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1. The differential operation known as Lie derivation was introduced by W.
Slebodzinski in 1931, and since then it has been used by numerous investigators
in applications in pure and applied mathematics and also in physics. A recent
monograph by Kentaro Yano (2) devoted to the theory and application of
Lie derivatives gives some idea of the wide range of its uses. However, in
this monograph, as indeed in other treatments of the subject, the Lie derivative
of a tensor field is defined by means of a formula involving partial derivatives
of the given tensor field. It is then proved that the Lie derivative is a differential
invariant, i.e. it is independent of a transformation from one allowable co-
ordinate system to another. Sometimes some geometrical motivation is
given in explanation of the formula, but this is seldom very satisfying.

The treatment of Lie derivatives given in this note is both natural and
simple, and because the derivative is defined without reference to a coordinate
system the problem of proving invariance over a transformation of coordinates
does not arise. It seems unlikely that the treatment given here can be new,
though the author has not come across a similar treatment in the general
literaturef and it is not to be found in the monograph by Yano.

2. The Classical Definition
Let X be a given vector field defined over a differentiable manifold M.

Let T be a tensor field of type (p, q) (i.e. contravariant of order p and covariant
of order q) defined over M. Then the classical definition of the Lie derivative
of the tensor field T with respect to the vector field X is the tensor field LT
of type (p, q) with components

That the right-hand member is an invariant may be verified by expressing
the partial derivative in terms of covariant derivatives with respect to an
arbitrary symmetric connexion, when it is found that the terms involving the
connexion coefficients cancel. Thus the partial derivatives can in fact be
replaced by covariant derivatives with respect to an arbitrary symmetric
connexion.

3. Extension of Operators
Before giving our alternative definition of Lie derivation, it is convenient

t See, however, A. Nijenhuis, Abstract 542-200, Notices Amer. Math. Soc. 6,1958, p. 327.
[Added in proof.]
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to consider a general theorem concerned with the extension of differential
operators.

Theorem. Let D be a differential operator which maps contravariant vector
fields and scalar fields into tensor fields such that

(i) D is the linear over the real numbers, i.e.

D(aX+bY) = aDX+bDY

for any vector fields X, Y and any real numbers a, b;

(ii) D(fY)=fDY+(Df)®Y,

for any scalar f and any vector field Y.
Then the operator D can be extended in a unique manner to operate on tensor

fields of arbitrary type (j>, q) in such a way that

(iii) it is linear over the real numbers, i.e.

D(aS+bT) = aDS+bDT,

for any tensors S, T of the same type, and for any real numbers a, b;

(iv) the Leibnitz law of derivation of a product is satisfied, i.e.

D(S®T) = (DS)®T+S®(DT),

for all tensors S, T;

(v) the operator commutes with the process of contraction; alternatively

DI = 0,

where I is the Kronecker tensor.
The proof of the theorem is straightforward. For example, to extend the

domain of the operator to tensor fields of type (2, 0), it is sufficient to note
that any tensor T of this type can be expressed as a linear combination of
decomposable tensors, i.e.

m

T= £ fkX
k®Yk

k = 1

where fk are scalars and Xk, Yk vector fields. Then by using (ii) and (iv), DT
is determined.

If fj. is a given covariant vector field and A an arbitrary contravariant vector
field, it follows that

<A, D\i> = D(<A, n>)- <DX, n>
which determines Dfi.

The extension of D to a tensor field of type (p, q) can now be obtained
by expressing the tensor as a linear combination of tensor products of contra-
variant and covariant vector fields.

4. Application to Lie Derivatives
Let X be a given vector field over M. If Y is another vector field over M,

it is well-known that X and Y determine a third vector field denoted by [X, Y],
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defined by
[X, Y[ = XY-YX. (4.1)

The vector field [X, Y] is the classical Poisson bracket or Lie bracket. The
mapping

Y->[X, Y] (4.2)

will be denoted by D.
The vector field X operates on a scalar field / according to the usual law,

f^Xf. (4.3)

The mapping (4.3) will also be denoted by D.
From (4.2) it follows that

D(fY) = [X,fY] = X(fY)-f(YX) (4.4)

If we use the fact that a tangent vector is a derivation, i.e. at any point P,

X(fg) = X(f).g(P)+f{P). X(g), (4.5)

(4.4) becomes

D(fY) = f(XY- YX) + (Xf)® Y

= f[X, Y] + Xf®Y,

i.e. D(fY)=fDY+Df®Y,

so that D satisfies condition (ii) of § 3. It is trivial that D satisfies condition (i)
of § 3. It follows from the theorem of § 3 that the operator D can be extended
in a unique manner to operate on an arbitrary tensor field of type (p, q) so
that conditions (iii), (iv) and (v) are satisfied. This extended operator is defined
to be the Lie derivative.

To establish that this definition is consistent with the classical definition
given in § 2, it is sufficient to note that the operator defined in § 2 satisfies
conditions (i), (ii), (iii), (iv), (v). Moreover, the two operators agree when
operating on scalar fields and vector fields, and so by the uniqueness of the
extension, it follows that the two operators must agree on tensor fields of type
(P, 4)-

The theorem of § 3 can be used to give coordinate-free definitions of other
differential operators, including the operation of torsional derivation (1).
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