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A NOTE ON THE CIRCLE ACTIONS ON EINSTEIN MANIFOLDS

SEUNGSU HWANG

A fundamental result in the theory of black holes due to Hawking asserts that the
event horizon of a black hole in the stationary space-time is a 2-sphere topologically.
In this article we prove the Riemannian analogue of Hawking's result. In other words,
we prove that each bolt of a 4-dimensional complete noncompact Einstein manifold
of zero scalar curvature admitting a semifree isometric circle action is a 2-sphere
topologically. We also study the structure of the orbit space of an Einstein manifold
admitting a free isometric circle action.

I. INTRODUCTION

Let {M4,g) be a complete 4-dimensional Einstein manifold admitting a semifree
isometric S1 group action. A metric g on a manifold M4 is called Einstein if the Ricci
curvature is proportional to the metric g; in other words,

for some constant A. A group action is called semifree if it is free away from its fixed-point
set. Let M3 be a 3-dimensional space of non-trivial orbits of the isometric action. Then
we have a Riemannian submersion -K : M4 —*• M3, and the metric g can be written as

where g is the metric on M3 and 6 is a connection 1-form on the S1 -bundle. The manifold
M4 can roughly be considered as a principal S^bundle over M3.

Let F = U Fi be a decomposition of the set of fixed points of an isometry into its

connected components. Kobayashi [8] and Gibbons and Hawking [4] showed that each
Fi is either a 2-dimensional surface Bit called a bolt, or an isolated point Ni, called a
nut. Since the action is semifree, it is easy to see that M3 is a manifold with boundary
dM3 = |J Bi = F \ |J Ni without orbifold singularities. A simple example of a bolt is the

i i

horizon 2-sphere of the Riemannian Schwarzschild manifold with the isometric S1 group

Received 4th April, 2000
This work was supported by the Brain Korea 21 Project

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 SA2.00+0.00.

83

https://doi.org/10.1017/S0004972700019134 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019134


84 S. Hwang [2]

action, the periodic group of imaginary time translations. There are spaces with both
bolts and nuts. The simplest example is CP2. It has a natural S1 group action, with a
bolt consisting of a CP1 and a nut at the cut locus of the bolt.

If our metric g is of zero scalar curvature, in other words, A = s/4 = 0 with scalar
curvature s, it becomes the Riemannian version of the Lorentzian stationary metric. A
fundamental result in the theory of black holes due to Hawking asserts that, in the steady
state limit, the spatial boundary of a black hole in the stationary space-time is a 2-sphere
topologically [5]. The purpose of the present paper is to show that the Riemannian
analogue of Hawking's result holds. Our main result states that, playing the role of
the spatial boundary of black holes, each bolt of (M4,g) of zero scalar curvature has a
2-sphere topology. More precisely, we prove the following result:

MA IN THEOREM . Let M4 be a ^dimensional complete noncompact Einstein man-
ifold of zero scalar curvature admitting a semifree isometric circle action. Suppose that
the set F of Sxed points is compact. Let fi C M3 be a neighbourhood of F such that
dQ, = (\J Bi j U dQ.E, where d£lE is mean convex, oriented, and has at least one 2-sphere

component. Then d£lE is connected, each bolt Bi is a 2-sphere topologically, and fi is
diSeomorphic to a closed 3-baIi minus k open 3-balls, where k is the number ofBi.

For a 4-dimensional compact Einstein manifold admitting a semifree isometric circle
action, see [4]. As an application of the Main Theorem, we have the following Theorem:

THEOREM 1 . Let M4 be an oriented 4-dimensional compact Einstein manifold of
positive scalar curvature admitting a free isometric circle action. Suppose that the orbit
space M3 is oriented. Then H2(M

3,Z) = 0. In particular, the first Betti number of M3

is zero.

This is comparable with Bochner's result which asserts that if r > 0, then the first
Betti number of Mn must be zero. On the other hand, since it is easy to see that the
above construction can be generalised to an n-dimensional Einstein manifold, we have
the following Theorem:

THEOREM 2 . Let Mn, n ^ 3, be an n-dimensional compact Einstein manifold
of positive scalar curvature admitting a free isometric circle action. Then an embedded
oriented stable minimal hypersurface £ in M""1 is totally geodesic.

REMARK 1. (1) In our Main Theorem, the assumption that our circle action is semifree
is necessary in order to avoid the orbifold singularities occurring in the orbit space.
Otherwise, there might be orbits with non-trivial finite cyclic isotropy, and M3 may have
orbifold singularities in the interior. For example, one can construct an S1 group action
on a manifold M4 with the multi-Eguchi-Hanson metric such that the orbit space M3 is
an orbifold and is singular along a sequence of line segments. In the present paper, we
restrict our considerations to semifree actions only.

(2) There is difficulty in the adaptation of Hawking's proof to our case, since his proof
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depends on physical consideration. Our Main Theorem is a generalisation of Galloway's

result for static Lorentzian metric [2]. A static metric is a special case of a stationary

metric. Galloway mentioned that he would pursue the study of Lorentzian stationary

metrics. Our Main Theorem is concerned with the Riemannian version of such met-

rics. In fact, it is closely related to the Riemannian Kerr metric uniqueness conjecture,

which states that if our metric, which is Einstein and of zero scalar curvature admitting

an isometric circle action, is asymptotically flat, it is isometric to a Riemannian Kerr

metric. A resolution of this conjecture will help us to understand a characterisation of

higher dimensional Einstein manifolds of zero scalar curvature. Our Main Theorem is

an affirmation of the conjecture by showing that such a metric has a simple topological

structure under a natural boundary condition. In the spirit of the uniqueness theorem

[6], we would like to pursue the study of this conjecture in the future.

II . T H E P R O O F O F M A I N T H E O R E M

This section is devoted to the proof of two lemmas first and then to the proof of our

Main Theorem. Let A be a (2,1) tensor field on M whose values on vector fields E\, £-2

are given by

ABlE2 = UD-HBiVEt + VDnBinE2.

Here U is the horizontal distribution of the Riemannian submersion n and V the vertical
distribution of it. The tensor field A is related to the obstruction to integrability of the
horizontal distribution of the submersion TT. If the tensor field A vanishes identically on
Mn, the base space Mn~l is, at least locally, a submanifold of Mn.

In the present paper, we denote by r the Ricci curvature of M", f the Ricci curvature
of M71"1, s the scalar curvature of Mn, and s the scalar curvature of Mn~l. By definition,
F = /i~x(0). The following lemma describes the behaviour of the norm h of the Killing
vector field.

LEMMA 1. On the space Mn~l \ F, we Aave t ie following equations:

(1) A§h-{\A\2-r(U,U))h = 0

(2) f(X, Y) = r(X, Y) + 2(AXU, AYU) + Ddh^Y">

(3) s • ir = 3\A\2 + s- 2r(U,U)

where U is a unit vertical vector Geld.

REMARK 2. In Lemma 1, we only assume that Mn admits an isometric S1 group action,
and do not impose any conditions on the Ricci curvature. Compare the equations (l)-(3)
to the stationary metric equations of [1, (1.3), (1.4) and (1.13)].
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P R O O F : By definition, a unit vector field U is in the vertical subspace Vx at x in M.
We denote by X and Y horizontal vector fields. Let Xi for i = 1 , . . . , n — 1 be a (local)
orthonormal basis of the horizontal subspace Hx at x in M, such that DxtXi = 0. The
basic formula for the Riemannian submersion gives

(4) S-TT = S+\A\2 + \T\2 + \N\2 + 26N

where T is a (2,1) tensor field on Mn and N a mean curvature vector field. Equation (3)
may be proved by substituting the following two equations into (4):

(5) 6N = -($T)(U, U) = \A\2 - \N\2 - r(U, U)

and

(6) \T\2 - \N\2 = YsiVDuXi, TvXi) - £ ( * , UDVU? = 0.
t

Since the Killing vector field K for the isometric S1 group action is vertical by definition,
we have

~2 Y(D K X)X ]T X(h)X(7) N = UDVU = h~2 Y,(DK, K, Xi)Xi = ~ ]T Xi(h)Xi =
t=i t=i

Substituting (7) into the definition of SN, we have

(8)

Equation (1) may be obtained by substituting (7) into (5) and then equating (5) and (8).
Finally, (7) gives

(9) DXN = ^r-dh - ^~- and TVX = -{N, X)U =

Equation (2) follows from (9) and the following equation for the Riemannian submersion

f(X, Y) = r(X, Y) + 2(AXU, AYU)

-\({DXN, Y) + (DYN, X)) + (TX, TY).

D
As a corollary to Lemma 1, we have the following result, see [6]:

COROLLARY 1 . Let Mn be an n-dimensional complete noncompact Einstein
manifold of zero scalar curvature admitting a free isometric circle action. Suppose
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that there exists a compact set K C Af""1 such that there is a C°° diffeomorphism
$ : M"-1 \ K -> R""1 \ Bi(0) which satisfies

where ^ is the standard metric on R""1 and

Here, C1^ is defined as usual, see [3]. Then M" is isometric to M""1 x S1.

The following Lemma 2 is needed in the proof of the Main Theorem. This lemma
determines the structure of a neighbourhood of a compact minimal hypersurface E of
least area locally in M3. It will be presented in an n-dimensional version.

LEMMA 2 . Let AT* bean n-dimensional Einstein manifold of non-negative scalar
curvature admitting a semifree isometric circle action. Suppose that dMn~l is compact.
If there is a compact oriented Tninirnnl hypersurface E in M " ' 1 \ dM*'1 which is of least
area locally, and if the norm h of the Killing vector field is strictly positive on E, then E
is totally geodesic and A vanishes identically in a small neighbourhood of E.

P R O O F : Let v be a smooth unit normal along E. Using the conformally related
metric fif2 = (j>~zg for any positive function <j>, we define a variation u ->• Eu of E = Eo

in X""1. Let E : (—e, E ) X E - > X"'1 be the normal exponential map of E with respect
to the metric g~. In other words, E(u,q) = 79(u), where 7, is the ^-geodesic satisfying
79(0) = q and 7^(0) = <j>{q)vq- Choose e sufficiently small so that E is a diffeomorphism
onto U = E((—E,E) x E) and U does not contain AT<. Then for each u € (—e,e), define
the normal geodesic to E u = E(u, S) = {E(u, q) : q € E} . Then Eu is the hypersurface
obtained by pushing out along the normal geodesies to Eo = E in the metric. We denote
by II the second fundamental form and m the mean curvature of Ev, having the positive
sign on a sphere in Rn for the outward normal vector field. In our metric g = 4>~2g, we
have, for an orthonormal basis {e"i, ...,ei,_i} with Dpe\ = 0,

( , ej)) = &&, v, ej, v

Hence, using

we have in the original induced metric
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where o is the Kulkarni-Nomizu product with v = <f>v, ei = fa for t = 1,..., n — 1, and

— = v = <}>v. Taking the trace of both sides of (10),
ou

(11) ~ = <f>r( 2

On the other hand, equation (2) gives

(12) *•(„,*) = £
n

FVom (11) and (12) with <f> = ft > 0, we have

(13) - ^ = -ft + 2h\AvU\2 + Ddh(v, v) + h\II\2 + Ajv ft.
ou n

Since the Laplacians As . ft and Aft are related by

(14) A f̂t = Aft - Ddh(v, V) - ~

and Aft = |A|2 — (s/n)h in virtue of (1), equation (13) with (14) becomes

(15) - A ( ^ ) = 2\AVU? + {\A\> + |7/|2 ^ 0.

Since m/h is non-increasing by (15) and m = 0 at u = 0 by the minimality of Eo = S,
we have m/ft < 0 for u € [0,e). Hence, from the first area variation formula we have

(16) S'(u)= f div(/u/)dA= / hmdA= [ ft2^ dA ̂  0

where S{u) is the area of Eu. If 5'(tio) < 0 for some u0 € [0,e), then 5(uoj < 5(0),
contradicting that So = S is of least area locally. Hence S'{u) = 0 for all u in [0,e).
Therefore we have m/h = 0 for the same u. In virtue of (16), this implies that for a
neighbourhood U of E the following equation holds:

A = 0 and II = 0, on IT n {0 ^ u < e}.

Applying the same method to the normal -v, we finally conclude that A and / / vanish
in all of U. D

Now, we are ready to prove our Main Theorem. Let Cl C M3 be a neighbourhood
of F such that dQ, = (\J BA U dClB, where d£lB is mean convex, oriented, and has at

least one 2-sphere component by the assumption. Since F is compact, the numbers of
Bi and N, are finite. In virtue of the topological Lemma of [2], Q satisfies exactly one of
the following two statements:
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(i) there is a compact minimal 2-sphere (or projective plane) £ contained in
Q \ dQ which is of least area locally, or

(ii) Q is difTeomorphic to a closed 3-ball minus k open 3-balls.

Therefore, since the statement (ii) is the conclusion of our Main Theorem, the proof of
our Main Theorem is reduced to showing the non-existence of such a surface £ in fi \ dQ.
In the present paper, we prove it by assuming the existence of such a surface and then
indicating a contradiction.

Now, assume that such a surface £ exists in Q \ dQ. The proof may be divided into

the following two cases:

C A S E I. E does not contain Ni for any i.

C A S E II . £ contains Nt for some i.

P R O O F OF C A S E I: Since F n £ # 0 by the assumption, we have h > 0 on £ . Being
a special case n = 4 of Lemma 2, / / = 0 in a small neighbourhood of E in Q. Thus in
virtue of (10) we have

(17) h-lDdhc(X, Y) = -(R(X, u)Y, v)

for tangent vectors X, Y to E. Using (17) as a key equation, it can be shown that

(18) Ddhz = iwr<te

and g?ads(h
3K) = 0, or h?K = c for some constant c, where K is the intrinsic sectional

curvature of E, see [2]. Substituting K = ch~3 into (18) and contracting, we have
As/i = ch~2. Integration of this equation over E gives c = 0, implying that K = 0. This
contradicts the fact that E is a 2-sphere topologically. Therefore there is no such surface
E in Q \ dQ, proving our Main Theorem in this case. D

PROOF OF CASE II: Let VT0 = E \ \JBro{Ni), where r0 is taken sufficiently small

so that for all points Nit the geodesic balls Bro{Ni) of radius r0 are disjoint. Since E is
of least area locally, so is Vro. It is clear that h > 0 on VTo by the definition. Therefore
we may apply the same argument as in the proof of Lemma 2 to VT0 to obtain (10)-(15).
However, the first area variation formula for Vv = Vro>1l, a manifold with boundary, is
modified to the following equations in this case:

(19) S'(u) = f div(/u/) = - f (hv,V) + [ hmdA
Jvv

 v« Javn Jvu

where T\ is the co-normal of dVu. Furthermore, since the first term of the last equality
of (16) vanishes, we may conclude that / / and A also vanish on E((—E, e) x Vro), and
h3K = conVro for some constant c. Letting r0 approach to zero, h tends to 0, and hence
we obtain c = 0. This implies that K s 0 on E, which is again a contradiction to the
fact that E is topologically a 2-sphere. Therefore, there is no such surface £ in Q \ dQ.,
proving our Main Theorem in this case, too. D
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III . T H E P R O O F OF TWO THEOREMS

In this section we prove Theorems 1 and 2 introduced in Section I.

P R O O F O F THEOREM 1. It is well known that, for n ^ 7, each element in
fln.1(M

n"1,Z) can be represented by sums of embedded, compact, oriented, and sta-
ble hypersurfaces of least area locally [9, p.51]. Let E be an area-minimising surface in
M3 representing a non-trivial element of H2{M3,Z). Then, by Lemma 2, tensors / / and
A vanishes in a small neighbourhood of E. As shown in the proof of our Main Theorem,
such a surface S does not exist. Hence, the proof of Theorem 1 is completed. D

REMARK 3. In Theorem 1 we assumed that s > 0. If s = 0, it becomes a trivial case
and M3 is flat. In general, if Mn is an n-dimensional compact Einstein manifold of
zero scalar curvature admitting a free isometric circle action, the Ricci tensor f of Mn~l

vanishes identically.

For the special case that E is of least area locally, it is clear that the proof of
Theorem 2 follows immediately from Lemma 2. Note that every locally area-minimising
minimal hypersurface is stable. The following proof is a modification of the proof of [7,
Main Theorem].

P R O O F OF THEOREM 2: Since E is clearly compact, the stability condition gives

(20) f h2 {r(v, v) + |//|2) ^ / |Vft|2 = f -hAsh
JZ JZ JZ

where |V/i| is a norm by the induced metric on E. On the other hand, from (12), (14),
and (1), we have

(21) f h2r{u, v)= f 2\AvU\2h2 + \A\2h -
Jz Jz

Substitution of (21) into (20) gives

(22) / 2\AvU\2h2 + \A\2h + h2\II\2 < 0.
Jz

Since h > 0 on E, (22) implies that A and / / vanish on E. D
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