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Abstract There are only finitely many non-constant holomorphic mappings between two fixed compact
Riemann surfaces of genus greater than 1. This result goes under the name of the de Franchis theorem.
Having seen that the set of such holomorphic mappings is finite, we naturally want to obtain a bound
on its cardinality. It has been known for some time that there exist various bounds depending only on
the genera of the surfaces. Here we obtain ‘better’ bounds of the above type, using arguments based on
the rigidity of holomorphic mappings and the hyperbolic geometry of surfaces.
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1. Introduction

Throughout the paper, M and N are compact Riemann surfaces of genera gM � 2 and
gN � 2, respectively, and Hol(M, N) denotes the set of all non-constant holomorphic
mappings of M onto N . If Hol(M, N) is not empty, then a holomorphic mapping f ∈
Hol(M, N) is necessarily a finite-sheeted possibly ramified covering map.

Let us denote by df the degree of f . The Riemann–Hurwitz relation yields

2(gM − 1) = 2df (gN − 1) + Bf , (1.1)

where Bf is the total branching number of f . Hence, it follows immediately that gM � gN .
With this observation, gM � gN � 2 will be a blanket assumption for the rest of the
paper.

Now we concisely explain some known results on upper estimates for # Hol(M, N)
below to help orient the reader. Henceforth, # denotes the cardinality of a set.
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The simplest case occurs when gM = gN � 2. It is then easy to see that any holomor-
phic mapping f ∈ Hol(M, N) must be bijective. Hence, Hol(M, N) is in a natural one-
to-one correspondence with Aut(M), the group of conformal self-maps (automorphisms)
of M . A classical result of Hurwitz shows that

# Hol(M, N) = # Aut(M) � 84(gM − 1) (1.2)

and that the action of Aut(M) on the first homology group on M with integer coefficients,
H1(M, Z), is faithful, i.e. a conformal self-map of M is completely determined by the
automorphism

H1(M, Z) → H1(M, Z) ∼= H1(N, Z) (1.3)

it induces on H1(M, Z).
When gM > gN � 2, the situation is complicated by the possibility that a map may

have branch points. Martens [22] showed that Hurwitz’s result can be extended; that is,
f ∈ Hol(M, N) is determined by the induced homology map

H1(M, Z) → H1(N, Z) (1.4)

even if gM > gN � 2. Martens also observed that the matrices representing all such
homology maps form a discrete and bounded set in the Hurwitz space and that, in this
way, the cardinality of Hol(M, N) may be bounded by a constant depending only on the
genera of the surfaces (see § 2).

These results were strengthened in [29]. Let H1(N, Zn) be the first homology group
on N with coefficients in the integers mod n. Then, for n > 8(gM − 1), one knows that
f ∈ Hol(M, N) can be recovered from the homomorphism

H1(M, Z) → H1(N, Zn) (1.5)

obtained by following the homology map (1.4) by the canonical projection H1(N, Z) →
H1(N, Zn). From this it follows easily that

# Hol(M, N) � (8gM − 7)4gM gN . (1.6)

Thus, we obtain an explicit bound on the cardinality of Hol(M, N) depending only on
the genera of the surfaces.

But this result is (obviously) far from sharp. We now ask: can we find a better bound?
Our interest in the subject originated with the question above, which constitutes one of
the guiding themes for this work. See the references and notes collected at the end for
more details on historical accounts.

By the uniformization theorem of Poincaré, Klein and Koebe, every Riemann surface
X of genus greater than 1 is a hyperbolic complex manifold with a natural metric; the
(Poincaré) hyperbolic geometry arises from the non-Euclidean Riemannian metric on the
upper half-plane U given by

ds =
|dz|

2 Im z
, z ∈ U. (1.7)
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Recall that Riemannian concepts applied to this canonical hyperbolic metric on X

become complex analytic invariants for the Riemann surface X. In particular, the lengths
of closed geodesics on X are invariant, so if certain information was available concerning
the length spectrum of the closed geodesics, this would perhaps shed new light on the
set of holomorphic maps between compact Riemann surfaces. We shall apply the collar
theorem in hyperbolic geometry and Bers’s theorem on length-controlled pants decom-
positions to obtain some quantitative geometric results, and we obtain more information
about the cardinality of Hol(M, N) with the aid of rigidity theorems for holomorphic
mappings. (Also note that holomorphic maps are distance decreasing between hyper-
bolic manifolds. We will see that this contracting property for holomorphic maps plays
an explicit and crucial role in the proof of Theorem 4.1.)

The paper is organized as follows. The main theorem and application are in § 4 and
all the necessary definitions and results are contained in §§ 2 and 3. In § 5 we also point
out the origin of our study and a possible direction for further research.

2. Rigidity of holomorphic mappings

We start with a compact Riemann surface X of genus g � 2, and a canonical homology
basis {a1, . . . , ag, b1, . . . , bg} on X; this homology basis has the intersection numbers

ai · bj = δij (Kronecker delta),

ai · aj = 0 = bi · bj ,

}
(2.1)

for 1 � i, j � g. By abuse of language we do not distinguish between homology classes
and their representatives.

We briefly review the basic facts to fix notation. Since the vector space A(X) of holo-
morphic abelian differentials on X has dimension g, we choose a basis {ω1, . . . , ωg} for
A(X). With these choices of basis we call the following g × 2g complex matrix the period
matrix of X:

Π =

⎛
⎜⎜⎜⎜⎜⎝

∫
a1

ω1 · · ·
∫

ag

ω1

∫
b1

ω1 · · ·
∫

bg

ω1

...
. . .

...
...

. . .
...∫

a1

ωg · · ·
∫

ag

ωg

∫
b1

ωg · · ·
∫

bg

ωg

⎞
⎟⎟⎟⎟⎟⎠ . (2.2)

The columns of Π form 2g vectors in Cg which are linearly independent over the reals.
Let the ith column be denoted by Πi. These 2g column vectors therefore generate a
lattice in Cg, namely, the following discrete subgroup of Cg:

L(Π) = {n1Π1 + · · · + n2gΠ2g; n1, . . . , n2g ∈ Z}. (2.3)

We shall call
J(X) = Cg/L(Π)

the Jacobian variety of X. It is a compact, commutative g-dimensional complex Lie
group. We also define a map

κ : X → J(X) (2.4)
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by choosing a point P0 ∈ X and setting

κ(P ) =
( ∫ P

P0

ω1, . . . ,

∫ P

P0

ωg

)T

.

(The transpose of the matrix x will be denoted xT; vectors are usually written as columns
and thus xT is a row vector for x ∈ Cg.) The map κ is a well-defined injective holomorphic
mapping of X into J(X) and is known as the Abel–Jacobi embedding of X. It will be
denoted by κP0 , when its dependence on the base point is to be emphasized. (See, for
example, [9] for more details on the concepts discussed here.)

Assumption 2.1. From now on a basis {ω1, . . . , ωg} for holomorphic abelian differ-
entials will be assumed to be dual to the given canonical homology basis; that is,∫

ai

ωj = δij , i, j = 1, 2, . . . , g.

Let M and N be any two compact Riemann surfaces with gM � gN � 2. Let
aM
1 , . . . , aM

gM
, bM

1 , . . . , bM
gM

(respectively, aN
1 , . . . , aN

gN
, bN

1 , . . . , bN
gN

) be a canonical homol-
ogy basis on M (respectively, N) and let ωM

1 , . . . , ωM
gM

(respectively, ωN
1 , . . . , ωN

gN
) be a

basis of the holomorphic abelian differentials dual to the canonical homology basis. A
holomorphic mapping f ∈ Hol(M, N) induces a homology map

H1(M, Z) → H1(N, Z).

Thus, using obvious vector notation we immediately see that there exists a 2gN × 2gM

integer matrix Hf such that

(f(aM
1 ), . . . , f(aM

gM
), f(bM

1 ), . . . , f(bM
gM

)) = (aN
1 , . . . , aN

gN
, bN

1 , . . . , bN
gN

)Hf .

On the other hand, there is a gN × gM complex matrix Af relating the pull-back of ωN
i

via f , f∗ωN
i , to the basis ωM

1 , . . . , ωM
gM

; that is,

(f∗ωN
1 , . . . , f∗ωN

gN
) = (ωM

1 , . . . , ωM
gM

)AT
f .

Now it is clear that∫
f(aM

i )
ωN

j =
∫

aM
i

f∗ωN
j ,

∫
f(bM

i )
ωN

j =
∫

bM
i

f∗ωN
j , 1 � i � gM , 1 � j � gN .

Therefore, if ΠM and ΠN denote the respective period matrices with respect to the
canonical homology bases and the dual bases for their holomorphic abelian differentials,
we then have the Hurwitz relation

AfΠM = ΠNHf . (2.5)
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The matrix Hf now induces a holomorphic map F of J(M) into J(N). It is not difficult
to show that the diagram

R2gM
ΠM ��

Hf

��

CgM ��

Af

��

J(M)

F

��

M�
�κP0��

f

��
R2gN

ΠN

�� CgN �� J(N) N�
�

κf(P0)
��

(2.6)

is commutative. Here (and hereafter) unmarked horizontal arrows denote natural projec-
tions (which do not depend on the base points).

We have therefore established most of the following.

Proposition 2.2 (Martens’s rigidity theorem). Let f , g ∈ Hol(M, N). If

f(aM
i ) = g(aM

i ), f(bM
i ) = g(bM

i ), i = 1, . . . , gM ,

in H1(N, Z), then f = g.

Proof. It is evidently sufficient to assume that Hf = Hg. Assume that P0 ∈ M is
the fixed base point of the Abel–Jacobi embedding κP0 : M → J(M). If F and G are
holomorphic maps from J(M) to J(N) induced by f and g, respectively, then the two
diagrams

R2gM ��

Hf

��

J(M)

F

��

M�
�κP0��

f

��
R2gN �� J(N) N�

�
κf(P0)

��

and

R2gM ��

Hg

��

J(M)

G

��

M�
�κP0��

g

��
R2gN �� J(N) N�

�
κg(P0)

��

commute. By a simple diagram chase, we conclude that F = G.
We also have κf(P0)(N) = κg(P0)(N), which implies that f(P0) = g(P0), since distinct

base points must give distinct imbedded images of the surface in the Jacobian variety by
Abel’s theorem. From here it is easy to obtain the desired result. �

We need a slight (but important) improvement. Let e1, . . . , e2gM
be the standard basis

of R2gM ; ei has 1 in the ith place and 0 elsewhere. Since ΠMe1, . . . , ΠMegM
form a

standard basis for CgM (clearly), we have almost obtained the following.
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Lemma 2.3. Let f , g ∈ Hol(M, N). If

f(aM
i ) = g(aM

i ), i = 1, . . . , gM ,

in H1(N, Z), then f = g.

Proof. Using the same notation as before we assume that

Hfei = Hgei, i = 1, . . . , gM .

It is sufficient to show that Af = Ag in view of the fact exhibited in the proof of
Proposition 2.2. But this is practically obvious by (2.5). Indeed, we have already seen
that ΠMe1, . . . , ΠMegM

form a basis for CgM , so the equation

Af (ΠMe1, . . . , ΠMegM
) = Ag(ΠMe1, . . . , ΠMegM

) (2.7)

implies Af = Ag. �

We now explain, omitting some details, the Martens [22] approach to establishing a
special case of a result of de Franchis [8]. With the foregoing notation, let S(ΠM , ΠN )
denote the vector space (over Q) of 2gN × 2gM matrices H with rational entries which
satisfy

AΠM = ΠNH for some gN × gM matrix A. (2.8)

The space S(ΠM , ΠN ) is known as the Hurwitz space of ΠM and ΠN . We can define the
Castelnuovo–Severi inner product of H1, H2 ∈ S(ΠM , ΠN ) by

〈H1, H2〉 = tr(JMHT
1 J−1

N H2), (2.9)

where JM and JN are the respective intersection matrices with respect to the fixed
canonical homology bases (see the lemma and its corollary in [24, p. 534]). We also
define the norm of H ∈ S(ΠM , ΠN ) by

‖H‖ = 〈H, H〉1/2. (2.10)

It has been shown that
HfJMHT

f = dfJN ,

where df is the degree of f ∈ Hol(M, N). In particular, using the Riemann–Hurwitz
formula, we have

‖Hf‖2 = 2gNdf � 4(gM − 1). (2.11)

Now it follows that the possible matrices under consideration form a set of lattice points
in a bounded set of finite-dimensional space and hence the number of holomorphic maps
of M onto N is finite by Proposition 2.2. We shall return to this topic in § 4.
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3. Closed geodesics on compact Riemann surfaces

This section explores the hyperbolic geometric nature of compact Riemann surfaces. We
shall be especially concerned with some quantitative explicit information about closed
geodesics on the surface. The reader is referred to [5] for this material.

We introduce now some notation that we will follow for the remainder of the paper.
Again, X is a compact Riemann surface of genus g � 2. We use dist( ·, ·) to denote
the hyperbolic distance function and l(c) to denote the length of a curve c. If E is any
Lebesgue-measurable subset of X, then area(E) will denote the area of E.

A fundamental property of compact Riemann surfaces, known as the collar theorem, is
that the small closed geodesics have large tabular neighbourhoods which are topological
cylinders. It is now convenient to review this fact. Let β1, . . . , βk be the set of all simple
closed geodesics of length less than or equal to 2 arcsinh 1 on X. We then have the
following:

(i) k � 3g − 3;

(ii) β1, . . . , βk are pairwise disjoint;

(iii) the collars
C(βj) = {p ∈ X; dist(p, βj) � w(βj)}

of widths w(βj) = arcsinh{1/sinh 1
2 l(βj)} are pairwise disjoint for j = 1, . . . , k and

each is a topological cylinder; and

(iv) for all p ∈ X \ (C(β1) ∪ · · · ∪ C(βk)),

rp(X) > arcsinh 1,

where rp(X) denote the injectivity radius of X at p.

It is also known that there exist 3g − 3 − k � 0 simple closed geodesics which, together
with β1, . . . , βk, decompose X into 2g − 2 pairs of pants, i.e. spheres with three disjoint
open discs removed. We can derive these results on the ‘small’ simple geodesics on X as
an easy consequence of [5, Theorems 4.1.1 and 4.1.6]. The details are left to the reader.

We proceed to obtain quantitative estimates for the number of closed geodesics on X

of length less than or equal to L for given L > 0.

Lemma 3.1. Let X be a compact Riemann surface of genus g � 2 and let L > 0.
There are at most

(g − 1) sinh2 1
2L′

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1

oriented closed geodesics of length less than or equal to L on X which are not iterates
of closed geodesics of length less than or equal to 2 arcsinh 1, where L′ = L + 3 arcsinh 1.

Remark 3.2. The parametrization of closed curves will be on the real line with period
1 or on the quotient S1 = R/[t �→ t + 1]. (Here R is, of course, the real axis.) Let γ and
δ be closed curves. We say that γ is an iterate of δ if (for suitable parametrization)
γ(t) = δ(mt), t ∈ S1, for some m ∈ Z \ {0}.

https://doi.org/10.1017/S0013091507000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000223


116 M. Ito and H. Yamamoto

 

0

U

(0,rp)∆

D(0)

B2

A1

B1

A1 B1

A2

B2

A2

−1
−1

−1
−1

Figure 1. Illustration for genus 2. The sides are labelled in consecutive anticlockwise order as A1,
B1, A−1

1 , B−1
1 , A2, B2, A−1

2 and B−1
2 . Note that ∆(0, rp) = {z ∈ U ; d(z, 0) < rp} is the largest

disc around 0 contained in the Dirichlet polygon D(0) for G with centre 0, where d denotes
hyperbolic distance on U . (It is now convenient to assume that U is the unit disc.)

Proof of Lemma 3.1. The discussion found in [5, § 6.6] (more precisely, see the proof
of Lemma 6.6.4 therein) gives us a substantial portion of this lemma. Nevertheless, we
sketch a proof, for the convenience of the reader.

Let L(p, L) denote the set of oriented geodesic loops at p ∈ X of length less than or
equal to L. For any p ∈ X \ (C(β1) ∪ · · · ∪ C(βk)), we claim that

#L(p, L) �
sinh2 1

2 (L + arcsinh 1)
sinh2 1

2 arcsinh 1
. (3.1)

Represent X as U/G, where G is a fixed-point free Fuchsian group. To prove (3.1), we
use a universal covering π : U → U/G. Without loss of generality we may assume that
π(0) = p. Then we lift the geodesic loops at p onto geodesic arcs in U with a common
initial point 0 (see Figure 1). Clearly, in the light of the definition of injectivity radius,
the end points of these arcs have pairwise distances greater than or equal to 2rp. (Often
we use rp if there is no confusion about the surface.) Comparison of the areas now shows
that there are at most

4π sinh2 1
2 (L + arcsinh 1)

4π sinh2 1
2 arcsinh 1

=
sinh2 1

2 (L + arcsinh 1)
sinh2 1

2 arcsinh 1

such geodesic loops. This concludes the proof of (3.1).
From now on ∆(p) will denote the disc of radius 1

2 arcsinh 1 around p ∈ X. Let
{∆(pλ)}λ∈Λ be a maximal set of discs such that

(i) pλ ∈ X \ (C(β1) ∪ · · · ∪ C(βk)) for each λ ∈ Λ, and

(ii) if λ1 	= λ2, then ∆pλ1
and ∆pλ2

are mutually disjoint.
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It follows that
#Λ � g − 1

sinh2 1
4 arcsinh 1

, (3.2)

since
#Λ4π sinh2 1

4 arcsinh 1 � area(X) = 4π(g − 1)

(to obtain the above identity use the Gauss–Bonnet theorem).
A closed geodesic γ of length less than or equal to L which is not an iterate of βj

for 1 � j � k cannot be contained in the collar C(βj), so γ passes through a point p of
X\(C(β1)∪· · ·∪C(βk)). By the maximality of {∆(pλ)}λ∈Λ, we see that d(p, pλ) < arcsinh 1
for some pλ. Thus, γ is freely homotopic to some element of L(pλ, L + 2 arcsin 1).

We have already seen that any oriented closed geodesic of length less than or equal to
L which is not an iterate of βj for 1 � j � k must be freely homotopic to an oriented
geodesic loop at some pλ of length less than or equal to L + 2 arcsinh 1. Hence, we can
finally complete the calculation: the number of oriented closed geodesics of length less
than or equal to L on X which are not iterates of closed geodesics of length less than or
equal to 2 arcsinh 1 is at most

sinh2 1
2L′

sinh2 1
2 arcsinh 1

g − 1
sinh2 1

4 arcsinh 1
=

(g − 1) sinh2 1
2L′

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1

from (3.1) and (3.2). �

As mentioned above, every compact Riemann surface X can be decomposed into 2g−2
pairs of pants. We can use admissible graphs as the combinatorial skeleton for the pasting
of pairs of pants, and for this purpose the very rudiments of graph theory, as explained
below, are sufficient. For more about graph theory, see [3].

Let (g, n) be a pair of non-negative integers with v = 2g − 2 + n > 0. Then d =
3g − 3 + n � 0. Consider a connected labelled graph G with v(G) = v vertices and
d(G) = d edges. Each edge connects two vertices; an edge may connect a vertex with
itself. We assume that at most three edges meet at any one vertex. A graph G of the
above type will be called an admissible graph of type (g, n).

We associate a sphere with three holes to each vertex of G. If two vertices are joined by
an edge, then we glue the corresponding spheres along boundary curves. We thus obtain
a (topological) surface S of type (g, n) and a set of d curves Σ that partitions S into
a union of v pairs of pants. The pair of boundary curves forms a partition curve. The
topological data (S, Σ) is uniquely determined by the graph G; we shall call it the surface
(with maximal partition) corresponding to the graph. Conversely, every surface S of type
(g, n) with a maximal partition Σ determines an admissible graph G of type (g, n). A
glance at Figure 2 will convey what is intended.

What are the estimates for lengths of geodesics in a maximal partition? Bers
proved that every compact Riemann surface of genus g � 2 has a maximal partition
{γ1, . . . , γ3g−3} with geodesics of length

l(γj) � Lg, j = 1, . . . , 3g − 3, (3.3)
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Figure 2. A trivalent graph and corresponding maximal partition for a surface of genus 5.

where Lg is a constant depending only on g. The best possible constant with this property
is called Bers’s constant and is denoted by Lg (by abuse of notation we also denote the
best possible constant by Lg).

Lemma 3.3. Let X be a compact Riemann surface of genus g � 2. Then there exist
2g closed loops a1, . . . , ag, b1, . . . , bg on X providing a canonical homology basis for X

such that

l(ai) � Lg, i = 1, . . . , g. (3.4)

Furthermore, each ai can be selected to be a simple closed geodesic.

Proof. Let Σ = {γ1, . . . , γ3g−3} be a maximal partition on X with geodesics satisfy-
ing (3.3). Let G be the admissible graph of type (g, 0) associated with Σ, and let G′ be
a connected subgraph of G obtained by deleting g edges of G.∗ Note that G′ has 2g − 3
edges and 2g − 2 vertices. It is evident from our discussions that G′ is admissible of type
(0, 2g).

Let a1, . . . , ag be the partition curves corresponding to the edges on G \G′ (the deleted
edges). Then this system is extendable to a ‘standard dissection’ a1, b1, . . . , ag, bg. Indeed,
if X is depicted as a sphere with g handles, ai may be thought of as a loop ‘across’ the
ith handle (see Figure 3), so bi can be chosen to be a loop ‘along’ the same handle. �

∗ The emphasis here is on the word connected. Existence of such G′ is easily established by induction
on d.
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a1

a3

a2

Figure 3. This figure illustrates the case where g = 3 and there are
three ‘a’ curves. Here each ai is a loop ‘across’ the ith handle.

Buser has gone further and showed that every compact Riemann surface of genus g � 2
has a maximal partition {γ1, . . . , γ3g−3} with geodesics satisfying

l(γj) � 4j log
8π(g − 1)

j
, j = 1, . . . , 3g − 3. (3.5)

This yields the following upper bound on Bers’s constant:

Lg � 26(g − 1). (3.6)

How much can it be improved? Since many of the finiteness theorems resulting
from Bers’s theorem on length-controlled pants decompositions, described above, involve
bounds which are rapidly growing functions of Lg, it would be desirable to have a (fairly)
better bound for Lg. Yet a torus with ‘thin hairs’ was constructed to show that the bound
cannot be improved too much. In fact, the hairy torus gives the following lower bound
for Lg:

Lg �
√

6g − 2 (3.7)

(see [5], in particular §§ 5.1 and 5.3).

4. Upper estimates for the cardinality of Hol(M, N)

In this section we finally establish the following result.

Theorem 4.1. Let M and N be compact Riemann surfaces with gM � gN � 2.
Let {aM

1 , . . . , aM
g , bM

1 , . . . , bM
g } be a canonical homology basis on M and let k(N) be the

number of simple closed geodesics of length less than or equal to 2 arcsinh 1 on N . Then

# Hol(M, N) �
gM∏
i=1

[
(gM − 1) sinh2 1

2 li

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1
+ (8gM − 7)k(N)

]
,
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where
li = l(aM

i ) + 3 arcsinh 1, i = 1, . . . , gM . (4.1)

Proof. In the light of Lemma 2.3, we now wish to study the homology classes of the
images of ‘a’ curves under holomorphic mappings of M onto N . Let f ∈ Hol(M, N). Then
f , being holomorphic, must be distance decreasing in their respective Poincaré metrics
by the Schwartz lemma (holomorphic maps are distance decreasing between hyperbolic
manifolds). We conclude that

l(f(aM
i )) � l(aM

i ), i = 1, . . . , gM . (4.2)

Standard arguments based on the topological theory of covering spaces imply that there
is an oriented closed geodesic of length less than or equal to l(aM

i ) on N which is freely
homotopic (thus homologous) to f(aM

i ) (see, for example, the proof of [6, Lemma 2.3]).
We study the homology classes of the images of aM

i under holomorphic mappings of
M onto N . To this end, the index i will be fixed and we will denote by βN

1 , . . . , βN
k(N)

the set of all simple closed geodesics of length less than or equal to 2 arcsinh 1 on N .
There are now two possibilities to consider. Either the image of aM

i is homologous
to an iterate of some βN

j or it is not. Exclude for a moment the former case. Then we
conclude that (using Lemma 3.1) the number of homology classes of the images of aM

i

under holomorphic mappings of M onto N is at most

(gM − 1) sinh2 1
2 li

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1
.

Next we need to consider the former case. Suppose that the image of aM
i is homologous

to mβN
j , m ∈ Z. It can be shown that m is bounded in absolute value by a constant

depending only on the genera of the surfaces (see [34]). However, a much simpler algebraic
proof can be given and it is sufficient for our purposes. We shall therefore be content
with the following assertion.

Assertion 4.2. We say that two closed curves c1 and c2 on the surface are n-
homologous, in symbols c1

n∼ c2, if there is an integer n such that c1 − c2 is homologous
to the n-fold iterate of some closed curve c. Let f , g ∈ Hol(M, N). If

f(ai)
n∼ g(ai), i = 1, . . . , gM ,

for some integer n > 8(gM − 1), then f = g.

Remarks 4.3. (1) The n∼ equivalence classes of closed curves (homology classes) will
be called the n-homology classes. It is not too difficult to see that the set of n-homology
classes is isomorphic to the finite group of homology classes mod n. Hence, f ∈ Hol(M, N)
can be recovered, of course, from the homomorphism

H1(M, Z) → H1(N, Zn)

obtained by following the homology map H1(M, Z) → H1(N, Z), which is induced on the
usual first homology groups, by the canonical projection H1(N, Z) → H1(N, Zn).
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(2) This assertion is thus an improvement over Lemma 2.3 rather than just the Martens
‘rigidity’ theorem (Proposition 2.2); see also the results of Tanabe [29] referred to in § 1.

Proof of Assertion 4.2. We continue to use the notation introduced near the end
of § 2. Let D = Hf − Hg. If we write

D =

(
D1 D2

D3 D4

)
(4.3)

in gN × gM blocks, then

JMDTJ−1
N D =

(
−DT

2 D3 + DT
4 D1 ∗

∗ DT
1 D4 − DT

3 D2

)
. (4.4)

Suppose now that
D1 ≡ D3 ≡ 0 (mod n) for n > 8(gM − 1). (4.5)

We immediately see that 2n|‖D‖2 (2n divides ‖D‖2). However, it is easy to verify that

‖D‖2 � 2(‖Hf‖2 + ‖Hg‖2) � 16(gM − 1) (4.6)

(see § 2, especially inequality (2.11)). Thus, D = 0, and hence f = g by Proposition 2.2.
�

To complete the proof of Theorem 4.1 it suffices to study the n-homology classes of
the images of aM

i under holomorphic mappings of M onto N for n > 8(gM − 1). Since
the simple homology equivalence relation is stricter than n-homology equivalence, the
number of n-homology classes of the images of aM

i which are not homologous to the
iterates of βN

j s is less than or equal to

(gM − 1) sinh2 1
2 li

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1

by our previous considerations. Thus, the number of n-homology classes of the images of
aM

i is less than or equal to

(gM − 1) sinh2 1
2 li

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1
+ nk(N),

because the number of n-homology classes of the iterates of βN
j s is at most nk(N). The

assumption that n > 8(gM − 1) allows us to apply the assertion. We conclude that

# Hol(M, N) �
gM∏
i=1

[
(gM − 1) sinh2 1

2 li

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1
+ nk(N)

]

for n > 8(gM − 1). Choosing the integer n to be as small as possible, the theorem
follows. �
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Let us be a little more explicit. As an application of Lemma 3.3, we take

{aM
1 , . . . , aM

gM
, bM

1 , . . . , bM
gM

}

to be a canonical homology basis on M such that l(aM
i ) � LgM

for i = 1, . . . , gM .
Using (3.6) we see that

l(aM
i ) � 26(gM − 1), i = 1, . . . , gM . (4.7)

We can now state the following as a consequence of our main theorem.

Theorem 4.4. Let M and N be compact Riemann surfaces with gM � gN � 2, then

# Hol(M, N) �
[

(gM − 1) sinh2 1
2L′

gM

sinh2 1
2 arcsinh 1 sinh2 1

4 arcsinh 1
+ 24g2

M

]gM

,

where
L′

gM
= 26(gM − 1) + 3 arcsinh 1. (4.8)

Proof. Use the fact that k(N) � 3gN − 3 (see § 3). �

We thus have an upper bound on the cardinality of Hol(M, N) depending only on gM ,
denoted B(gM ). It may be worthwhile to obtain some information on the behaviour of
B(gM ) for very large values of gM . The reader can easily verify that the exponential
bound log B(gM ) grows like a constant multiple of g2

M as gM → ∞ and hence that

log B(gM ) = O(g2
M ), gM → ∞. (4.9)

In contrast, [29, Theorem 2] gives an exponential bound depending only on gM which is
of order g2

M log gM .

Remark 4.5. We have made use of the inequality (3.6) to derive Theorem 4.4 from
Theorem 4.1. As mentioned at the end of § 3, this estimate for Bers’s constant cannot be
improved too much. However, if we have a better bound on the sum of the lengths of the
‘a’ curves, the result of Theorem 4.4 will be strengthened. Imayoshi asked whether there
is a canonical homology basis {a1, . . . , ag, b1, . . . , bg} on every compact Riemann surface
X of genus g � 2 such that

l(a1) + · · · + l(ag) � Kg log g, (4.10)

where K is a constant (which does not depend on g, of course). If this conjecture is true,
our condition shows that there will have to be an upper bound B′(gM ) on the cardinality
of Hol(M, N) such that

log B′(gM ) = O(gM log gM ), gM → ∞. (4.11)

This is the strongest result that can be obtained by essentially the same method.

https://doi.org/10.1017/S0013091507000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000223


Holomorphic mappings between compact Riemann surfaces 123

5. Notes on references

We end this paper by organizing some of the references that have not been specifically
cited in the text, since a brief survey of such publications can serve as a reader’s guide to
those results which are not as well known as they should be. However, we must emphasize
that we have not made an exhaustive search of the literature; no claims of completeness
are implied or intended. Omissions are the result of ignorance, not judgment, by the
authors.

In 1913 de Franchis [8] showed that the number of holomorphic mappings between two
fixed compact Riemann surfaces is finite and that the number of possible target surfaces
N for a fixed source surface M is also finite. As expected, much interest has centred on
finding relevant bounds. This is a rather difficult problem, even in order to obtain a very
crude bound.

Indeed, more explicitly, it was regarded as an open question whether the bounds depend
only on the genera of the surfaces. A proof of this for the case of two fixed surfaces,
which uses an idea of Weil [33], is alluded to in [22] (see § 2), but the reader should note
that Martens’s paper [24] credits Howard and Sommese [10] with the initial analysis
of the general case. Both of these results yield an exponential bound on the number of
holomorphic mappings between two fixed surfaces M and N , which depends only on gM

and is of order g2
M log gM .

Before we continue with our review, we remark that the second statement of de Fran-
chis’s theorem referred to in the preceding paragraph gives a remarkable finiteness the-
orem concerning the number of possible target surfaces for a fixed source surface. This
statement is often attributed to Severi. In retrospect it seems that Severi [27] also
obtained the relevant result. See below for fuller details.

Continuing a brief survey of facts about estimates on the cardinality of Hol(M, N),
we mention Kani’s paper [17] although it approaches the subject from a more algebraic-
geometric point of view. We can use his result to sharpen the bound on the number of
holomorphic mappings between M and N , and this provides an exponential bound which
is of order g2

M .
Now recall from § 4 that our exponential bound log B(gM ) is of order g2

M , while Tan-
abe [29] gives an exponential bound which is of order g2

M log gM .

Remark 5.1. We mention here the work of Imayoshi [14], which came to our attention
during completion of the preparation of the present paper. It presents a more complex-
analytic approach to the subject; he also gave a successful application of Martens’s argu-
ments (see § 2) to ‘improve’ the count of holomorphic mappings.

These estimates are not the whole story. We conclude by mentioning a few more topics
and references.

(i) First of all, significant progress is still being made, and it is impossible to predict
where and when it will end. Recently, Tanabe [30] has proved that

# Hol(M, N) � 2
{

4(gM − 1)
gN − 1

+ 1
}2gM

(gM − 1)(2gN − 1).
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From the above inequality an exponential bound depending only on gM which is
of order gM log gM can easily be derived. As far as we know, the theorem in [30]
is new and one of the main results of his investigation (recall the discussion at the
end of § 4).

(ii) Very little is known about the sharpness of the estimates. However, we can discuss
some of what is known about the simplest case of groups of conformal self-maps.
Let N(g) be the order of the largest group of conformal self-maps that a Riemann
surface of genus g � 2 can admit. Hurwitz [11], as given in the course of the intro-
duction, established (among other things) that N(g) � 84(g − 1). Macbeath [20]
proved that N(g) = 84(g − 1) for an infinite number of integers g, so this upper
bound is sharp for an infinite number of gs. Furthermore, Accola [1] showed that
N(g) � 8(g + 1), and this lower bound is sharp for an infinite number of gs. In
order to extend the considerations of these papers to the general case, however,
completely different methods seem (at our present state of knowledge) absolutely
necessary. For a survey of facts about the Hurwitz group see [7].

(iii) As we remarked earlier, de Franchis’s second theorem, which also bears the name
of Severi, asserts that the number of possible target Riemann surfaces for a fixed
source Riemann surface is finite. But this is hardly the place to enter into a dis-
cussion. (In our context we have only encountered situations where the source and
target surfaces are both fixed.) Moreover, the authors do not feel capable of cred-
iting everyone who should be mentioned, so the interested reader is referred to the
papers of Martens (see [23] and others), Imayoshi [12], and Tanabe [31] for more
details and bibliographic references.

(iv) What if we worked in the category of (not necessarily compact) Riemann surfaces
of finite analytic type? The situation for this slightly general case is considered by
Ito and Yamamoto [16]. See also [13], which covers a noteworthy finiteness theo-
rem concerning the number of holomorphic mappings between higher-dimensional
manifolds.

(v) In fact, the various approaches to the subject, discussed here, are one instance of
the interplay between topology, complex analysis and algebraic geometry. Some
of the methods in this paper are specific to surfaces, while others apply in more
general circumstances. The reader should seek out related results of a great deal of
work by a number of mathematicians which have been published or which will be
in forthcoming publications. The authors are aware of the papers by Bandman and
Libgober [2], Borel and Narasimhan [4], Imayoshi and Shiga [15], Kobayashi and
Ochiai [18], Noguchi [25], Noguchi and Sunada [26], Szabó [28] and Urata [32],
and this is probably a very incomplete list of all such publications.

(vi) Finally, we mention that Imayoshi and others have suggested that one should pic-
ture the mappings f ∈ Hol(M, N) not just as holomorphic mappings between
Riemann surfaces, but as holomorphic sections of a globally trivial N -bundle

M × N → M
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fibreing over M , determined by the projection of M × N onto M , which deletes
the second coordinate. The well-known geometric Mordell conjecture, which was
formulated by Lang [19] and proved by Manin [21], states that an analytic family
of Riemann surfaces C/B (truly varying and with fibres of genus g � 2) has only
a finite number of sections s : B → C. Can one, mimicking the preceding analysis,
bound the number of holomorphic sections of such a truly varying family in purely
topological terms?
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reading of the manuscript and for many helpful suggestions.
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