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Transversals with Residue in Moderately
Overlapping T(k)-Families of Translates

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Aladár Heppes

Abstract. Let K denote an oval, a centrally symmetric compact convex domain with non-empty inte-

rior. A family of translates of K is said to have property T(k) if for every subset of at most k translates

there exists a common line transversal intersecting all of them. The integer k is the stabbing level of the

family. Two translates Ki = K + ci and K j = K + c j are said to be σ-disjoint if σK + ci and σK + c j are

disjoint. A recent Helly-type result claims that for every σ > 0 there exists an integer k(σ) such that if

a family of σ-disjoint unit diameter discs has property T(k)|k ≥ k(σ), then there exists a straight line

meeting all members of the family. In the first part of the paper we give the extension of this theorem

to translates of an oval K . The asymptotic behavior of k(σ) for σ → 0 is considered as well.

Katchalski and Lewis proved the existence of a constant r such that for every pairwise disjoint

family of translates of an oval K with property T(3) a straight line can be found meeting all but at

most r members of the family. In the second part of the paper σ-disjoint families of translates of K are

considered and the relation of σ and the residue r is investigated. The asymptotic behavior of r(σ) for

σ → 0 is also discussed.

1 Introduction

Helly type problems for line transversals of families of convex domains have been

studied by a number of authors. The interested reader is referred to the survey papers
[9, 11, 17, 23]. In the present note finite families of translated copies of a compact

convex domain are considered in the Euclidean plane.

1.1 Definitions and Notations

Throughout the paper the term oval will be used for a centrally symmetric com-

pact convex domain in the plane with non-empty interior. (It is well known that

the assumption of central symmetry is no restriction when transversal problems are
considered in the plane.) Let K be an oval centered at the origin O and

F = {Ki = K + ci , i = 1, . . . , n}

a family of a finite number of translated copies, translates, of K . Then C = {ci, i =

1, . . . , n} denotes the set of the centers. The term K-distance and notation |p − q|K
will be used for the distance of points p and q measured in the norm induced by K .
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The width w(X), (K-width wK (X)) of a closed set is the minimum of the distances
(K-distances) of pairs of parallel support lines of X. The diameter (K-diameter) of a

closed set is the maximum of the distances (K-distances) between pairs of points in
the set.

Family F is a T-family (or it has property T) if there exists a straight line, a

transversal, intersecting all members of F. We say F is a T(k)-family (it has prop-
erty T(k) ) for some integer k ≥ 3, if every subfamily of at most k members of F has

property T. We also say that the family has stabbing level k. F is a T-family if and

only if the set of the centers can be covered with a strip of K-width 2.
If for families of some type T(k) implies T, but T(k − 1) does not, we say that

families of that type have transversal Helly number k. A family is said to have property
T − r if a straight line exists that intersects all but r members of the family. The (non-

negative) integer r is called the transversal residue or residue for short.

For a real number σ > 0 let σX denote a set obtained by scaling set X by factor
σ. Here, σK is also called the σ-core of K . (For σ > 1 the core is larger than K .)

Two translates K ′
= K + c ′ and K ′′

= K + c ′′ are σ-disjoint if σK + c ′ and σK + c ′ ′

are disjoint, and family F is a packing if its members are mutually disjoint. F is a σ-
packing if the σ-cores of its members form a packing, i.e., if its members are mutually

σ-disjoint. If two σ-cores are disjoint, then the K-distance of their centers is more
than 2σ.

The notion of σ-packing is closely related to that of the t-disjointness of families,

used in [3] for families of discs of unit diameter. Two discs are said t-disjoint, t > 0,
if their centers are more than t apart [3]. Leaving the realm of Euclidean norm, the

notion of σ-packing seems to serve better the general case discussed here.

In Section 2 a few related known theorems are listed. The goals of the investigation
and the attained new results can be found in Section 3. Section 4 is devoted to the

proofs.

2 Known Results

From the many results connected with transversal Helly numbers we cite only those

which are most related to the topic discussed here.

2.1 Families of Disjoint Translates

At first the research was directed to families of disjoint special objects, like congruent

discs and translates of a square. In 1957, Danzer [7] proved that the transversal Helly

number of families consisting of disjoint congruent discs is 5.

Theorem 2.1 In a finite family of n ≥ 5 pairwise disjoint congruent discs T(5) ⇒ T.

In the following year, Grünbaum proved an analogous theorem for squares [12].

Theorem 2.2 In a finite family of n ≥ 5 pairwise disjoint translates of a square

T(5) ⇒ T.

Both theorems are sharp in terms of the stabbing level, i.e., T(4) 6⇒ T (see Fig-

ure 1(a)). Simple examples show that the requirement of disjointness cannot be
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390 A. Heppes

(fully) dropped from these theorems without losing property T. (For the case of
discs, see Figure 1(b)). However, families of overlapping objects have not been inves-

tigated for a long period of time.

(a) (b)

Figure 1

In his 1958 paper, Grünbaum conjectured that these results could be extended to
families of disjoint translates of an arbitrary oval [12].

Grünbaum’s Transversal Conjecture In a finite family of n ≥ 5 pairwise disjoint

congruent copies of an oval T(5) ⇒ T.

As there was no progress reported for a long time, a relaxed form of this conjecture
was also published later [21].

The Weak Conjecture of Grünbaum There exists a universal integer k0 ≥ 5 such

that T(k0) ⇒ T in any finite family consisting of at least k0 mutually disjoint copies
of an oval K .

The weak conjecture of Grünbaum was first verified by Katchalski [19] in 1986.

Theorem 2.3 In a finite family of n ≥ 128 disjoint translates of an oval K, T(128)
implies T.

Finally the original conjecture, i.e., the k0 = 5 case, was proved by Tverberg [22].

Theorem 2.4 In a finite family of n ≥ 5 disjoint translates of an oval K, T(5) im-

plies T.

2.2 σ-Packings of Translates

Recently, while investigating families of moderately overlapping unit diameter discs

(σ < 1), more exactly the relation between t-disjointness and property T(k) in fam-
ilies consisting of unit diameter discs, Bezdek, Bisztriczky, Csikós, and Heppes [3]

proved that for every positive real number t > 0, t-disjoint families of unit diam-

eter discs have a finite transversal Helly number k(t). In other words, it has been
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proved that to ensure property T a “lower level of disjointness” can be compen-
sated by the requirement of a higher stabbing level and vice versa. The decreasing

step function k(t) is fully described by the sequence of its points of discontinuity
tk = inf(t|k(t) ≤ k), k ≥ 3. The cited result [3, Theorem 4.3], rephrased in our

terminology, is the following.

Theorem 2.5 Let 0 < σ < 1 and F a finite σ-packing of unit discs. If k ≥ 5 and

2σ(k − 3) > v1 =

√
8 + 4

√√
3 − 1 = 6.2508 · · · , then T(k) ⇒ T.

Using the notation σk = inf(σ|k(σ) ≤ k), a simple lower bound for σ, based

on regular (k + 1)-gonal arrangements (see Figures 1(a) and 1(b)), can also be given

[3, Theorem 2.1].

Theorem 2.6 If k ≥ 3 is odd, then

σk ≥
sin π

k+1

1 + cos 2π
k+1

,

and if k ≥ 4 is even, then

σk ≥
sin π

k+1

cos π
k+1

+ cos 2π
k+1

.

These results also clarify the asymptotic behavior of σk since the rate of the upper
bound and the lower bound tends to a value smaller than v1/π < 2. Theorems 2.5

and 2.6 imply the following.

Corollary 2.7 We have k(σ) = O(1/σ) as σ → 0 and σk = O(1/k) as k → ∞.

Unfortunately, the exact value of σk is not known for any k ≥ 5.

2.3 Transversals with Given Residue

In Theorems 2.1, 2.2 and 2.4 (due to Danzer, Grünbaum and Tverberg, respectively)

the stabbing level k = 5 cannot be lowered without losing property T. However,

Katchalski and Lewis proved the existence of a universal (K-independent) integer r

such that to every T(3)-family of disjoint translates of an arbitrary oval a straight line

can be found meeting all but at most r members of the family [20].

Theorem 2.8 There exists an integer r such that in any T(3)-family of disjoint trans-

lates of an oval K, T(3) implies T − r.

The first estimates for r were rather rough (starting with r = 603 in [20]), but

gradual improvement led to the present bound given by Holmsen in 2003 [16].

Theorem 2.9 In any T(3)-family of disjoint translates of an oval K, T(3) implies

T − 22.

In the special case when K is a disc much more is known. In 1991 A. Bezdek

supplied the lower bound r ≥ 2 for discs by construction [2].
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Theorem 2.10 In a family of n ≥ 6 pairwise disjoint congruent discs, T(3) does not

imply T − 1.

Recently, expanding Kaiser’s method [18] to show that r ≤ 12, the author suc-

ceeded in proving the conjectured missing upper bound r = 2 [14, 15].

Theorem 2.11 In a family of n ≥ 6 pairwise disjoint congruent discs, T(3) implies

T − 2.

The gap between the stabbing levels k = 3 and k = 5 has also been attacked. The
lower bound r ≥ 1 for T(4)-families of discs is due to Aronov, Goodman, Pollack,

and Wenger [1].

Theorem 2.12 In a family of n ≥ 6 pairwise disjoint congruent discs, T(4) does not

imply T.

The k-sharp upper bound was given by Bisztriczky, Fodor, and Oliveros [4–6].

Theorem 2.13 In a finite family of n ≥ 6 pairwise disjoint congruent discs, T(4)
implies T − 1.

Theorems 2.1, 2.10, 2.11, 2.12, and 2.13 provide a complete set of k-sharp Katchal-

ski–Lewis type results for the residue in families of disjoint discs with any reasonable
stabbing level.

Corollary 2.14 In a family F of n ≥ 6 pairwise disjoint congruent discs, T(5 − r)
implies T − r, and T(5 − r − 1) does not imply T − r, 0 ≤ r ≤ 2.

Let it be mentioned that none of the three upper bound theorems are proved to

be sharp considering disjointness, and at least one of them, Theorem 2.11, keeps
holding for families of slightly overlapping discs indicating that disjointness might

be an artificial condition in terms of transversal Helly-numbers.

3 New Results

Our goal in the present paper is to study the relation between the three essential
parameters: the stabbing level k ≥ 3, the (packing) factor σ ≤ 1 and the residue r ≥ 0

in σ-packings of translates of an oval K . To any feasible pair of the integer parameters
k and r, a critical factor value σ(k,−r) can be defined such that if σ > σ(k,−r), then

T(k) ⇒ T − r (for any oval K) and if σ < σ(k,−r), then T(k) 6⇒ T − r (for at

least one particular oval). The first question, of course, is whether such a universal
K-independent critical value really exists for every pair of k ≥ 3 and r ≥ 0. If for

some triplet σ, k, and r the relation T(k) ⇒ T−r holds, then an increase in any of the

three parameters improves the conditions and thereby might admit some relaxation
in one or both of the other parameters.

We wish to give lower and upper bounds on the values in this “σ(k,−r)-table”. In
the following the two boundary lines of the table, the r = 0, k ≥ 3 row and the k = 3,

r ≥ 0 column will be considered. In the first row of the table σ(k,−0) ≤ 1 for k ≥ 5

(Theorem 2.4), and in the first column σ(3,−r) ≤ 1 for r ≤ 22 (Theorem 2.9). Our
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goal is to improve these bounds in the σ ≤ 1 range. (By setting the upper bound
σ ≤ 1, the method we are following excludes from further study a finite part of the

first row (k ≤ 26) and a finite part of the first column (r ≤ 35).)

Theorem 3.1 is a generalization of Theorem 2.5 from σ-packings of discs to

σ-packings of translates of an oval.

Theorem 3.1 Let 0 < σ ≤ 1, F a finite σ-packing of translates an oval K, and let

w denote the width of the narrowest strip covering the centers in F. Let k be an integer

fulfilling the inequality

(3.1) (k − 7)σ ≥ 5w.

If F has more than k members and has property T(k), then it has a transversal.

This theorem has two interesting corollaries. According to a result of Eckhoff [8]
for K-width of a T(3)-family of translates holds

(3.2) wK ≤ 4.

The combination of this bound with Theorem 3.1 yields the following.

Corollary 3.2 Let 0 < σ ≤ 1, K an oval, and F a finite σ-packing of more than k

translates of K. If k fulfills the inequality (k − 7)σ ≥ 20 and F has T(k), then it has a

transversal.

(In the above terminology this theorem deals with the k ≥ 27 part of the first,

r = 0 row of the table.)

To understand the asymptotic behavior of σ(k,−0), asymptotic lower and upper

bounds are needed. Corollary 3.2 provides an upper bound and Theorem 2.6 a lower
bound for σ(k,−0), both of the same order of magnitude. Asymptotically the lower

bound is π/(2k), while Corollary 3.2 gives 20/k. Thus we have the following corol-

lary.

Corollary 3.3 σ(k,−0) = O(1/k) as k → ∞.

Next the r > 35 part of the other boundary line of the table, the σ(3,−r) column
is considered. To lay a foundation for an asymptotic analysis we give an upper bound

on the residue r in the following result.

Theorem 3.4 Let 0 < σ ≤ 1, K an oval, F a finite σ-packing of translates of K, and r

a non negative integer fulfilling the inequality r ≤ (4/σ + 2)2. Then T(3) implies T − r.

Remark. Although the existence of a σ-dependent upper bound for the residue di-
rectly follows from [20, Corollary 3], it does not give the order of magnitude. The re-

quired bound with the correct order can be derived, however, from [20, Theorem 2].

Nevertheless, the above theorem has been included in this paper for completeness
sake and to provide a concrete (and stronger) bound attained in a different way.

A lower bound for r is given in the following.
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Theorem 3.5 Let K be a unit disc. There exists a number σ∗ > 0 such that if σ < σ∗,

then r(σ) ≥ c∗/σ2, where c∗ = 0.077.

Theorems 3.4 and 3.5 describe the asymptotic as k tends to infinity.

Corollary 3.6 We have r = O(1/σ2) as σ → 0 and σk(−r) = O(1/
√

r) as r → ∞.

Remark. It is worth comparing Corollary 2.7, Corollary 3.3 and Corollary 3.6. It is

little wonder that the lower and upper boundaries of σk have the same order of mag-

nitude when σ-packing T(k)-families of discs are studied. It is more surprising that a
similar phenomenon is experienced when, instead of a single shape, common bounds

are derived for the set of all ovals. This shows that the shape of an oval basically does
not influence the behavior of the investigated parameters, at least asymptotically.

To further illustrate the nature of the problem, we mention that, while among

T(3)-families of disjoint discs the smallest residue is 2 (Theorem 2.11), for T(3)-
families of translates of a square the residue can be as large as 4.1 On the one hand,

we do not know if an oval exists for which a T(3)-family of disjoint translates has

residue r > 4 (see Theorem 2.9), on the other hand, we do not know if an oval exists
for which the guaranteed smallest residue is r = 3 or r = 1. What we do know is that

the smallest r depends on the shape of K . As a matter of fact, instead of a σ(k,−r)
table of values it would be more correct to speak of a table of intervals. It would be

desirable to determine the best and worst shape for at least a single entry of our table.

4 Proofs

First some useful tools are established to serve the proofs of Theorems 3.1 and 3.4.
Referring to standard reduction, it can be assumed that the centers of F are in

general position (for details, see [22]). In particular, all centers have different x-coor-
dinates and all pairs of centers determine different directions.

We can suppose without loss of generality that strip S, one of the strips of smallest

K-width covering all centers in F, is horizontal with boundary lines y = w/2 and
y = −w/2. As affinity does not effect the claims of these theorems we can assume

throughout the proofs that K is centered at O, inscribed into the axis-parallel square

Q of side length 2 centered at O (see Figure 2), and has the additional property that
point (1, 0) and points (a, 1), −1 ≤ a ≤ 1, as well as their symmetric counterparts,

are common boundary points of K and Q (for details, see [13]).
The first lemma is about the relation of the width and the K-width of strips.

Lemma 4.1 Let p(xp, yp) and q(xq, yq), xp < xq, be two points such that the segment

going from p to q has a finite slope s, and let S1 and S2 be two strips, each with its lower

boundary line through p(xp, yp) and its upper boundary line through q(xq, yq), and s1

and s2 denote their respective slopes.

If |xq − xp| > wK(S1) and either −1 ≤ s1 < s2 < s ≤ 1 or −1 ≤ s < s2 < s1 ≤ 1,

then wK (S2) < wK(S1).

Proof Let us consider the translate K∗
= K + (p + q)/2 and the axis-parallel square

Q∗
= Q + (p + q)/2 circumscribed about K∗. Clearly, we have wK(Si) = 2αi , where

1A. Holmsen, A transversal theorem for rectangles in the plane. Unpublished manuscript.
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Figure 2: Oval K inscribed into square Q.

αiK
∗ is inscribed into Si , i = 1, 2. The side length of α1Q∗ is 2α1. The bounds on

the values of the slopes ensure that the line through p and q intersects the vertical

sides of α1Q∗. If, in addition, the inequality |xq − xp| > 2α1 holds, then p and q

lie outside of α1Q∗. Consequently, changing the slope of S1 by tilting the boundaries

of S1 about p and q toward the center (p + q)/2 of K∗, brings the slope of the strip

closer to s. The boundary lines of S2 cut off symmetrical parts of α1K∗ together with
the points of α1K∗ lying on the boundary lines of S1 (see Figure 3). Hence α2 < α1

holds and wK(S2) < wK (S1) as claimed.

Since the centers of F are in general position, there are at most three centers on

the boundary lines of S, say, a single center, c0(0, w/2) on the upper line and at most

two centers on the lower one.
Lemma 4.1 has the following corollary.

Corollary 4.2 Suppose that c1(x1,−w/2) and c2(x2,−w/2), x1 ≤ x2, are the only

centers on the lower boundary of strip S. Then x1 ≤ w and x2 ≥ −w. (The two centers

might coincide.)

Proof Suppose that the corollary is false and either w < x1 ≤ x2 or x1 ≤ x2 < −w.
The case symmetry allows us to consider only the second case (Figure 4).

There is no center on the open half lines x > x2, y = −w/2 and x < 0, y = w/2,

respectively. Consequently, the set of all centers can be covered by a strip S ′ of slightly

Figure 3: Illustration of the case −1 ≤ s1 ≤ s2 ≤ s ≤ 1.
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Figure 4: The case x2 < −w.

Figure 5: The spine of a family.

positive slope with its boundary lines invariably going through c0 and c2, respectively.

The application of Lemma 4.1 to c0, c2, S, and S ′ as p, q, S1, and S2, respectively,

implies, with reference to |x0 − x2| > w, that wK(S ′) < w = wK (S). This would,
however, contradict the assumption that S is a strip of minimal K-width covering all

centers.

Proof of Theorem 3.1 Let σ < 1 be a positive scalar and, accordingly, k an integer

fulfilling condition (3.1).

We assume that contrary to the claim of the theorem, a counterexample exists

consisting of n ≥ k + 1 translates. Moreover, let n be the smallest such integer and F

an n-member counterexample, i.e., F has no transversal but each of its subsets of at

most n − 1 translates has one. It will be proved that such a family F cannot exist.

Since F is an assumed counterexample, for the width w = w(S), this time identical

with the K-width wK (S), we have wK (S) = w(S) > 2.

The n centers of F are convexly independent, else a center could be removed with-

out reducing the covering width of the set of all centers. Let us now order the centers

by increasing abscissas and consider the subset C
′ of the “middle” n − 4 centers re-

ceived by removing the first two centers and the last two ones and let R be the smallest

horizontal rectangle of height w and length l, a slice of strip S, covering C
′.

Next, we define the spine of the family (see Figure 5). If c1 and c2 are separated

by the y-axis then the spine is the y-axis, else it is the vertical line half way between
c0 and segment c1c2. In the second case the spine is the vertical line x = c1/2 or

x = c2/2. By Corollary 4.2 the distance to the spine and the y-axis is never larger

than w/2.
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Proposition 4.3 The length of R is at least 3w.

Proof By exploiting the fact that the points of C are convexly independent, it is easy

to see that the points of C
′ can be shifted outwards up to the boundary of R so that

the K-distances of the points do not decrease (see Figure 6). Let us denote the new

set of (n − 4) points, the vertices of a weakly convex (n − 4)-gon, by C
′ ′.

Figure 6: Length estimate for R.

The distance between two consecutive new vertices on a vertical and horizontal

sides of R is at least σ and 2σ, respectively. The new (n − 4)-gon, the convex hull of
C
′′ will have at most 4 sides cutting off the vertices of R, at most 2w/σ vertical sides,

subsets of the two vertical sides of R, and at most l/σ horizontal sides on the two
horizontal sides of R.

The inequality 4 + 2w/σ + l/σ ≥ n − 4 and condition (3.1) imply

(4.1) l ≥ 3w

as stated in Proposition 4.3.

Without loss of the generality we may assume that the distance of the spine and
the right-most point of set C

′ is at least l/2 ≥ 3w/2. Going from left to right, let

us denote the last three points of C in order of their position on the boundary of the

convex hull of C by c ′(x ′, y ′), c ′′ ′(x ′′ ′, y ′ ′ ′), and c ′′(x ′′, y ′ ′). (The middle center c ′ ′ ′

is not necessarily the right-most one.) It follows partly from (4.1), partly from the

possible position of the spine, limited by Corollary 4.2, that in all cases

(4.2) x ′ − x0 ≥ w, x ′ − x1 ≥ w, x ′ ′ − x0 ≥ w, and x ′ ′ − x1 ≥ w.

Our goal is to show that the K-width of the “reduced” set C
red received by remov-

ing c ′ ′ ′ from the original set C is larger than 2, i.e., property T(n − 1) does not hold

in C. (Notice that neither c0 nor c1 can be identical with the removed center c ′ ′ ′ since

x0 = 0 and x1 ≤ w, and x ′ ′ ′ > min(x ′, x ′ ′), i.e., c0 ∈ C
red and c1 ∈ C

red.)
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Figure 7: The reduced set of centers.

Let strip Sred be the strip of minimal K-width covering C
red and denote its slope by

sred. If property T(n− 1) is valid in the original family, then, necessarily, the K-width
of Sred is fulfilling the inequality

(4.3) wK(Sred) ≤ 2.

Clearly, strip Sred cannot include the removed center c ′ ′ ′ as c ′ ′ ′ is cut off by a

boundary line l∗ of Sred, actually by a chord of the convex hull of C, together with

at least a part of triangle c ′c ′ ′c ′′ ′. Moreover, l∗ passes through at least one center, c ′

and/or c ′′, since it has minimal width (Figure 7).

Next we prove the following.

Proposition 4.4 |sred| ≥ 1.

Proof Suppose first that Sred is not “very steep”, more exactly sred ∈ (−1, 1). Evi-
dently, Sred cannot be horizontal, because it must be different from S. Let us assume

first that sred is positive and let us denote by cu(xu, yu) the center on l∗, or that of lower

position if both of c ′ and c ′ ′ are lying on l∗, and by cv(xv, yv) the center of highest
position on the other boundary line l∗∗ of Sred. Notice that by this choice there is no

center on l∗ below cu and there is no center on l∗∗ above cv. Clearly, l∗∗ must not cut
off c0, thus xv ≤ 0 and we also have (4.2) whence in all cases

(4.4) xu − xv ≥ w.

Then, as on the other hand |yu− yv| ≤ w also holds, cu and cv are weakly separated
by a line orthogonal to Sred and passing through (cu + cv)/2. Consequently, l∗ and

l∗∗ can be slightly rotated toward the midpoint of the segment cucv, (to reduce the
slope of the covering strip), without excluding any center from the strip. By (4.3) and

(4.4) the conditions of applying Lemma 4.1 are fulfilled: the rotated strip has smaller

K-width than C
red does. However, this result is in conflict with our assumption that

the K-width is minimal for Sred.

If the slope of l∗ is negative, then the argument of the proof is the same with the

only exception that the selection of centers cu and cv on the lines l∗ and l∗∗ follows

reverse direction.
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Assume now that Sred is “steep”, i.e., sred /∈ (−1, 1). Then C
red has at least one

point on each vertical side of rectangle R (of height w and length at least 3w). These

two points must be covered by Sred. This single condition implies that the (common)
width w(Sred) of a “steep” Sred is at least

√
2w. The side length of an axis parallel

square inscribed into Sred is necessarily at least w.

Hence wK(Sred) ≥ w > 2 as claimed in Theorem 3.1.

Proof of Theorem 3.4 Suppose σ < 1 and accordingly r > 36. Let ci(xi, yi) be

the vertices on the lower half of the boundary of the convex hull H of the centers.
Let l(α) denote the lower support line of H at some vertex ci having (signed) angle

−π/2 ≤ α ≤ π/2 measured from the horizontal direction to l(α). Further let l ′(α)
and l ′ ′(α) be the parallel lines tangent to Ki and 2Ki from above, respectively. Clearly,

l ′(α) is a transversal line to all translates except to those whose centers are strictly

above l ′ ′(α). This part of strip S is cut into (at most) three parts by two vertical
lines: by definition, L(α) is the part for which x < xi − 2, R(α) is the one for which

x > xi + 2, and M(α) is the part xi − 2 ≤ x ≤ xi + 2 (Figure 8).

Following Kaiser [18], we establish that the simultaneous existence of a center in

L(α) and another center in R(α) would contradict property T(3), since each of the

three translates about these two centers and ci could be separated from the other two
by a line: two vertical lines (sufficiently close to the vertical tangents of Ki) and a

parallel line above l ′ ′ (sufficiently close to it).

The next observation is that the number kleft (kright) of centers in L(α) (R(α)) is a

left-continuous increasing (right-continuous decreasing) integer function of α. (For

α = −π/2 kleft = 0 and, with increasing α, kleft changes value when a new center
becomes an inner point of the expanding domain L(α). This expansion is continuous

while the support line is rotated about the same vertex and discontinuous when the
center of rotation changes.)

In view of these two observations, we can rely in the rest of the proof on the valid-

ity of the following.

Proposition 4.5 There exists a value α∗ for which kleft = kright = 0.

Now let line l ′(α∗) be selected as a potential transversal line. Two cases will be

Figure 8: Definition of domains L(α), M(α) and R(α).
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Figure 9: Upper bound on n(σ).

distinguished.

Assume first that the support line l(α∗) is tangent to H at a single vertex ci .

Since M(α∗) is containing the centers of all translates not met by l ′(α∗), we are

left to give an upper bound on the number n(σ) of centers in M(α∗). To give an

estimate on n(σ), observe that this number cannot be more than the number of non-
overlapping cores in a rectangle of height w + 2σ and length 4 + 2σ (Figure 9). Using

the trivial lower bound σ2/2 for the area of a core and the upper bound (3.2) for the
width w we get for the residue (in this case)

(4.5) n(σ) ≤ (4 + 2σ)2/(2σ2) = (4/σ + 2)2/2.

In the second case the support line l(α∗) is tangent to H along a side cic j .

Now there are (at most) three parts of M(α∗) to consider. Apart from the two
domains Ei and E j above 2Ki and 2K j there can be a third one, Ei j , between Ei and E j

(Figure 10) that might contain exceptional centers, centers of translates avoided by

the potential transversal line l(α∗). However, this cannot happen since any translate
about such a center could be separated from Ki and K j by a line parallel and close

to l ′(α∗) and properly chosen vertical lines could separate any of Ki and K j from the
other two translates of this triple, contradicting the assumed property T(3) of the

family.

Then in this second case, since the residue cannot be larger than the double of
n(σ) in (4.5), we have r ≤ 2n(σ) = (4/σ + 2)2 as stated.

This concludes the proof of Theorem 3.4.

Proof of Theorem 3.5 Consider a square of side length 2 and circles of radius R =

(1 − 1/
√

2) = 0.292 · · · about its vertices (Figure 11).

For an arbitrary positive σ < R/2, let n(σ) denote the maximum number of discs

of radius σ which can be packed into a circle of radius R. As is well known (see [10]),

the packing density n(σ)σ2/R2 of at least two σ-radius discs in a circle of radius R
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Figure 10: The subdivision of M(α∗).

is smaller than π/
√

12 but its value is arbitrarily close to π/
√

12 if σ is sufficiently

small.

Let R2π/
√

12 = 0.0777 · · · > c∗ = 0.077 and σ∗ > 0 a value for which n(σ)σ2 >
c∗ whenever 0 < σ < σ∗. Consider a packing P of n(σ) discs of radius σ in a
circle of radius R and copy P by translation into each of the four circles centered at

the vertices of the square. The family of the unit discs concentric with the 4n(σ)

small discs defined above is a σ-packing on one hand and has property T(3) on the
other, since every selected triple of centers is lying in the union of (at most) three of

the circles of radius R and such a triple can be covered by a strip of width 2. It is
easy to see that every strip of width 2 leaves at least one quarter of the union of the

four circles of radius R uncovered: we can assume that the angle of the strip and the

vertical diagonal of the square is at least π/4. Then the vertical chord of the strip
is not longer than the diagonal of the square. Consequently, the strip cannot cover

more than half of the union of the two circles at the ends of the vertical diagonal.

Hence the residue of every “near-transversal” of this family is at least as large as the
number of centers in P: r(σ) > c∗/σ2, as claimed.

Acknowledgement The author thanks the anonymous referee for suggestions that
improved the paper.

Figure 11: T(3)-family of discs with large residue.
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