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Abstract

A thin set is defined to be an uncountable dense zero-dimensional subset of measure zero and Hausdorff
measure zero of an Euclidean space. A fat set is defined to be an uncountable dense path-connected subset
of an Euclidean space which has full measure, that is, its complement has measure zero. While there are
well-known pathological maps of a set of measure zero, such as the Cantor set, onto an interval, we show
that the standard addition on R maps a thin set onto a fat set; in fact the fat set is all of R. Our argument
depends on the theorem of Paul Erdős that every real number is a sum of two Liouville numbers. Our thin
set is the set L2, where L is the set of all Liouville numbers, and the fat set is R itself. Finally, it is shown
that L and L2 are both homeomorphic to P, the space of all irrational numbers.
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1. Proofs from the book

The Preface of the book ‘Proofs from The Book’ [1] begins ‘Paul Erdős liked to talk
about The Book, in which God maintains the perfect proofs for mathematical theorems
. . . you need not believe in God but, as a mathematician, you should believe in The
Book.’ Erdős was very enthusiastic about Aigner and Ziegler writing [1], which they
dedicated to Erdős and to which Erdős made many suggestions. The aim in this paper
is to give an elegant proof that a thin set can be continuously mapped onto a fat set.

2. Thin sets and fat sets

There are many measures of the thinness of a set. When considering subsets of
Euclidean space, Lebesgue measure zero is one measure of thinness. Another measure
of thinness is that the set is zero-dimensional [9], that is, its topology has a basis of
open and closed sets. If C denotes the usual middle-third set in R, then it is easily
seen that C is measure zero and is zero-dimensional. Further, by [11, Theorem 1.5.10],
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every compact separable metrisable space is a continuous image of C. In particular,
the unit interval [0, 1], which has Lebesgue measure 1 in R and is path-connected, is a
continuous image of C.

Another measure of thinness is Hausdorff measure 0. The related Hausdorff
dimension and Hausdorff measure are discussed in [7, 9]. The Hausdorff dimension of
a countable set is zero, of Euclidean space Rn is n and of the Cantor set C is log 2/log 3.
So in this sense, the Cantor set is not thin.

We now define our notion of thinness. A subset of Euclidean space is said to be
thin if it is an uncountable dense zero-dimensional set of measure zero and Hausdorff
measure zero. An uncountable dense path-connected subspace of Euclidean space is
said to be fat if it is a subspace of full measure, that is, its complement has Lebesgue
measure zero.

3. Spaces homeomorphic to the space of irrational numbers

Recall that a topological space X is said to be topologically complete (or completely
metrisable) if the topology of X is the same as the topology induced by a complete
metric on X. Of course, every complete metric space is topologically complete.

We denote by P the set of all irrational real numbers with the topology it inherits
as a subspace of the Euclidean space R. Theorem 3.1 from [11, Theorem 1.9.8] is a
beautiful characterisation of the topological space P.

THEOREM 3.1. The space of all irrational real numbers P is topologically the unique
nonempty, separable metrisable, topologically complete, nowhere locally compact and
zero-dimensional space.

This has a corollary, [11, Corollary 1.9.9], which is usually proved using continued
fractions.

COROLLARY 3.2. The space P is homeomorphic to the Tychonoff product Nℵ0 of a
countably infinite number of homeomorphic copies of the discrete space N of positive
integers. Hence, P × P is homeomorphic to P.

These results and a similar one [11, Theorem 1.9.6] characterising the space Q of
all rational numbers with its Euclidean topology are used in [5, 8] to describe the
transcendental groups and the topological transcendental fields.

Recall that a subset X of a topological space Y is said to be a Gδ-set if it is a
countable intersection of open sets in Y. A subset X of a topological space Y is said to
be an Fσ-set if it is a countable union of closed sets. A subset X of a topological space
Y is a Gδ-set if and only if its complement is an Fσ-set. We see immediately that in a
metric space such as R, the set T of all transcendental real numbers is a Gδ-set as its
complement is the countably infinite set A of all real algebraic numbers.

Now we connect the notions of Gδ-set in R and the property of being topologically
complete. The next theorem is [11, Theorem A.63].
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THEOREM 3.3. A subset of a separable metric topologically complete space is a Gδ-set
in that space if and only if it is topologically complete.

COROLLARY 3.4. The space T of all real transcendental numbers is homeomorphic
to P and to Nℵ0 .

REMARK 3.5. We mention in passing that the above corollary remains true if the space
T of all real transcendental numbers is replaced by the space of all transcendental
complex numbers. We also mention that the space of all algebraic real numbers and
the space of all algebraic complex numbers are both homeomorphic to the space Q of
all rational (real) numbers.

4. The set L of all Liouville numbers

In 1844, Joseph Liouville proved the existence of transcendental numbers [2, 3]. He
introduced the set L of real numbers, now known as Liouville numbers, and showed
that they are all transcendental. A real number x is said to be a Liouville number if for
every positive integer n, there exists a pair of integers (p, q) with q > 1 such that
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It is known [3, 6] that the set L has cardinality c, the cardinality of the continuum,
and is a dense Gδ-set in the space R of all real numbers. Clearly, the space L is
zero-dimensional and thus the product space L2 is also zero-dimensional.

The following Theorem 4.1 follows by combining Theorems 3.3 and 3.1 and
Corollary 3.2.

THEOREM 4.1. The spaces L and L2 are both homeomorphic to P.

REMARK 4.2. As pointed out in [4], the Jarnik–Besicovitch theorem says that the
set L of Liouville numbers has Hausdorff 1-dimensional measure 0. This implies
that L2 has Hausdorff 2-dimensional measure 0, since if d is a positive integer, the
d-dimensional Hausdorff measure on Rn is simply a rescaling of the n-dimensional
Lebesgue measure. See also [10, Theorem 2.1].

REMARK 4.3. The spaces L and L2 are thin sets.

5. Mapping a thin set onto a fat set

Finally, in this section, we give the elegant proof that a thin set can be mapped
continuously onto a fat set.

In 1962, Paul Erdős proved Theorem 5.1 in [6].

THEOREM 5.1. Every real number is the sum of two Liouville numbers and is also the
product of two Liouville numbers.

The desired Theorem 5.2 follows immediately from Theorem 5.1 and Remark 4.3.
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THEOREM 5.2. Let f : R2 → R be the addition map f (x, y) = x + y. Then f is a
continuous homomorphism which maps the thin set L2 onto the fat set R.

REMARK 5.3. The referee has pointed out that Theorem 5.2 can be easily generalised
using the method of [10, Theorem 2.1] to obtain a continuous homomorphism from
Rn+1 to Rn which surjects Ln+1 onto Rn.
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