
The von Neumann algebra B = (

⋃∞
n=0 Bn)′′ will be a masa in M , and thus equal to

M ∩ A. The inductive hypothesis is as follows. We assume that, for 1 � j � k − 1 and
fixed sequences {yj,r}∞

r=1, ‖ · ‖2-norm dense in the ‖ · ‖2-closed unit ball of the separable
von Neumann algebra Mj , sets M1, . . . , Mk and Bj = Mj ∩ A satisfy the following:

(i) EA(yj,r) ∈ Bj ∩ Kw
Bj+1

(yj,r) for r � 1;

(ii) Kn
Mj+1

(yj,r) ∩ C1 is non-empty for all r � 1;

(iii) for each j, there is a countable set of unitaries Uj+1 ⊆ N(A) ∩ Mj+1 such that
U ′′

j+1 ⊇ Mj ;

(iv) the cocycle φ maps (Mj)n into Mj+1.
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In the inductive step we will construct Mk+1 so that the sets M1, . . . , Mk+1 and
B1, . . . , Bk, Bk+1 = Mk+1 ∩ A satisfy properties (i)–(iv).

We first prove that this sequence of algebras gives the desired result. The von Neumann
algebra M = (

⋃∞
n=0 Mn)′′ will be a separable subalgebra of N , by our construction. We

show that M is a factor.
For any x ∈ M , Kw

M (x) ∩ C1 is non-empty, by the following approximation argument.
First suppose that x ∈ Mk, for some k � 1 and ‖x‖ � 1. Let ε > 0 be given. Choose
an element yk,r ∈ Mk as above with ‖yk,r − x‖2 < ε. By condition (ii) we can choose an
element

ak,r =
m∑

i=1

λiuiyk,ru
∗
i ∈ KMk+1(yk,r),

whose ‖ · ‖2-norm distance to C1, which we denote dist2(ak,r, C1), is less than ε. Then
a =

∑m
i=1 λiuixu∗

i is an element of KMk+1(x) with dist2(a, C1) < 2ε. It follows that
Kw

Mk+1
(x) ∩ C1 is non-empty.

Now let x ∈ M , ‖x‖ � 1, and fix ε > 0. By the Kaplansky density theorem, there exists
a k � 1, and an element xα ∈ Mk of norm at most 1 such that ‖xα − x‖2 < ε. Then by
the argument above, Kw

Mk+1
(xα) ∩ C1 is non-empty. It follows, by a similar argument to

that above, that there exists an element a ∈ KM (x) with dist2(a, C1) < 2ε. Thus, Kw
M (x)

has non-empty intersection with C1. By scaling, this result is true for x ∈ M of arbitrary
norm. To see that M is a factor, note that if x is central in M , then Kw

M (x) = {x} and,
since this set meets C1, x must be a multiple of the identity.

We now prove that B = (
⋃∞

n=0 Bn)′′ is a masa in M . First, condition (i) implies that
EA(x) ∈ B ∩ Kw

B(x) ⊆ B ∩ Kw
A(x) for all x ∈ M . This follows from an approximation

argument similar to the one above, in which we first prove the claim for all x ∈ Mk with
‖x‖ � 1 and then extend to all of M . Since EA(x) is the element of minimal ‖ · ‖2-norm
in Kw

A(x), it also has this property in Kw
B(x). But then EA(x) = EB′∩M (x). Since, for all

x ∈ M , EA(x) = EB(x), one has

x = EB′∩M (x) = EA(x) = EB(x)

for all x ∈ B′ ∩ M . Thus, B′ ∩ M ⊆ B. Since B is abelian, the opposite inclusion
also holds. Thus, B is a masa in M , and B = M ∩ A. We show that B is Cartan. By
condition (iii), we will have M = (

⋃∞
k=0 U ′′

k+1)
′′. We claim that the latter set is precisely

N (B, M)′′, and hence that B is Cartan in M . Fix k � 0 and let u ∈ Uk+1. Then, since
u ∈ N (A) ∩ Mk+1, for any j � k + 1 we have

uBju
∗ = u(A ∩ Mj)u∗ ⊆ A ∩ Mk+1 = Bk+1 ⊆ B.

If j > k + 1, since u ∈ Mk+1 ⊆ Mj , we have

uBju
∗ = u(A ∩ Mj)u∗ = A ∩ Mj = Bj ⊆ B.

Then u(
⋃∞

j=0 Bj)u∗ ⊆ B and u ∈ N(B, M). Then also U ′′
k+1 ⊆ N (B, M)′′. The

claim follows. Then M ⊆ N (B, M)′′ and, since the other containment holds trivially,
M = N (B, M)′′. That is, B is a Cartan masa in M . Finally, by our construction of M ,
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condition (iv) will imply that φ maps Mn into M , since φ is separately normal in each
variable.

We proceed to construct the algebras Mk, Bk. Set B0 = M0 ∩ A. Assume that
M1, . . . , Mk and B1, . . . , Bk have been constructed such that they satisfy conditions
(i)–(iv) specified above. By Dixmier’s approximation theorem [9, Theorem 8.3.5] each
sequence {yk,r}∞

r=1 is inside a von Neumann algebra Q0 ⊆ N (generated by a countable
set of unitaries) such that Kn

Q0
(yk,r) ∩ C1 is non-empty. To get condition (iii), observe

that, since N (A)′′ = N , Lemma 2.2 applies and there is a countable set of unitaries Uk+1

satisfying the desired condition. Since φ is normal in each variable, by [13, Theorem 4.4],
φ is jointly ‖ · ‖2-norm continuous when restricted to bounded balls in (Mk)n. Since Mk

is separable, it follows that φ((Mk)n) generates a separable von Neumann algebra Q1.
Finally, since for all r ∈ N, EA(yk,r) ∈ Kw

A(yk,r) ∩ Bk, there exists a set of unitaries
{um}∞

m=1 generating a von Neumann algebra Q2 ⊆ A such that EA(yk,r) ∈ Kw
Q2

(yk,r),
for all r. This will give condition (i). We complete the construction by letting Mk+1 be
the von Neumann algebra generated by Q0, Q1, Q2, Uk+1, Mk and EA(Mk). �

We are now in a position to compute the cohomology groups Hn(N, N), where N is a
general type-II1 factor with a Cartan subalgebra. Note that, for any such N , associated to
each finite set F ⊆ N is the separable von Neumann algebra MF ⊆ N which it generates.
Thus, every such II1 factor N satisfies the hypothesis of Proposition 3.1. This leads to
our main theorem.

Theorem 3.2. Let N be a type-II1 factor with a Cartan subalgebra A. Then
Hn(N, N) = 0 for all n � 1.

Proof. Since the case when n = 1 is the Kadison–Sakai result, we assume that n � 2.
We refer the reader to the proof of the separable case in [12]. Let φ : Nn → N be a
cocycle, which we may assume to be separately normal. By Proposition 3.1, for each finite
set F ⊆ N , there exists a separable subfactor NF such that MF ⊆ NF ⊆ N , NF ∩ A is
Cartan in NF and φ maps (NF )n into NF . Denote the restriction of φ to NF by φF . By
the separable case, φF is a coboundary, i.e. there exists an (n − 1)-linear and bounded
map ψ : (NF )n−1 → NF such that φF = ∂ψF . Moreover, there is a uniform bound
on ‖ψF ‖; we confine this argument to the end of the proof. Let EF : N → NF be the
conditional expectation. Define θF : Nn−1 → N by θF = ψF ◦ (EF )n−1. Order the finite
subsets of M by inclusion. Because ‖ψF ‖ is uniformly bounded, so is ‖θF ‖. Now, for any
(n− 1)-tuple (x1, . . . , xn−1) ∈ Nn−1, {θF (x1, . . . , xn−1)}F is a bounded net, as F ranges
over all finite sets containing x1, . . . , xn−1. This has an ultraweakly convergent subnet
(which we also denote by {θF (x1, . . . , xn−1)}F ), by ultraweak compactness of bounded
subsets of N [9, Chapter 7]. Define θ : Nn−1 → N by

θ(x1, . . . , xn−1) = lim
F

θF (x1, . . . , xn−1).

Then θ is clearly (n − 1)-linear, and bounded by the uniform bound on ‖θF ‖. We claim
that φ = ∂θ. Let (x1, . . . , xn) ∈ Mn. Then

φ(x1, . . . , xn) = φF (x1, . . . , xn) = ∂θF (x1, . . . , xn),
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for all finite sets F containing x1, . . . , xn. Ordering these sets by inclusion, we will obtain
a subnet {θF } such that ∂θF (x1, . . . , xn) converges weakly to ∂θ(x1, . . . , xn). Passing to
limits in the above equality gives φ(x1, . . . , xn) = ∂θ(x1, . . . , xn). This proves the claim,
and the result follows.

It remains to be shown that there is a uniform bound on the norms of the maps ψF ,
constructed above. It suffices to obtain an estimate for each of these maps in terms of n

and ‖φF ‖, since the latter quantity is dominated by ‖φ‖ for all F . We drop the index F ,
since it plays no further role in the proof.

Now M will denote a separable II1 factor with Cartan masa A. By [12, Theorem 2.2],
there is a hyperfinite factor R such that

A ⊆ R ⊆ M and R′ ∩ M = C1.

Let φ : Mn → M be a separately normal cocycle. We will show that φ is the image under
∂ of an (n−1)-linear map whose norm is at most K‖φ‖, where K is a constant depending
only on n. By Lemma 2.3, there exists a map Ln such that θ = φ − ∂Lnφ is a separately
normal R-module map, and ‖θ‖ � l(n)‖φ‖, where l(n) is a constant depending only on
n. Let U be a generating set of unitaries for M . Then the weak closure of C∗(U) is M .
Let φC : C∗(U)n → M denote the restriction of φ. The proof of the separable case gives
θ = ∂α, where α : C∗(U)n−1 → M is (n − 1)-linear and has norm at most

√
2‖θ‖. Then

φC = θ + ∂ζ = ∂(α + ζ),

where ζ denotes the restriction of Lnφ to C∗(U)n−1. Write ψ for α + ζ. Then, by the
method above, there exists a constant K(n) such that

‖ψ‖ � K(n)‖φ‖.

We now wish to extend the equality φC = ∂ψ to one involving maps defined on M , while
preserving the latter norm estimate. Applying the map Vn from Lemma 2.5 to both sides
of the above equality, we get

VnφC = Vn(∂ψ) = ∂(Vn−1ψ).

Because the separately normal map φC extends uniquely to φ on M , this yields φ =
∂(Vn−1ψ). The map Vn−1ψ is in Ln−1

w (M, M), and ‖Vn−1ψ‖ � K(n)‖φ‖. This gives the
required norm estimate, completing the proof of the theorem. �

Acknowledgements. The author thanks Roger Smith for his patient guidance
throughout the work on this paper.

References

1. E. Christensen, Subalgebras of a finite algebra, Math. Annalen 243 (1979), 17–29.
2. E. Christensen, E. G. Effros and A. M. Sinclair, Completely bounded multilinear

maps and C∗-algebraic cohomology, Invent. Math. 90 (1987), 279–296.

https://doi.org/10.1017/S0013091507000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000053


Hochschild cohomology of II1 factors with Cartan masas 295

3. E. Christensen, F. Pop, A. M. Sinclair and R. R. Smith, Hochschild cohomology
of factors with property Γ , Annals Math. 158 (2003), 635–659.
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