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Abstract. The present precision of VLBI observations for the Earth rotation,
the accuracy of time measurement realised with modern atomic clocks, and the
necessity to obtain precise definition of reference systems and links between them,
imply that we compute in the near future more accurate ephemerides, based on
general relativity theory (GRT), in accordance with the recent IAU resolutions
(AU, 1992). This paper is dedicated to the presentation of semi-analytical inte-
gration of the motion of bodies in the Solar system which completes the theories
built at the Bureau des Longitudes by (Bretagnon and Francou, 1988), with some
applications in the determination of coordinate time scales links.

1. Introduction

The construction of accurate ephemerides will be of great importance in
the future to provide semi-analytical models of translation and rotation of
the planets of the Solar system, which could fill the needs of astrometric
observations, the precision of which has considerably increased. The recent
progress in this field has been made by Brumberg (1991), Damour et al.
(1991-1994) and Klioner (1993).

Let us recall that the present solutions VSOP (VSOP 82 and 87) were
obtained on the basis of Lagrange’s differential equations for the elliptic
variables. Moreover, these solutions contain the whole of the perturbations
up to the third order of the masses for all the planets from Mercury to
Neptune. For the outer planets, the solution is completed up to the sixth
order of the masses by an iterative method. The Schwarzschild relativistic
contribution to the perturbations has been also taken into account. The
accuracy of such solutions reaches several mas for the inner planets and
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less for the outer ones. In order to complete the solution VSOP87, we
integrated translatory equations of the Solar system bodies based on a
barycentric metric developed up to the fourth order in 1/c, extending the
well known Schwarzschild relativistic perturbation of the orbital motion in
taking into account all the mutual relativistic perturbations of the planets
between themselves.

This new ephemeris will be useful in determining the links between the
space-time reference systems (RS) introduced in GRT, that is the barycen-
tric RS and the planetocentric RS, both in dynamically and kinematically
non-rotating sense, including the links between coordinate time scales at-
tached to them.

2. Barycentric Metric and Equations of Motion

The space-time of GRT is the curved pseudo-Riemannian manifold des-
cribed by the quasi-Galilean metric g,g, found by solving Einstein’s field
equations with complementary boundary conditions.

We consider the post-Newtonian expansion of the barycentric metric,
9o = Nap+hap, Where 7,4 is the metric associated to the Minkovski space-
time (noo = 1, noi = 0, 7i; = —0di;), and h,g is expanded with respect to
the linearized theory (Brumberg, 1991):

o) = D et D
ARSI B DO DA
hij (t, l‘) = c—zhl(,]?) + C_4h1(~;) + C—Shg?) +...

Denoting z% and v§ = dz¥/dt = i¥ the BRS rectangular coordinates
and velocity components of any body A of the Solar system and writing

rk =zk — gk r4 = (rkrk)'/2) we have in harmonic coordinates :
() _ My,
hoo = -2 4

ey = -4, CMas +2 (ZA Qf—j"‘)z +2y, My, e
+3, s (I'AiA + 7%; (rAkA)z)

By = 4%, s P4 (d)

h(z) = 2§:A AN

(2)
Associated with the metric described above, we can construct the barycen-
tric equations of motion following Fock’s method (Fock, 1955), on the form

of perturbed motion :

GM;
- Z —57Tij + Z oM (Aijrij + Bijtij) (3)
J#i ” J#i
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TABLE 1. Mean mean motions.

Body Mercury Venus Earth Mars

nx  26087.9027370761 10213.2853878520 6283.0757525711 3340.6123749029

Body Jupiter Saturn Uranus Neptune

nk 529.6909568816  213.2990921308  74.7815974078  38.1330350465

for each body i, with :

re. ro. 2r2.

Aij = -2+ (rijkj)z + G [5M; + 4M;] %‘?j
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-
<
-
<

\ tlkeii GMe |mot ot i —imeT (l'ijrik)]

STk THGTiE Tt 2Ty ki

.. — 1 A
{ Bi; = ?7,— (4rijFi5 + rijx;)

(4)
3. Integration Method

We transformed (3) by introducing for a body the perturbative complex
variable p and the real variable w defined by the relations:

z! +i2? = a(l — p)e*?
{ 23 = qw t-» (5)

where @ is the semi-major axis, A = nt 4+ ¢ the mean mean longitude, n
being the mean motion in Table 1, z' the rectangular coordinates of the
body and 2 = —1.

Then, if we denote X, Y and Z the components of the sum of the Newtonian
and the relativistic perturbations, r? = (z!)? + (22)2 + (23)?, we obtain for
p and w a system of second-order linear differential equations which admits
the following solution:

p= Ae* — 34e™™ +inB + 3inCt — 2C
+ Z—ine‘i’\ / (3P — P)edt + zll-inei’\ / (3P — P)e~"dt

- 2in / Pdt — gn2 / / (P — P)dtdt (6)

w= De* + De™™ + %ine""\ / Werdt — %ine”‘ / We ™ dt
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where A and D are complex integration constants, B and C real ones and:

P o= —3p+P+(E-Dl-p) - FHEX i)™
W = —(%-Nw+ 52

The Keplerian part of P is of second order in eccentricity and inclination
and we use an iterative scheme to integrate equations (3). This means that
we introduce a solution of the motion of the Solar system bodies expressed
in barycentric coordinates in the right-hand side of (7) and after computing
p and w with (6), we derive a new solution with the help of (5). The
convergence of such a process has been checked.

In order to do that, the VSOPS87 solution has been transformed so
that it is expressed with TCB as time-like argument (Moisson, 1996). This
new solution refers to the inertial and dynamical equinox J2000 (TCB)
and we show, when determining the differences induced by this choice on
the precession quantities computed in (Simon et al., 1994), that this new
reference frame could be completely mixed up with the commonly used
J2000 reference frame.

4. Difference between Planetocentric and Barycentric Coordi-
nate Time Scales

Let u = TCP and t = TC B be a planetocentric and barycentric coordinate
time, respectively. The proper time of an observer being the same in both
the barycentric and the planetocentric reference system, we have :

du 1 5. 1v2 10* 3 —2 (g)v2
dt 1+3¢ h°°_§c_2_§c_4+zc h""?
1 _ 1. (2 _ vt
+5¢ *hg - g(hgo))2 +¢7°hf) " (8)

where v' are the components of the barycentric velocity of the observer.

Using the ephemeris in TC' B, we compute and integrate this relation
for Mercury, Venus, the Earth, Mars and the Moon. These differences can
be found in (Moisson, 1996) with a low accuracy. For practical applications
(planetary ranging for instance), the difference for Mars is the most intere-
sting. Indeed, the periodic part of this difference is much larger in the case
of Mars because of the eccentricity of its orbit. We give it below with all
the terms whose amplitude is greater than 0.5 us after one hundred years.
Let us write

TCB — TCPyfars = A1t + Agt? + ) _t* ) Agisin(wait + dai)-

24 1
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TABLE 2. TCP-TCB difference ~ MARS.
Periodic Part

Adai Wai dai Period Argument
{us] rd/10®> yr] [rd] [years] Me VE M J S U N
11419.44044 3340.6123  .3381 1.88 0 0 O 1 0o 0 O 0
532.34005 6681.2247 .6762 94 0 00 2 0 O 0 O
38.74814 2810.9214 2.4544 2.23 0 00 1 -1 0 0 0
37.21632 10021.8371 1.0143 .62 0 0 O 3 0 0 O 0
11.63899 —3.5231 1.9600 1783.38 0 0 4 -8 3 0 0 o0
7.33877 3127.3132 2.1814 2.00 000 1 0-1 0 O
5.15983 2281.2304 4.3087 2.75 0 00 1 -2 0 0 o0
5.25571 5621.8428 4.9046 1.11 0o 00 2 -2 0 0 O
4.07906 —398.1489 1.2076 15.78 0 01 -2 0 0 0 O
3.08301 13362.4494 1.3524 47 0 0 0 4 0 0 0 O
2.78566 213.2990 5.2467 29.45 0 00 0 O 1 0 o
2.70029 —7.1135 2.3207 883.25 0 00 0 2 -5 0 0O
2.47061 2942.4633 1.7962 2.13 0 01~-1 0 0 O O
2.45047 529.6909 5.8361 11.86 0 00 0 1 0 0 o0
2.26129 6151.5337 2.7671 1.02 0 00 2-1 0 0 O
2.22737 2544.3143 3.2318 246 0 0 2 -3 0 0 0 O
1.90053 191.4482 2.4247 32.81 010-3 0 0 0 O
1.60894 3337.0892 2.2189 18 0 0 4 -7 3 0 0 o
1.57701 -3344.1354 1.5407 1.87 0 04 -9 3 0 0 o0
1.46570 —796.2979 2.8172 7.89 0 02 -4 0 0 O 0
.84182 5092.1518 5.1842 122 0 00 2 -3 0 0 O
81155 1751.5395 4.4567 3.58 0 0 O 1 -3 0 0 0
.79643 2146.1653 4.6375 2.92 003 -5 0 0 0 O
.78895 2914.0141 3.5437 2.15 0o 00 1 0-2 0 O
75474 3265.8307 3.8644 1.92 0 00 1 0 O0-1 0
71118 3302.4793 4.0334 1.90 0 0O 1 0 0 0 -1
.63021 1059.3819 5.2301 5.93 6 00 0 2 0 0 0
.53854 74.7815 2.5184 84.01 0 00 0 O O 1 o
.50886  ~3340.5951 5.3898 1.88 0 2 0 -8 8 -6 0 0
.50885 3340.6296 6.0656 18 0 2 0 -6 8 -6 0 0
.50528 8962.4552 5.2672 2700 0 00 3 ~2 0 0 O

Poisson serie of degree 1

Aai Wai Pai Period Argument
[us) [rd/10® yr] [rd] [years] Me VE M J S U N
891.58759 3340.6123 5.1746 1.88 o 00 1 0 O 0 O
83.12462 6681.2247 5.5126 94 0 00 2 0 O 0 O
8.71706 10021.8371 5.8508 .62 6 00 3 0 O 0 O
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Then, A; = 0.971938157 x 108 and A, = 0.6 x 10~17. The coefficients
A, are reported in Table 2. In this table, w,; are given both numerically in
column two and under the form of linear combinations of the mean mean
motions given in Table 1.

5. Conclusion

We expect the above described integration process to provide solutions
ten to hundred times better than the previous semi-analytical VSOP ones.
At this level of accuracy, the choice of the time as argument used in the
ephemerides is relevant and we decided to follow the IAU resolutions in
adopting TCB. The validity of physical approximations used to develop the
barycentric metric (point masses for the bodies, no rotational model, etc.)
will be checked. This new ephemeris will be useful in deriving the links
between astronomical reference systems introduced in (Brumberg, 1995),
(Klioner, 1993), and (Kopeikin, 1991) and the rotation parameters of the
Earth (Bretagnon, 1996).
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