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HYPERCONVEX SPACES REVISITED

MARCIN BORKOWSKI, DARIUSZ BUGAJEWSKI AND HUBERT PRZYBYCIEN

In this paper we describe a construction of a large class of hyperconvex metric
spaces. In particular, this construction contains well-known examples of hypercon-
vex spaces such as R2 with the "river" metric or with the radial one.

Further, we investigate linear hyperconvex spaces with extremal points of
their unit balls. We prove that only in the case of a plane (and obviously a line)
is there a strict connection between the number of extremal points of the unit ball
and the hyperconvexity of the space.

Some additional properties concerning the notion of hyperconvexity are also
investigated.

1. INTRODUCTION

The notion of hyperconvexity of metric spaces was introduced by Aronszajn and
Panitchpakdi [2] when studying extensions of uniformly continuous transformations
between metric spaces. Their main result in this area states that a necessary and
sufficient condition which guarantees the existence of an extension of any transforma-
tion T into a metric space X with conservation of a subadditive modulus of con-
tinuity is that X be hyperconvex. Recall that the linear version of this result was
obtained by Aronszajn in 1929 ([1]) but it was never published. The recent in-
creasing interest of fixed point theory in hyperconvex spaces goes back to Sine [25]
and Soardi [28] (see also [3] for complete generality) who independently proved that
the fixed point property for nonexpansive mappings holds in bounded hyperconvex
spaces. Since then many results have been shown to hold in hyperconvex spaces (see
[3, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18, 21 , 24, 26, 27, 29]).

Prom the topological point of view a hyperconvex space is an absolute retract by a
nonexpansive retraction (see [2, Theorem 8, Corollary 4, 5, p. 422]). Hyperconvex real
Banach spaces can be treated, in view of the theorem of Nachbin and Kelley ([23, 13]),
as Stonian spaces C(K) of all real continuous functions on extremally disconnected
compact Hausdorff spaces K. Hence infinite-dimensional hyperconvex real Banach
spaces are not reflexive and both l°° and L°° are good examples of hyperconvex spaces
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(see [20]). Another type of example of these spaces are K2 with the "river" metric or
with the radial one (see [6, Lemmas 2 and 3]).

The principal topic of Section 3 is to construct a large class of hyperconvex metric
spaces. This construction uses Chebyshev subsets of a normed space endowed with
a hyperconvex metric. R2 with the "river" metric or with the radial one are special
cases of this construction. In the former case the corresponding Chebyshev subset is
{(#, y) e R2 : y = 0} and in the latter case it is {(0,0)}.

The described construction overlaps with the notion of R-trees. There exist R-
trees-which cannot be obtained using the presented construction; on the other hand, not
every hyperconvex space constructed in the described way is an R-tree. Nevertheless,
both notions are connected: if the Chebyshev subset in question is an R-tree, so is the
resulting space.

Recall also that the unit sphere in a hyperconvex real Banach space always has
an extremal point (Nachbin's conjecture; see also [13, 2]). In connection with these
classical results there arises a question, whether it is possible to state that a given
Banach space (recall here that hyperconvex spaces are always complete, see [2, Theorem
1, p. 417]) is hyperconvex by knowing how many extremal points its closed unit ball
possesses. It appears that only in the case of a line or a plane is the answer positive.
Note, however, that the case of a line is trivial while the case of a plane is much more
complicated. Section 4 of this paper is devoted to these considerations.

In the last section we investigate the notion of hyperconvexity of a given space in
connection with the diameter of each bounded subset included in it. More precisely,
it is easy to verify that hyperconvexity of a given metric space implies that each of its
bounded subsets is included in a ball of radius equal to half its diameter. In the case of
Banach spaces the converse implication holds, too (see [7]). In Section 5 we show that
this converse implication cannot be extended to metric spaces.

In the next section we include only the basic definitions and theorems concerning
hyperconvexity which will be useful in the sequel.

2. PRELIMINARIES

In this section we briefly recall the basic definitions and facts which we shall use
in the sequel.

A metric space (X, d) is called hyperconvex (or m-hyperconvex) if for any indexed
class of closed balls in this space, B{xi,Ti) for i € / (or for any such class with
card( / ) < m), satisfying the condition that d(xi,Xj) ^ r* + Tj for any i,j 6 / , the
intersection f] B(xi,rt) is nonempty. Further, a metric space (X, d) is called metrically

•6/

convex if for any two distinct points x, y € X and for some positive real numbers a, b
such that d(x, y) = a + b there exists a point z € X such that d(x, z) = a and
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d(z, y) — b. If such a point exists for any decomposition d(x, y) = a + b, a, b> 0, then
X is called totally convex. Thus, we can say that hyperconvex spaces are "the most"
metrically convex spaces.

The following property (P) (or (Pm)) is weaker than hyperconvexity (or m-
hyperconvexity). A metric space (X, d) is said to have the property (P) (or (Pm),
where m ^ 3) if for any class of closed balls (or for any such class of cardinality less
than m) such that every pair of these balls intersects, all these balls intersect.

The following characterisation was given by Aronszajn and Panitchpakdi in [2].

THEOREM. Hyperconvexity (or m-hyperconvexity) is equivalent to the property

(P) for (Pm)) and total convexity.

In the case of the property (P) (or (Pm) for m > Noj we can replace total convexity

by metrical convexity.

An R-tree (see [17]) is a nonempty metric space M, satisfying the following:

(a) any two points p,q G M are joined by a unique metric segment [p, q] (that
is, a set isometric to some interval [a, b] C R such that this isometry maps
a onto p and b onto q);

(b) if p, q, r G M then [p, q] D [p, r] = [p, w] for some w G M;
(c) if p ,q,r G M and [p,q] D [q,r] = {q} then [p,q] U [q,r] = [p,r].

Now let K be a nonempty subset of a normed space X. For each x € X we say
that y e K is a best approximation to x from K, if

\\x-y\\=mi{\\x-z\\:zeK}.

The set K is said to have the property Ux if the best approximation to x from K is
unique. Finally, K is called Chebyshev if it has the property Ux for all x G X.

Let X be a real normed space and let C C X be a Chebyshev subset. For any
x G X, we shall denote the best approximation to x from C (the "projection" of x
onto C) by xp.

Note that x = xp if and only if x G C. Moreover, any Chebyshev set C C X
has to be closed. Let us also recall that any nonempty, closed and convex subset
of a Hilbert space and any nonempty, closed and strictly convex subset of a finite-
dimensional normed space is a Chebyshev subset.

For completeness we recall the definitions of two metrics in R2. The following
metric:

where vt - (xi; j/<) G R2 for i = 1,2 is called the "river" metric in R2.
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Next, the radial metric in R2 is defined as follows:

{ p{vi, V2), if 0 = (0,0), «i, V2 are colinear,

p(vi> 0) + p(v2t 0), otherwise,
where p denotes the usual Euclidean metric in R2.

In the rest of the paper we shall denote the closed segment with the ends x, y,
that is, the set {(1 — a)x + ay : 0 ^ a ^ 1} by xy; the symbol xy~* will mean the
halfline beginning at x and containing y: xy~* — {(1 — a)x + ay : 0 ^ a}.

3. A CONSTRUCTION OF HYPERCONVEX METRIC SPACES

Let A" be a normed space and C C X be a Chebyshev subset. In this section the
following property of pairs of points x, y € X will be frequently used:

(3.1) xp = yp and x, xp, y are colinear.

Let us introduce the following

DEFINITION 3.1: Let C C X be a Chebyshev set in a normed space X and let
dc be any metric defined on C. Define d:XxX—*[0, +00) by the formula:

{ \\x — y\\, if x and y satisfy the condition (3.1)

||x - xp|| + dc(x
p,yp) + \\yp - y||, otherwise.

LEMMA 3 . 1 . A function d defined by (3.2) is a metric on X.

PROOF: The proof of this lemma is straightforward, although it is necessary to
verify several cases. Therefore we omit it. D

For convenience, we shall describe some properties of closed balls in the metric
space (X, d) described in Definition 3.1. If x £ C and r < dist(x,C), then B(x,r)

is a segment contained in the halfline beginning at xp and containing x. Further, if
any closed ball B(x, r) has a nonempty intersection with C, then B(x, r) n C is a
closed ball in (C,dc) • In what follows we also apply the observation that if x ^ C and
y € xpx, then yp = xp.

To prove that the metric space (X, d) is hyperconvex, we shall need the following
three lemmas.

LEMMA 3 . 2 . Let x£C. Then the set Sx = {y e xpx^ : yp = xp} is either the

halfline xpx~* or a closed segment xpz, for some z € xpx~*.

PROOF: We can obviously identify points of the halfline xpx~* with nonnegative
numbers. Hence let 2 = sup{y € xpx~* : yp = xp}. If z = +00, then Sx = xpx~*.
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If z < +00, then note that zp = xp. Indeed, let us consider an increasing sequence
(zn) such that zn € xpx~* for n € N and zn -» z as n —> 00. For every n € N we
have z% = x p , so d is t (z n ,C) = \\zn - x p | | . Further, dist (z n ,C) -> dist(z,C) and
||zn - xp| | -> ||z - xP|| as n -»• 00, so dist (z,C) = ||z - xp | | . As C is Chebyshev, we
have zp = xp. Hence it is enough to put Sx — zpz. D

LEMMA 3 . 3 . If x $ C belongs to a certain closed ball B~ in (X, d) such that
0, then xpxcU.

PROOF: Put B = B(xo,r). Suppose that the condition (3.1) is satisfied with
xo in place of y. Let y e xpx. Then either y 6 xox or y e xjjxo- In the first
case we have d(y,xo) = \\y — xo|| ^ ||x - xo|| ^ r and in the latter case we obtain
d(y,xo) = \\y-xo\\ ^ ||xg-xo|| < r.

Now, suppose that the condition (3.1) with xo instead of y is not satisfied. Let
y € xpx. Then y = (1 - a)x + axp for some a e [0,1] and \\yp - y\\ ^ \\xp - x||. Then
we obtain: d{xo,y) = | |xo-xp||+dc(xp,2/p) + ||j/P-j/|| ^ | |xo-xp | |+dcK,xP) + ||xP-x||
= d(xo,x) < r. D

LEMMA 3 . 4 . Let Bo = B(xo,ro) and Bx = B{x\,ri) have no common points
with C and let BQ f~l B\ ^ 0. Then BQ and B\ are segments included in SXo .

PROOF: The proof of Lemma 3.4 is obvious and therefore we omit it. D

The main result of this section is the following

THEOREM 3 . 1 . Let us assume that (C, dc), where C C X is Chebyshev, is hy-
perconvex. Then, the metric space (X, d), where d is the metric described in Definition
3.1, is also hyperconvex.

P R O O F : First we show that (X, d) is metrically convex. Let x,y £ C and x^y.
If x and y satisfy the condition (3.1), then we can set z = l/2(x + y). In any other
case it is enough to apply the metrical convexity of (C,dc) to the points xp, yp.

Now we show that (X, d) has the property (P). Let B = {B\}\€A be any family
of closed balls in (X, d) such that every pair of these balls intersects. First suppose that
one of these balls, for example, B\o — B(xo,ro) has no common points with C. Then
B\Q is a closed segment contained in S I 0 . Then for every A S A either B\ n C — 0 (in
this case B\ is also a segment contained in Sxo) or B\ f~l C ^ 0. In the latter case, by
Lemma 3.3, B\ fl SXQ is a closed segment in SXQ. Moreover, if two balls belonging to B
intersect, then their common intersection with Sxo is also nonempty. Indeed, supposing
that none of these balls is a subset of SXQ and using the fact that they have a common
point with C as well as with B\o, by Lemma 3.3 we know that x^ belongs to their
intersection. Hence, considering the family of intersections of the balls belonging to B
with Sxo , we infer that f| B~x ̂  0.
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Now assume that every ball belonging to B has a common point with C. Then
every two of these balls have a common point in C. Thus it is enough to consider a
family of intersections of balls from B with C. The proof is complete. D

REMARK 3.1. The question is if any hyperconvex metric space can be represented in the
way described in Theorem 3.1. Let us note that the topology generated by the metric
d described in Definition 3.1 is not linear and therefore the answer to this question is
negative.

REMARK 3.2. Obviously not every R-tree can be obtained in the way described in
Definition 3.1, which requires a linear structure in addition to the metric one. On
the other hand, not every hyperconvex space obtained using the described method
is an R-tree. For instance, the space described in Example 3.2 is not an R-tree.
Indeed, let us consider its subsets: A = {(x, y) G R2 : 0 < x ^ l,y = 0} and
B = {(x,y) G R2 : (0 ^ x ^ 1/2 A y = x) V (1/2 < x ^ 1 A y = 1 - x)} . It is not
difficult to see that both are metric segments joining the points (0,0) and (1,0).

REMARK 3.3. Note that every hyperconvex space with unique metric segments is an
R-tree (see [17, Theorem 3.2]). This leads to the conclusion that, with the assumptions
of Theorem 3.1, the space (X, d) described in Definition 3.1 is an R-tree if and only if
the space (C,dc) is an R-tree, too.

EXAMPLE 3.1. Let us consider M2 with the usual Euclidean norm. Then putting
C — {(0,0)} in (3.2) defines the well-known radial metric. Further, putting C

— {(x,y) G R2 : y — 0} defines the "river" metric. Hence Lemmas 2 and 3 from
[6] which state that these two metric spaces are hyperconvex follow immediately from
Theorem 3.1.

EXAMPLE 3.2. Again, let us consider R2 with the usual Euclidean norm and let C

= [—1,1] x [—1,1]. Moreover, let dc be the metric on C induced by the "maximum"

norm. In this case (R2, d), where d is defined by (3.2), becomes a hyperconvex metric

space.

EXAMPLE 3.3. Let Afj, i = l , . . . , n be subspaces of a normed space X and let Mn

= X. Assume that Mi C Mi+\ and Mj is a Chebyshev subset of Mi+i for
i — 1 , . . . , n — 1. Then we can use the Definition 3.1 (n - 1) times obtaining certain
hyperconvex metric space. For example, let us consider R3 with the usual Euclidean
metric and let C = {(0,0,0)} and M = {(ii,x2,x3) G R3 : x3 = 0}. The set C C M

is Chebyshev and thus using (3.2) we obtain a hyperconvex metric space M. Further,
M C R3 is also Chebyshev and therefore applying (3.2) again we infer that R3 with
this metric is hyperconvex.
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EXAMPLE 3.4. Let us consider the space L2 ([0,1]) of all real square-integrable func-
tions on [0,1]. Let C = {x >-+ ax + b : a, b € R} C L2([0,1]) be the subspace of all affine
functions on [0,1]. It is easy to see that C is a nonempty, closed and convex subset of
the Hilbert space £2([0,1]) , so it is Chebyshev. Let us define a norm || • || on C by the
formula: ||x >-¥ ax + b\\ — max{|a|, |6 |} . This way we obtain a space (C, || • ||) which
is isometric to the Euclidean plane with the "maximum" norm, so it is hyperconvex.
Applying Definition 3.1 we obtain a hyperconvex metric on L2([0,1]).

4. HYPERCONVEXITY AND EXTREMAL POINTS

At the beginning of this section we shall consider the linear space R2. First, we
prove the following

PROPOSITION 4 . 1 . Let || • || be a norm in R2 such that the closed unit ball in
this norm has exactly four extremal points. Then R2 with this norm is a hyperconvex
metric space.

P R O O F : Let Zi = (xi, j/j), where i = 1 , . . . , 4, denote the extremal points of the '
closed unit ball B. We may assume that z\ — —z$ and z-i — —z\. Let us denote
the maximum norm in R2 by || • | |m. Consider the linear mapping T: (R2, | | • | |m)
-> (R2, || • ||) given by the matrix

M(T)=

r l . , 1,
-(xi+x2) ~(

Put u\ = (1,1), U2 = (1,-1), U3 = (-1,1), U4 = ( -1 , -1) . Obviously, we have
Tm = zt for i = 1,...,4. Let us denote by Bm the closed unit ball in the space
( R 2 , | | | | m ) . Then ~Bm = conv{ui : i = 1,.. .,4} and T(Sm) = B~. Thus T is a
nonsingular linear mapping of norm 1. Further, there exists T"1 and JJT" x || = 1, so
T is an isometry. Hence (R2, || • ||m) is hyperconvex and the proof is complete. D

The question is now as follows: does there exist a norm in R2 such that the closed
unit ball in this normed space has more than 4 extremal points and this space is
hyperconvex? The following result gives the answer.

PROPOSITION 4 . 2 . Let there be given a norm in R2 such that the closed
unit ball in this space has more than four extremal points. Then this space is not
hyperconvex.

PROOF: Let B be the closed unit ball in the space in question. Suppose that B
has more than 4 extremal points. Let us denote projections onto axes Ox and Oy by
px and py, respectively. Put mx = max{px{x,y) : (x,y) e B}. Let zm - (xm,ym) be

https://doi.org/10.1017/S0004972700037588 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037588


198 M. Borkowski, D. Bugajewski and H. Przybycien [8]

an extremal point of B such that xm = mx. Obviously such a point exists. Without
loss of generality we can assume that zm lies on Ox. Denote by li, l2 the extremal
tangent halflines to B at zm and, analogously, by I3, I4 the extremal tangent halflines
to B at -zm. Assume that li,U £ {(x,y) € R2 : y ^ 0}. It is well known that such
halflines exist.

First, assume that l\ is not parallel to I4. Let S i = 2zm + B = T2zm (B) . It is

clear that h \\ l3 and l2 || h- Thus Z(Z2,Z3) = Z.{h,h)'i l e t us denote this angle by a .

Let my = max{py(x,y) : (x,y) 6 B} and let un = (xn,yn) be an extremal point of

B such that yn — my. By the assumptions we infer that un 6 A(zm,—zm,s) \ {s},

where s is the point of intersection of Zi and I4. Denote by /3 the angle between the

extremal tangent halflines at un or put /3 = TT if these halflines are parallel. Then it is

easy to see that a < /3.

Now, there are two possibilities. First, suppose that un e Int A(zm, -zm, s) \ {s}.

Let B ' = TZm-Un(B). Then ~B~' C {(x,y) € E2 : y < 0 } . Because a < /3, then

la.t'B' D I n t S 7̂  0 and Int I?' n IntSx / 0. Hence the translation ~B2 of ~B~' by a

sufficiently small vector ue — [0, —e] for some e > 0 (B2 = TZm-Un+Ue (B)) satisfies

the conditions: Int2?2 n Int I? ^ 0, I n t S 2 n In tBi # 0. We also have B~x n B~ ^ 0,

while B i n B 2 n B = 0.

Suppose now that un € h (in the case when un € I4 we argue similarly). Because

B is convex, the segment (—zm)un is included in B and so is zm{—un). Let S be

defined as above. Since a < ft, we have B n B i ^ 0 and IntB n l n t S ^ 0. Let

ue be a sufficiently small vector with the beginning at zm, parallel to the segment

umzm and not included in l\. Then for B2 = TZm_Um+U£ (W), we have B2 n 5 i / 0,

I n t 5 2 n l n t S ^ 0 and S f l B i ^ 0 , but 5 i n 2 ? 2 n i ? = 0.

Finally, assume that li is parallel to Z4. If /3 < TT, then after exchanging Ox and

Oy we argue similarly as above. Hence we can assume that /3 = n. Then we have

Int ~B2 n Int B ^ 0 and Int ~B2 n Int S i / 0. Thus, translating ~B~' by a sufficiently

small vector ue = [0, —e], where e > 0, we obtain B2 — TZm-Um+Ue(B) such that

In tS 2 n IntBi ^ 0, IntB2 n IntB ^ 0; moreover 5 i n l / 0 and Bi n B2 n~B = 0,

which completes the proof. D

As a corollary from Propositions 4.1 and 4.2 we obtain the following characterisa-

tion.

THEOREM 4 . 1 . A space (E2, || • ||) is hyperconvex if and only if the closed unit

ball in this space has exactly four extremal points.

The space R3 has quite different character. Namely, we shall prove the following

PROPOSITION 4 . 3 . For every even number n ^ 6 there exists a norm || • ||n
in K3 such that:
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(i) the closed unit ball in (R3, || • ||n) has exactly n extremal points;
(ii) the space (R3, || • ||n) is not hyperconvex.

3

PROOF: For n = 6 it is enough to consider the norm ||x||6 = X l̂x>l> where
x={x1,x2,x3)eR3. i = 1

Now, let n > 6. Then n = 2k + 2 for some k ^ 3. Let e* = exp((2J7r/ifc)i) for j
= 0 ,1 , . . . , k - 1 • Put po - (0,0,2), qQ = (0,0, -2) , p) = (ej, l) and q) = ( -c j , - l )

for j = 0 ,1 , . . . ,k — 1. Let Ak = {po,<7o}U U {??,<??} and let 5^ = conv^4fc. It is clear
_ i=o

that Bk is a closed unit ball in R3 with the norm || • ||n defined by the Minkowski func-
tional of Bk (shortly: ||-||n — Pg (• ))• Moreover, let us remark that card (ext5fc) = n,
where ext Bk denotes the set of all extremal points of Bk • Indeed, let us consider two
cases. First, assume that k is even. Then

/fc —1 \ /k—1

conv I [J {p*} J — conv I \^J {q':

Let zi = (0,0,4) and z2 = (2,0,2) and consider closed balls 5(0,1), 5(zi , l ) and
B{z2,1). It can be easily seen that 5(0,1) n 5(zi, 1) = {(0,0,2)} , (1,0,1) G 5(0,1)
n5(z 2 ) l ) and (1,0,3) G 5(zi, 1) n 5(z2,1), but 5(0,1) n5(zx, 1) n ~B(z2,1) = 0.

Now, consider the case when k is odd. We have e^k_1y2 = ( - cos (ir/k),sm (n/k))
fe-i

and e f̂c+1w2 = (— cos (ir/fc), - sin (n/k)). Hence it is clear that in the set conv( (J {Pj})

the points P^k-i)/2' P(k+i)/2 n a v e *ne smallest first coordinate and, analogously, in the
fc-i

set conv( |J {?*}) the points Q^ii-i)/2' 9(fc+i)/2 n a v e the biggest first coordinate. Thus

it is easily seen that 5(0, l)DB(zi, 1 ) ^ 0 , 5(0,1)n5(z2,1) / 0, 5(zi, I)n5(z2,1) / 0
and 5(0,1) D 5(zi, 1) n B~{z2,1) = 0, which completes the proof. D

REMARK 4.1. Proposition 4.3 can also be proved in another way. Let us define the
set A= {(0,0,1), (0,0,-1), (1,1,0), (1,-1,0), (-1,-1,0), (-1,1,0)}. Then conv A is
a closed unit ball for some norm in R3. Consider also the sets (0,0,2) + conv A,
(1,1,1) + conv A and (1,-1,1) + conv A. It is easy to verify that every pair and every
triple of these balls have a common point, but all these four balls have no common point
(this example was suggested to us by Wosko [30]). Hence we obtain an example of a
norm in R3 such that the closed unit ball in this norm has exactly 6 extremal points
and that R3 with this norm is not hyperconvex. In fact, it is an example of a space
which is 4-hyperconvex and not 5-hyperconvex (see also [2, Problem 1, p. 437]). Using
this idea we can prove that for any n ^ 6 there exists a norm || • ||n in R3 satisfying
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(i) and (ii) in Proposition 4.3. However, note that the normed space constructed in the
proof of Proposition 4.3 is not 4-hyperconvex.

Now we shall consider Rn , where n > 2 is arbitrary. First we prove the following

LEMMA 4 . 1 . Let's be a closed unit ball in the space Rn, e++1 = (0 , . . . , 0,1)
6 R n + 1 , e~+1 = (0 , . . . , 0, -1 ) € Rn + 1 , B i = { ( i , 0 ) : i 6 B } and let ~B2 = c o n v ^
U{e++ 1 ,e-+ 1}) . Then

(1) B2 is a closed unit ball in Rn+1, that is, its Minkowski functional p-g is

a norm and ~B2 = {z € R"+1 : PB2(*) ^ l } .

(2) If B has n extremal points, then B2 has (n + 2) extremal points.

(3) Let us denote the canonical projection of the space Rn + 1 onto R" by p,

that is, p((x1,...,xn,xn+i)) = (xi,...,xn). Then p(B2) = B.

(4) Let ~B{x,r) be a closed ball in (Rn + 1 ,pg2) . Then p(l?(x,r)) = p(x)

+ rB = {x G R" : pg(x - p(x)) < r } .

(5) Ifx,yeRn, then pg2 ((x, 0) - (y, 0)) = pg(x - y).

PROOF: The proofs of (1), (3), (4) and (5) are straightforward and thus we prove

only (2).

In view of the Krein and Milman theorem, if card (extB) = n, then card (ext-B2)

^ n + 2. First we show that if x 6 ext B, then (x, 0) 6 ext B2. Indeed, let x e ext B

and suppose that (x,0) = a(x1,j/1) +/3(x2,y2), where a,/3 ^ 0 , a + /3 = 1 and

{xl,yx),{x2,y2) e ~B2. It is clear that xl,x2 E ~B. Further, if (x,y) e ~B2 and

i e e x t l , then y — 0. Thus from the equality (x,0) = ci(xl,yx) + &{x2,y2) it follows

that x1 = x2 = x and y1 = y2 = 0, so (x, 0) e extB2. Moreover, it is clear that
en+1> en+1 G ext 5 2 , so card (ext B2) — card (ext ~B) + 2 = n + 2, which completes the

proof. D

Using Lemma 4.1 we can prove

PROPOSITION 4 . 4 . Let ~B be the closed unit ball in a normed space (Rn,p^)

and let B2 be the closed unit ball described in Lemma 4.1. If (Rn,p-g) is not hyper-

convex, then (Rn+1,Pjj ) i S n o * hyperconvex, either.

PROOF: Put || • ||i = Pg and || • ||2 = Pg . As (Rn,|| • ||i) is not hyperconvex,

there exists a family {B(xa,ra) : a € A} such that ||xQ— x^||j ^ ra+rp for every pair

a, 13 €A(a?p) and fl ~B(xa,ra) = 0. Let ^ ( ( ^ . O ) , ^ ) = iy € Rn + 1 : ||(xQ,0)

-y\\2 <: r o } - By Lemma 4.1 (5), we have ||(xa,0) - (x^,0)||2 = | | x a - x ^ | | i ^rQ + r0

for any a,/3 G A such that a ^ f3. Supposing that f) B2((xa,0),ra) ± 0, by Lemma
A
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4.1 (4) we would have

((*a,0),ra)) C f\ p(%({xa,O),raj)
' a&A

= f l p((xa, 0) + rQ5) = f](xa + raB) = f) B(xa, ra) = 0,

which gives a contradiction. D

Prom Proposition 4.3, Lemma 4.1 (2) and Proposition 4.4 we obtain

THEOREM 4 . 2 . Let n ^ 3 be arbitrary. For every even k ^ 2n there exists a
norm || • ||fc in W1 such that

(a) the closed unit ball in (Kn, || • ||k) has exactly k extremal points and
(b) (R", || • ||fc) is not hyperconvex.

REMARK 4.2. In the case of infinite-dimensional Banach spaces it is not possible to
predict the hyperconvexity of a given space knowing only how many extremal points
its closed unit ball possesses. For example, on one hand, the closed unit ball in l°° has
infinitely many extremal points, and on the other hand, there are well-known examples
of reflexive Banach spaces with the same property.

5. APPENDIX

Let (X, d) be a hyperconvex metric space and let A C X be bounded. Suppose
that diamA = a > 0 and consider the family of closed balls B(x, ( l /2)a) , where x e A.

Since X is hyperconvex, we have f| B~(x, (l/2)a) ^ 0. Let x0 € f) £ ( z , (l/2)a) be
x€A x€A

arbitrary. Then obviously A C B(x0 ) ( l /2)a) .
Now we show that the converse implication does not hold. To do this suppose

that E is any non-Archimedean normed space over p-adic field Q and let A be any
bounded subset of E such that diam A — a > 0. Fix x € A and take any y 6 A. Then
\\x-y\\ ^ a , s o

oa and h ~ o(x + J/)|N oa-

Thus l/2(x + y) € B (x, (l/2)a) D B~(y, ( l /2)o) . In view of the well-known property of

non-Archimedean normed spaces [22, Chapter III, Section 4, Proposition 2], we have

B(y, (l/2)a) C B(x, ( l /2 )a ) . In particular y G B(x, ( l /2)a) , so A C B(x, ( l /2)a) .

But, in view of [4, Theorem 6] it is known that no non-Archimedean normed space

is hyperconvex.
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REMARK 5.1. Denote by a the Kuratowski's measure of noncompactness and by w the
measure of weak noncompactness introduced by De Blasi (see [8,19] for the definitions).
Let E be a Banach space, B be its closed unit ball and let A be a bounded subset of
E. De Blasi [8, Theorem 2] proved that for every r ^ 0 the following equality holds:

w{A + r~B) =u>(A) + ru(B)

and asked whether the same property holds for the a index. Note that in the case of
hyperconvex spaces the answer to this question is positive.
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