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Abstract
We expand the critical point for site percolation on the d-dimensional hypercubic lattice in terms of inverse
powers of 2d, and we obtain the first three terms rigorously. This is achieved using the lace expansion.
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1. Introduction
We study site percolation on the hypercubic lattice Zd. To this end, we fix a parameter p ∈ [0, 1]
and create a random subgraph of Zd as follows. Each site (or vertex) x ∈Zd, independently of all
other sites, is declared occupied with probability p (and vacant otherwise). A bond (edge) between
two nearest-neighbour sites in Zd is an edge of the random subgraph if and only if the two sites
are occupied. Denote by θ(p) the probability that there is a path starting at the origin 0 ∈Zd and
diverging to infinity that consists only of occupied vertices. This allows us to define the critical
point as:

pc:= inf
{
p ∈ [0, 1]:θ(p)> 0

}
. (1.1)

It is standard that 0< pc < 1 in all dimensions d≥ 2. In general, it is not possible to write down
an explicit value for pc = pc(d) (see Table 1 for numerical values), a notable exception is site perco-
lation on the two-dimensional triangular lattice (when pc = 1/2). However, it is possible to derive
an asymptotic expansion for pc(d) when d→∞. Indeed, it is known in the physics literature that

pc = σ−1 + 3
2
σ−2 + 15

4
σ−3 + 83

4
σ−4 + 6577

48
σ−5 + 119077

96
σ−6 + · · · for σ = 2d− 1→∞.

(1.2)
The first four terms were found by Gaunt, Ruskin and Sykes in 1976 [5] through exact enumer-
ation, the last two terms have been obtained by Mertens and Moore [16] by exploiting involved
numerical methods. When writing this in powers of 1

2d , (1.2) becomes

pc(d)= (2d)−1 + 5
2
(2d)−2 + 31

4
(2d)−3 + 75

2
(2d)−4 + 11977

48
(2d)−5 + 209183

96
(2d)−6 + · · · .

(1.3)
In this paper, we extend the previously known first term by establishing the second and third term,
including a rigorous bound on the error term.
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Table 1.Critical values for percolation on Z
d , rounded to multiples of 10−4. The only rigorously obtained

value is for bond percolation in dimension 2 (marked with ∗). All other values are obtained through numerical
simulation; the values for d≥ 4 are reported from Grassberger [8] and Mertens and Moore [16].

dim 2 3 4 5 6 7 8 9 10 11 12

psitec 0.5927 0.3116 0.1969 0.1408 0.1090 0.0890 0.0752 0.0652 0.0576 0.0516 0.0467
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pbondc 0.5∗ 0.2488 0.1601 0.1182 0.0942 0.0786 0.0677 0.0595 0.0531 0.0479 0.0437

Theorem 1.1 (Expansion of pc in terms of (2d)−1) As d→∞,

pc(d)= (2d)−1 + 5
2
(2d)−2 + 31

4
(2d)−3 +O (

(2d)−4
)
.

The key technical tool for our approach is the lace expansion for site percolation. It was estab-
lished in a recent paper [13], which itself draws its inspiration from Hara and Slade’s seminal
paper [11]. The lace expansion provides an expression for pc in terms of lace-expansion coefficients,
which are defined in Definition 2.5. Moreover, it provides good control over these coefficients, and
the results of [13] identify already the leading order term in (1.3).

Comparison with bond percolation. It is most instructive to compare the critical thresh-
olds for site and bond percolation. While the critical behaviour of bond and site percolation is
comparable, the actual values of the critical thresholds differ, as illustrated by the following table:

Grimmett and Stacey [10] prove that psitec > pbondc on Zd for all dimensions d≥ 2. This differ-
ence must be reflected in the asymptotic expansion for pc. Indeed, Hara and Slade [12] and van
der Hofstad and Slade [15] rigorously obtain a series expansion for bond percolation as:

pbondc (d)= (2d)−1 + (2d)−2 + 7
2
(2d)−3 +O (

(2d)−4
)
, (1.4)

which indeed differs from the expansion of psitec in Theorem 1.1. Again, more precise estimates
are known by non-rigorous methods [4,16]:

pbondc = σ−1 + 5
2
σ−3 + 15

2
σ−4 + 57σ−5 + 4855

12
σ−6 + · · · (1.5)

for σ = 2d− 1, which is equivalent to

pbondc (d)= (2d)−1 + (2d)−2 + 7
2
(2d)−3 + 16(2d)−4 + 103(2d)−5 + 9487

12
(2d)−6 + · · · .

We remark that (1.4) was proved in [15] also for the d-dimensional cube. More recently, an
asymptotic expansion was also proven for the Hamming graph [3].

Borel summability of the coefficients.Theorem 1.1 establishes an expansion to the third order,
but it is plausible that even an expansion to all orders for site percolation exist: writing s= 1

2d and
p̄c(s)= pc(d), this means that there is a real sequence (αn)n∈N such that for anyM ∈N,

p̄c(s)=
M−1∑
n=1

αn sn +O(sM). (1.6)

The corresponding statement for bond percolation was proved by Hofstad and Slade [14].
However, it is expected that the radius of convergence of the series

∑
αnsn is zero (even though

rigorous evidence is lacking), and this non-convergence is valid in greater generality for series
expansions of critical thresholds of various statistical mechanical models. The reason is that the
sequence of absolute values |α1|, |α2|, |α3|, . . . grows very rapidly (with sign changes for higher
n), and that therefore it is not possible to compute p̄c(s) from the sequence (αn).
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Instead, we believe that the coefficients (αn) are Borel summable: suppose p̄c(s) has an analytic
extension to the complex disc D= {z ∈C : Re(z−1)> 1}, and suppose further that there is C > 0
such that for all s ∈D and allM, we have∣∣∣∣∣p̄c(s)−

M−1∑
n=1

αn sn
∣∣∣∣∣≤ CM sM M!, (1.7)

then Sokal [17] proves that the Borel transform B(t)=∑∞
n=1 αntn/n! exists, and p̄c(s) equals the

Borel sum

p̄c(s)= 1
s

∫ ∞

0
e−t/sB(t) dt. (1.8)

It is, however, unclear how an analytic extension of p̄c(s) for site percolation could be obtained.
A rare example for which we know Borel summability is the exact solution Kc(d) of the spher-

ical model. Gerber and Fisher [6] prove that there is an expansion of Kc(d) in powers of 1/d,
that the radius of convergence is zero, but that we may interpret the expansion as a Borel sum as
described above. They also prove that the signs of the coefficients of Kn oscillate: the first 12 terms
are positive, the next 8 are negative, the next 9 are positive, and so on. For the well-known model
of self-avoiding walk, Graham [7] proves bounds for the connective constant as in (1.7).

1.1 Strategy of proof, outline of the paper
Theorem 1.1 heavily builds upon the results obtained in [13]. We use Section 2 to collect the
necessary notation and results from [13] in order to prove our main result. At the heart of these
results is an identity for τp. From this, we almost immediately get an identity for pc in terms of so-
called lace-expansion coefficients (see Definition 2.5). It will be clear that sufficient control over the
coefficients will result in the expansion of Theorem 1.1. In fact, the results from [13] immediately
give the first term of (1.3).

For the other terms in Theorem 1.1, however, we require even better control of these coeffi-
cients, which is provided by Lemma 3.1. Section 3 proves Theorem 1.1 assuming Lemma 3.1. The
latter is at the heart of this paper and is proved in Section 5. As a preparation for the proof, Section
4 introduces some new notation on connection events and proves bounds on them. Those bounds
are in essence an extension of the bounds presented in Section 2.

2. Preliminaries
2.1 Site percolation: Model and basic definitions
We introduce themodel more formally. Given p ∈ [0, 1], we can choose our probability space to be
({0, 1}Zd ,F , Pp), where the σ -algebraF is generated by the cylinder sets, and Pp =⊗

x∈Zd Ber(p).
We call ω ∈ {0, 1}Zd a configuration and say that a site x ∈Zd is open or occupied in ω if
ω(x)= 1. If ω(x)= 0, we say that the site x is closed or vacant. We often identify ω with the set
{x ∈Zd:ω(x)= 1}.

For k ∈N and a configuration ω, we call (v0, v1, . . . , vk) ∈ (Zd)k+1 an occupied path of length k
from v0 to vk if |vi − vi−1| = 1 for all 1≤ i≤ k, and vi ∈ω for 1≤ i≤ k− 1. Here, and throughout
the paper, we write |x| =∑d

i=1 |xi| for x ∈Rd (which is equal to the graph distance in Zd). For two
points x 	= y ∈Zd we write {x←→ y} (and say that x is connected to y) if there exists an occupied
path from x to y of arbitrary length; mind that the this event is irrespective of the occupation
status of x and y. We set {x←→ x} =∅, that is, x is not connected to itself. Moreover, |x− y| = 1
implies {x←→ y} = {0, 1}Zd (neighbours are always connected).

We define the cluster of x to be C (x)= {x} ∪ {y ∈ω:x←→ y}. Note that apart form x itself,
points in C (x) need to be occupied.
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The two-point function τp : Zd → [0, 1] is defined as τp(x):= Pp(0←→ x), where 0 denotes the
origin in Zd. The percolation probability is defined as θ(p)= Pp(0←→∞)= Pp(|C (0)| =∞).
We note that p �→ θ(p) is increasing and define the critical point for θ as in (1.1). The critical point
pc depends on the underlying graph.

For an absolutely summable function f : Zd →R, the discrete Fourier transform is defined as
f̂ : (− π , π]d →C, where

f̂ (k)=
∑
x∈Zd

eik·xf (x),

and k · x=∑d
j=1 kjxj denotes the scalar product.

2.2 The lace expansion in high dimension
We use this section to state the definitions and results from [13] needed in the proof of Theorem
1.1. We note that the below definition uses the notion of disjoint occurrence (denoted ‘◦’) related
to the BK inequality (which we will use at a later stage as well). For details on both, see e.g. [2,
Chapter 2] or [9, Section 2.3].

Definition 2.1 (Connection events, modified clusters) Let x, u ∈Zd and A⊆Zd.

1. We set �:= 2d.
2. We define J(x):= 1{|x|=1} = 1{0∼x} and D:= J/�.
3. Let {u←→ x in A} be the event that there is a path from u to x, all of whose internal vertices

are elements of ω ∩A.
4. We define {u⇐⇒ x}:= {u←→ x} ◦ {u←→ x} and say that u and x are doubly connected.
5. We define the modified cluster of x with a designated vertex u as:

C̃ u(x):= {x} ∪ {y ∈ω \ {u}:x←→ y in Zd \ {u}}.
6. Let 〈A〉:=A∪ {y ∈Zd:∃x ∈A:|x− y| = 1}.
Note that we introduce �= 2d. For better readability, we stick to using � for the remainder

of the paper. We also address the Landau notation f (�)≤O(g(�)) that will appear frequently
throughout the paper. It is always to be understood in the sense that there exists some d0 and
a constant C(d0), such that f (�)≤ Cg(�) for all �≥ d0. The constant C may depend on other
appearing parameters.

We remark that {x←→ y in Zd} = {x←→ y} = {x←→ y in ω} and that {u⇐⇒ x} = {0, 1}Zd

for |u− x| = 1. Similarly, {u⇐⇒ x} =∅ for u= x. We state two elementary observations made
in [13] involving J that will be important later on.

Observation 2.2 (Convolutions of J, [13, Observation 4.4]). Let m ∈N and x ∈Zd with m≥ |x|.
Then there is a constant c= c(m, x) with c≤m! such that

J∗m(x)= c1{m−|x| is even}�(m−|x|)/2.

Observation 2.3 (Elementary bound on τ ∗np , [13, Observation 4.5]). Let m, n ∈N, p ∈ [0, 1] and
x ∈Zd. Then there is a constant c= c(m, n) such that

τ ∗np (x)≤ c
m−1∑
l=0

plJ∗(l+n)(x)+ c
n∑
j=1

pm+j−n(J∗m ∗ τ
∗j
p )(x).
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The statement of [13, Observation 4.5] is actually slightly stronger thanObservation 2.3, but the
version stated here suffices for our purpose. The following, more specific definitions are important
to define the lace-expansion coefficients:

Definition 2.4 (Extended connection events) Let v, u, x ∈Zd and A⊆Zd.

1. Define

{u A←→ x}:= {u←→ x} ∩
(
{u 	←→ x in Zd \ 〈A〉} ∪ {x ∈ 〈A〉}

)
.

In words, this is the event that u is connected to x, but either any path from u to x has an
interior vertex in 〈A〉, or x itself lies in 〈A〉.

2. We introduce Piv(u, x) as the set of pivotal points for {u←→ x}. That is, v ∈ Piv(u, x) if
the event {x←→ x in ω ∪ {v}} holds but {u←→ x in ω \ {v}} does not.

3. Define the event

E′(v, u;A):= {v A←→ u} ∩ {�u′ ∈ Piv(v, u):v A←→ u′}

We remark that {u Z
d←→ x} = {u←→ x}. We can now define the lace-expansion coefficients. To

this end, let (ωi)i∈N0 be a sequence of independent site percolation configurations. For an event
E taking place on ωi, we highlight this by writing Ei. We also stress the dependence of random
variables on the particular configuration they depend on. For example, we write C (u;ωi) to denote
the cluster of u in configuration i.

Definition 2.5 (Lace-expansion coefficients) Let n ∈N0, x ∈Zd, and p ∈ [0, pc]. We define

	
(0)
p (x):= Pp(0⇐⇒ x)− J(x),

	
(n)
p (x):= pn

∑
u0,...,un−1

Pp
(
{0⇐⇒ u0}0 ∩

n⋂
i=1

E′(ui−1, ui;Ci−1)i
)
,

where u−1 = 0, un = x and Ci = C̃ ui(ui−1;ωi). Let furthermore 	p(x):=∑∞
n=0 (− 1)n	(n)

p (x).

It is proved in [13] that the functions (	(n)
p (x))n∈N0 are (absolutely) summable for every x and

that 	p is thus well defined. We remark that E′(ui−1, ui;Ci−1)i takes place solely on ωi only if Ci−1
is regarded as a fixed set; otherwise, it takes place onωi−1 as well asωi. Proposition 2.6 summarises
the main results of [13] (namely, Theorem 1.1 and Proposition 4.2).

Proposition 2.6 (OZE, infra-red bound and bounds on the lace-expansion coefficients). Let p ∈
[0, pc]. Then there is d0 ≥ 6 such that, for all d > d0, τp satisfies the Ornstein–Zernike equation

τp(x)= J(x)+	p(x)+ p
(
(J +	p) ∗ τp

)
(x). (2.1)

Secondly, there is a constant C= C(d0) such that

p|̂τp(k)| ≤ |D̂(k)| + C/d
1− D̂(k)

, (2.2)

where we take the right-hand side to be∞ for k= 0. Thirdly, 2dp≤ 1+ C/d, and lastly, for n ∈N0,

p
∑
x∈Zd

	
(n)
p (x)≤ C(C/d)n∨1. (2.3)

As a consequence, we also have p
∑

x 	p(x)≤ C/d.
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2.3 Diagrammatic bounds
In the proofs to follow, we need another result from [13]. We formulate it in terms of a diagram-
matic notation, as we are going to make use of this later as well. To this end, we introduce some
quantities related to τp.

Definition 2.7 (Modified two-point functions and triangles). Let x ∈Zd and define

τ ◦p (x):= δ0,x + τp(x), τ •p (x)= δ0,x + pτp(x).

Moreover, let �p(x)= p2(τp ∗ τp ∗ τp)(x), �•
p(x)= p(τ •p ∗ τp ∗ τp)(x), �•◦

p (x)= p(τ •p ∗ τ ◦p ∗ τp)(x),
and�••◦

p (x)= (τ •p ∗ τ •p ∗ τ ◦p )(x). We also set

�p = sup
x∈Zd

�p(x), �•
p = sup

0	=x∈Zd
�•

p(x), �•◦
p = sup

0	=x∈Zd
�•◦

p (x), �••◦
p = sup

x∈Zd
�••◦

p (x).

We need the following bounds obtained in [13].

Proposition 2.8 (Triangle bounds, [13, Lemma 4.7]). Let p ∈ [0, pc]. Then there is d0 ≥ 6 and a
constant C= C(d0) such that, for all d > d0,

max{�p,�•
p,�•◦

p } ≤ C/d, max{�•
p(0),�•◦

p (0),�••◦
p } ≤ C.

As part of the proof that bounds the functions 	
(i)
p in [13], a first bound is formulated in terms

of a long sum over products of the modified two-point functions. In the second step, those are
decomposed into products of the modified triangles. We need a formulation of this intermediate
bound on 	

(i)
p for i ∈ {1, 2} for Section 5, as well as a pictorial representation. We first state the

needed bound on 	
(1)
p .

Lemma 2.9 (Diagrammatic bound on 	
(1)
p , [13, Lemma 3.10]). Let p ∈ [0, pc]. Then∑

x∈Zd

	
(1)
p (x)≤

∑
w,u,t,z,x∈Zd :
u 	=x,|{t,z,x}|	=2

τ •p (w)τp(u)τp(w− u)τ ◦p (z−w)τ •p (t− u)τ •p (z− t)τ •p (x− t)τ ◦p (x− z).

(2.4)

The bounds in [13] are formulated only for p< pc, but as the bounds are increasing in p, a limit
argument easily extends them to the critical point. We now show how we represent the bound in
(2.4) in terms of pictorial diagrams. As the bound on 	

(2)
p is even longer to write down, Lemma

2.10 is stated only in terms of these pictorial bounds.
The points w,u,t,z,x summed over are represented as squares, factors of τp are represented as

lines and lines with a ‘•’ (‘◦’) symbol represent factors of τ •p (τ ◦p ). For example, the factor τp(w− u)
is represented as a line between two squares, which we think of as the pointsw and u. We interpret
the factor τp(u) as a line between u and the origin. We indicate the position of u and x in the below
diagrams. After expanding the two cases in (2.4) according to whether |{t, z, x}| = 3 or |{t, z, x}| =
1, this pictorial representation allows us to rewrite the bound in (2.4) as:∑
x∈Zd

	
(1)
p (x)≤ p2

∑
w,u,t,z,x∈Zd

τ •p (w)τp(u)τp(w− u)τ ◦p (z−w)τ •p (t− u)τp(z− t)τp(x− t)τp(x− z)

+ p
∑

w,u,x∈Zd

τ •p (w)τp(u)τp(w− u)τ ◦p (x−w)τp(x− u)

≤ p2
∑

+p
∑

.
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We now formulate the bound on 	
(2)
p ; more precisely, we are going to insert a case distinguishing

indicator, resulting in two bounds.

Lemma 2.10 (Diagrammatic bound on 	
(2)
p , [13, Lemma 3.10]). Let p ∈ [0, pc]. Then∑

u,v,x∈Zd

Pp
(
{0⇐⇒ u}0 ∩ E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩

({v /∈ 〈C0〉}0 ∪ {x /∈ 〈C1〉}1
))

≤ p5
∑

+p4
∑

+p4
∑

+ p3
∑

+p3
∑

(2.5)

and ∑
u,v,x∈Zd

Pp
(
{0⇐⇒ u}0 ∩ E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩ {v ∈ 〈C0〉}0 ∩ {x ∈ 〈C1〉}1

)
≤ p2

∑
. (2.6)

2.4 Convolution bounds
The last result from [13] we need to state is going to be important for the proofs of Section 4.

Lemma 2.11 (Bounds on convolutions of and τp, [13, Lemma 4.6]). Let m, n ∈N0 with 2m+ n≥
2. For p ∈ [0, pc] and d > 20n/9,

sup
a∈Zd

p2m+n−1
(
J∗2m ∗ τ ∗np

)
(a)≤ c�1−m

for some constant c= c(m, n).

Lemma 4.6 in [13] states only the upper bound c�−1, but an inspection of its proof gives the
stronger bound of Lemma 2.11: form≥ 4 this is evident from the first bound on page 842 in [13],
and form≤ 4 one has to adapt [13, (4.10)] and the subsequent lines accordingly.

Again, Lemma 4.6 in [13] is stated only for p< pc, but the bounds

2dpc ≤ 1+O(�−1) and sup
k∈(−π ,π]d

pc |̂τpc(k)|
Ĝ1(k)

≤ 1+O(�−1),

are sufficient for the statement to extend to pc. While the former bound is a direct consequence of
Proposition 2.6, the latter bound (for k 	= 0) follows from the infra-red bound (2.2) and |D̂(k)| ≤ 1.
The bound for k= 0 follows from the continuity of the Fourier transform.

3. Proof of Theorem 1.1
In this section, we prove Theorem 1.1 assuming Lemma 3.1, the latter providing an asymptotic
expansion of the lace-expansion coefficients 	(0),	(1) and 	(2) up to orderO(�−2).
Lemma 3.1 (Expansion of lace-expansion coefficients) As d→∞,

	̂
(0)
pc (0)= 1

2�
2p2c + 5

2�
−1 +O(�−2),

	̂
(1)
pc (0)=�pc + 2�2p2c + 4�−1 +O(�−2),

	̂
(2)
pc (0)= 10�−1 +O(�−2).

https://doi.org/10.1017/S0963548321000365 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000365


Combinatorics, Probability and Computing 437

Lemma 3.1 is the union of Lemmas 5.1, 5.2 and 5.3, which are proved in Section 5. As a prepa-
ration for these proofs, we need Section 4. These proofs are lengthy considerations of numerous
percolation configurations in search for contributions of the right order of magnitude (in terms of
powers of �−1). They are very mechanical in that they boil down to counting exercises and case
distinctions. This also means that no new ideas are needed to extend Lemma 3.1 to higher orders
of �−1 and expand the higher-order coefficients 	̂(3), 	̂(4), etc. The necessary effort increases
exponentially however.

Proof of Theorem 1.1. Let first p< pc. Taking the Fourier transform of (2.1) and solving for τ̂p
at k= 0 gives

pτ̂p(0)= p�+ p	̂p(0)
1− p(�+ 	̂p(0))

. (3.1)

A standard result is that pτ̂p(0)=Ep[|C (0)|]− 1 diverges as p↗ pc, cf. [1]. As the numerator of
(3.1) is bounded by 1+O(�−1), we conclude that pc satisfies

1− pc(�+ 	̂pc(0))= 0. (3.2)

From here on out, we abbreviate 	̂= 	̂pc(0) and 	̂(m) = 	̂
(m)
pc (0). We know from Proposition 2.6

that |	̂/�| =O(�−1), and so rearranging (3.2) yields

�pc = 1
1+ 	̂/�

= 1+O(�−1). (3.3)

Proposition 2.6 moreover provides the bound |	̂(m)| =O(�1−(m∨1)) for all m≥ 0. We can use
this to describe �pc in more detail as:

�pc = 1− 	̂(0)/�− 	̂(1)/�+ 	̂(2)/�+∑
m≥3 (− 1)m	̂(m)/�

1+ 	̂/�

= 1− 	̂(0)/�− 	̂(1)/�+ 	̂(2)/�

1+ 	̂/�
+O(�−3). (3.4)

Simplifying (3.4) to an error term of orderO(�−2) gives

�pc = 1− 	̂(0)/�+ 	̂(1)/�+O(�−2). (3.5)

Plugging in the expansion for 	̂(0) and 	̂(1) from Lemma 3.1 gives �pc = 1+ 5
2�

−1 +O(�−2).
Using this and the first identity of (3.3) in (3.4) gives

�pc = 1− (
	̂(0)/�− 	̂(1)/�+ 	̂(2)/�

)(
1+ 5

2�
−1 +O(�−2)

)+O(�−3). (3.6)

Applying Lemma 3.1 to (3.6) proves the theorem.

4. Further bounds on connection events
This section extracts some results that are frequently used in the proofs of Section 5. We start by
defining l-step connections.

Definition 4.1 (l-step connections) Let l ∈N and p≤ pc.

1. We define {u (1)←−→ v} as the event that u is connected to v via an occupied and self-avoiding
path of length at least l (shorter occupied paths might be present as well), and let τ

(l)
p =

Pp(u
(1)←−→ v).We define {u (≥1)←−−→ v} as the event that u is connected to v but there is no
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Figure 1. An illustration of the diagrammatic quantity ��(l). The ‘∼’ symbol on the line between 0 and umeans that |u| = 1.

occupied path from u to v of length less than l. Furthermore, let {u (≤1)←−−→ v} be the event
that u and v are connected by an occupied path of length at most l. Lastly, set {u (=1)←−−→
v}:= {u (≤1)←−−→ v} ∩ {u (≥1)←−−→ v}.

2. We define {u (1)⇐=⇒ v}:=∪l−1
j=1{u

(j)←→ v} ◦ {u (l−j)←−−→ v} as the event that u and v lie in a cycle
of length at least l, where all sites—except possibly u and v—are occupied.
Let {u (≥l)⇐=⇒ v} be the event that {u⇐⇒ v} and the shortest cycle containing u and v (with
all other vertices occupied) is of length at least l. Similarly, let {u (≤l)⇐=⇒ v} be the event
that {u⇐⇒ v} and the shortest cycle containing u and v is of length at most l, and let
{u (=l)⇐=⇒ v}:= {u (≥l)⇐=⇒ v} ∩ {u (≤l)⇐=⇒ v}.

3. Also, define

�(l)(u, v,w):=
∑

l1,l2,l3≥1:
l1+l2+l3=l

τ
(l1)
p (u)τ (l2)p (v− u)τ (l3)p (w− v),

��(l) (u, t, z, x):=
∑

l1,l2≥0,l3≥3:
l1+l2+l3=l−1

(
δt,uδ0,l1 + p(1− δ0,l1 )τ

(l1)
p (t− u)

)(
δ0,zδ0,l2 + (1− δ0,l2 )τ

(l2)
p (z)

)
× J(u)�(l3)(t− z, x− z, 0).

See Figure 1 for an illustration of ��(l). We remark that τ
(1)
p = τp. Moreover, note that Zd is

bipartite and thus contains no cycles of odd length, which is why {u (2l−1)⇐===⇒ v} = {u (2l)⇐=⇒ v} and
�(2l−1)(u, v, 0)=�(2l)(u, v, 0).

The bounds stated in Lemma 4.2 provide the core tools in dealing with lower-order terms in
the bounds on 	(i) in the proofs of Section 5.

Lemma 4.2 (Bounds on step connection probabilities) Let 2≤ l ∈N, x ∈Zd and p≤ pc. Then

τ
(l)
p (x)=O(|x|�1−(l+|x|)/2). (4.1)

Moreover, ∑
x∈Zd

Pp(0
(2l)⇐=⇒ x)≤ p

∑
u,x∈Zd

�(2l)(u, x, 0)=O(
�2−l), (4.2)

and

p2
∑

u,t,z,x∈Zd

��(9) (u, t, z, x)=O(�−2). (4.3)

Proof.We observe that

τ
(l)
p (x)≤

∑
y∈Zd

J(y)Pp(y occupied, y
(l−1)←−−→ x)= p(J ∗ τ

(l−1)
p )(x).
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Iterating this yields

τ
(l)
p (x)≤ pl−1(J∗(l−1) ∗ τp)(x). (4.4)

To prove the first part in (4.2), note that by the BK inequality,

∑
x∈Zd

Pp(0
(2l)⇐=⇒ x)≤

∑
x

2l∑
j=1

τ
(j)
p (x)τ (2l−j)p (x)≤

∑
x

2l∑
j=1

τ
(j)
p (x)p

(
J ∗ τ

(2l−j−1)
p

)
(x)

≤ p
∑
x

2l∑
j=1

τ
(j)
p (x)

∑
u

τ
(1)
p (u)τ (2l−j−1)p (x− u)≤ p

∑
u,x

�(2l)(u, x, 0).

To prove the second part of (4.2), we combine (4.4) with Observation 2.3, yielding

p
∑

u,x∈Zd

�(2l)(u, x, 0)≤ p
∑
l1,l2,l3:

l1+l2+l3=2l

∑
u,x∈Zd

pl1−1
(
J∗(l1−1) ∗ τp

)
(u)

× pl2−1
(
J∗(l2−1) ∗ τp

)
(x− u)pl3−1

(
J∗(l3−1) ∗ τp

)
(x)

= p2l−2
∑
l1,l2,l3:

l1+l2+l3=2l

(
J∗(2l−3) ∗ τ ∗3p

)
(0)= p2l−2

(
2l− 1
2

)(
J∗(2l−3) ∗ τ ∗3p

)
(0)

≤ 2l2p2l−2
(
J∗(2l−3) ∗ (

J + p(J ∗ τp)
)∗3)(0)

≤ 6l2
3∑

j=0
p2l−2+j

(
J∗2l ∗ τ

∗j
p

)
(0)≤O(�2−l), (4.5)

where the last inequality is due to Lemma 2.11.
To prove the bound on τ

(l)
p , we first use the bound (4.4) and then apply Observation 2.3 with

n= 1 andm= |x| + 1 to obtain

τ
(l)
p (x)≤O(1) pl+|x|

(
J∗(l+|x|) ∗ τp

)
(x)+

|x|∑
j=0

O(1) pl−1+jJ∗(l+j)(x).

The first term, that is, the term including a convolution with τp, is bounded using Lemma 2.11.
The second term, that is, the convolutions over J, are bounded using Observation 2.2 and (3.3) to
get

τ
(l)
p (x)≤O(1)�1−(l+|x|)/2 +

|x|∑
j=0

O(1)�1−(|x|+l+j)/2 ≤ (|x| + 2
)O(1)�1−(|x|+l)/2.

To prove (4.3), we split ��. First observe that when l1 = l2 = 0,

p2
∑
u,t,z,x

J(u)δt,uδ0,z�(l3)(t− z, x− z, 0)≤ p2
∑
u,x

�(l3)(u, x, 0),

which is inO(�−2) for l3 = 9. Let next l1 	= 0= l2. Then

p3
∑
u,t,x

J(u)τ (l1)p (t− u)�(l3)(t, 0, x)≤ p3
∑

≤�•
p�p =O(�−2).
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When l1 = 0 	= l2,

p2
∑
u,z,x

J(u)τ (l2)p (z)�(l3)(u− z, x− z, 0)= p2
∑
u,z

�(l3)(u, z, 0)(J ∗ τ
(l2)
p )(u− z). (4.6)

If l3 ≥ 5, then (4.6) is bounded by p�•
p
∑

u,z �(5)(u, z, 0)=O(�−2). If l3 ≤ 4, then l2 ≥ 4. We can
rewrite the left-hand side of (4.6) as:

p2
∑
u,z

∑
m1,m2,m3:

m1+m2+m3=l3

J(u)τ (l2)p (z)τ (m1)
p (z− u)(τ (m2)

p ∗ τ
(m3)
p )(z− u)

≤ p�•◦
p

∑
u,z

�(6)(u, z, 0)=O(�−2),

as l2 +m1 ≥ 5.
Lastly, let l1 	= 0 	= l2. If l3 ≥ 5, then

p3
∑
u,t,z,x

J(u)τ (l1)p (z)τ (l2)p (t− u)�(l3)(t− z, x− z, 0)

= p3
∑
t,z

�(l3)(t, z, 0)(τ (l1)p ∗ J ∗ τ
(l2)
p )(z− t)≤ p�p

∑
t,z

�(6)(t, z, 0)=O(�−2).

If l3 ≤ 4, then l1 + l2 ≥ 4. We bound

p3
∑
u,t,z,x

J(u)τ (l1)p (z)τ (l2)p (t− u)�(l3)(t− z, x− z, 0)≤ p2�•
p(J ∗ τ

(l2)
p ∗ τp ∗ τ

(l1)
p )(0)

≤�•
p
(
p4(J∗3 ∗ τ ∗3p )(0)

)=O(�−2),

where we used the same sequence of bounds as in (4.5). �
Lastly, we state an observation that appears enough times throughout the arguments of

Section 5 for us to extract and state it here.

Observation 4.3 Let a ∈Zd. Let further u 	= v be two neighbours of a, and set t= v+ u− a.
Then

E′(u, v; {a})∩ ({t= a} ∪ {t is vacant})⊆ {u (4)←−→ v}.
Proof. Let A= {a}. We know that E′(u, v; A)⊂ {u←→ v}. If a is vacant, then the shortest

possible u− v-path that may be occupied is of length 4 and the claim holds.
On the other hand, if a is occupied, then {u←→ v} holds. However, {u A←→ a} also holds, and

so for E′(u, v; A) to hold, a cannot be a pivotal vertex. But in order for a not to be pivotal, there
needs to be a second u− v-path, avoiding a. But either t is vacant, or t= a; in both cases, a second
u− v-path must be of length at least 4, proving the claim.

5. Detailed analysis of the first three lace-expansion coefficients
5.1 Analysis of ̂�(0)

We recall that we write 	̂(i) = 	̂
(i)
pc (0). We will also abbreviate P= Ppc and τ = τpc throughout

Section 5. We use (3.3) a lot throughout Section 5, and we recall that it states

�pc = 1+O(�−1)
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and follows from Proposition 2.6. Moreover, we will use (4.1) of Lemma 4.2 frequently in the
proofs to follow and will not mention every time we do so.

Lemma 5.1 (Finer asymptotics of 	̂(0)) As d→∞,

	̂(0) = 1
2�

2p2c + 5
2�

−1 +O(�−2).

Proof. Recall that 	̂(0) =∑
x
(
P(0⇐⇒ x)− J(x)

)
. This sum only gets contributions from |x| ≥

2. Now,

	̂(0) =
∑
|x|≥2

P(0⇐⇒ x)=
∑
|x|=2

P
(
0 (≤4)⇐==⇒ x

)+ ∑
|x|≤3

P
(
0 (=6)⇐==⇒ x

)+ ∑
|x|≥2

P
(
0 (≥8)⇐==⇒ x

)
=

∑
|x|=2

P
(
0 (≤4)⇐==⇒ x

)+ ∑
|x|≤3

P
(
0 (=6)⇐==⇒ x

)+O(�−2),

where the last identity is due to Lemma 4.2.We first consider 4-cycles. The only points xwith |x| ≥
2 that can form a 4-cycle with the origin are those with |x| = 2, ‖x‖∞ = 1. There are 1

2�(�− 2)

such points. If x= v1 + v2 (with |vi| = 1) is such a point, then {0 (≤4)⇐==⇒ x} holds if and only if
{v1, v2} ⊆ω. Therefore,∑

|x|≥2
P
(
0 (≤4)⇐==⇒ x

)= 1
2�(�− 2)p2c = 1

2�
2p2c −�−1 +O(�−2). (5.1)

We are left to consider points |x| ≥ 2 contained in cycles of length 6 that also contain the origin.
Note that this is possible for |x| ∈ {2, 3} and ‖x‖∞ ∈ {1, 2}. We first claim that ‖x‖∞ = 2 gives a
contribution of orderO(�−2).

Indeed, there are � points x with |x| = 2 and ‖x‖∞ = 2, and any such point is contained in at
most c� many origin-including cycles of length 6 (where c is some absolute constant). Any given
6-cycle has probability p4c of being present, and so the contribution is at most c�2p4c =O(�−2).

Similarly, there are at most �(�− 2) points x with |x| = 3, ‖x‖∞ = 2, and any such point is
contained in exactly one origin-including cycle of length 6. Hence, this contributes atmost�2p4c =
O(�−2) as well.

Let now |x| = 3, ‖x‖∞ = 1. There are 1
6�(�− 2)(�− 4) such points. Such a point spans a (3-

dimensional) cube with the origin, in which two internally disjoint paths of respective length 3,
making up the sought-after 6-cycle, have to be occupied. There are nine such cycles. By inclusion-
exclusion,

∑
|x|=3,‖x‖∞=1

P(0 (=6)⇐==⇒ x)

⎧⎨⎩≤
9
6�

3p4c = 3
2�

−1 +O(�−2),

≥ 1
6 (�− 4)3

[
9p4c −

(9
2
)
p5c

]= 3
2�

−1 +O(�−2)
, (5.2)

(for the lower bound, we sum the probabilities for the nine cycles to be occupied and substract the
probability that at least two of them are occupied at the same time). Lastly, consider one of the
1
2�(�− 2) points x= v1 + v2 with |x| = 2, ‖x‖∞ = 1, and |vi| = 1. Note that there are precisely
two paths of length 2 from 0 to x, namely the ones using vi. To produce a relevant contribution to
{0 (=6)⇐==⇒ x}, we claim that exactly one of the two vertices must be vacant and the other occupied.
Indeed, if both are occupied, then there is a 4-cycle containing 0 and x. If both are vacant, then
the shortest possible cycle containing 0 and x is of length 8.

We assume v1 to be occupied and v2 to be vacant (the reverse gives the same contribution by
symmetry, and we respect it with a factor of 2). It remains to count the number of paths of length
4 from 0 to x that avoid v1 and v2. Avoiding ±vi gives �− 4 options for the first step. There are
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two options for the second step (namely, to a neighbour of v1 or v2). Steps 3 and 4 are now fixed:
Out of the two shortest paths to x, one is via vi, and is not an option. In conclusion, the probability
that there is a 0− x-path of length 4 traversing some fixed neighbour of 0 (which is not ±vi) first
is p2c (2pc − p2c ). This gives

∑
|x|=2,‖x‖∞=1

P(0 (=6)⇐==⇒ x)

⎧⎨⎩≤
1
2�

34p4c = 2�−1 +O(�−2),

≥ (�− 4)3p3c (2pc − p2c )− 4�2pc
(
�−4
2

)
p6c = 2�−1 +O(�−2),

.

(5.3)
Summing up (5.1), (5.2), and (5.3) finishes the proof. �

5.2 Analysis of ̂�(1)

Lemma 5.2 (Finer asymptotics of 	̂(1)) As d→∞,

	̂(1) =�pc + 2�2p2c + 4�−1 +O(�−2).

Proof. Abbreviating C0 = C̃ u(0; ω0), we recall that

	̂(1) = pc
∑
u∈Zd

∑
x∈Zd

P
({0⇐⇒ u}0 ∩ E′(u, x;C0)1

)
. (5.4)

While this is a double sum over all points in Zd, we first prove that only small values of u give
relevant contributions. To this end, assume that |u| ≥ 3. We use the pictorial representation of the
bound in Lemma 2.9 and decompose it in terms of modified triangles introduced in Definition
2.7. In the below pictorial diagrams, points over which the supremum is taken (in particular, those
points are not summed over) are represented by coloured discs. The indicator that two such points
(discs) may not coincide is represented by a disrupted two-sided arrow. Lemma 2.9 together with
Proposition 2.8 then gives

pc
∑
|u|≥3

∑
x∈Zd

P
({0⇐⇒ u}0 ∩ E′(u, x;C0)1

)
≤ pc

∑
1{|u|≥3}

(
pc +

)
≤

∑ (
1{|u|≥3}

(
sup
•,•

pc
∑ (

sup
•,•

pc
∑ )))

+
∑ (

1{|u|≥3}
(
sup
•,•

pc
∑ ))

+ pc
∑

1{|u|≥3}

≤ (�•◦
pc�•

pc +�•
pc + pc

) ∑
1{|u|≥3}

≤O(�−1)
( ∑

u
P(0 (6)⇐=⇒ u)+ pc

∑
u,w

�(6)(u,w, 0)
)
=O(�−2), (5.5)

where the last identity is due to Lemma 4.2. When we encounter similar diagrams to the ones in
(5.5) at later stages of this paper, we decompose them in the same way as performed in (5.5), but
in less detail.

We consider the cases of |u| ∈ {1, 2} separately. For both, we make further case distinctions
according to the value of |x|. The contributions are summarised in the following table:
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	̂(1): x= 0 |x| = 1 |x| = 2 |x| = 3

|u| = 1 �pc �2p2c − 2�−1 �2p2c +�−1 2�−1

|u| = 2 �−1 �−1 �−1

Contributions of |u| = 1. By rotational symmetry, we can drop the sum over u, and rewrite
(5.4) as:

pc
∑
|u|=1

∑
x∈Zd

P
({0⇐⇒ u}0 ∩ E′(u, x; C0)1

)
= pc

∑
u,x∈Zd

J(u)P
(
E′(u, x; C0)1

)
, (5.6)

=�pc
∑
x∈Zd

P
(
E′(u, x; C0)1

)
. (5.7)

In (5.7) and in the following, we take u to be an arbitrary (but fixed) neighbour of the origin. We
recall that ωi is a sequence of independent percolation configurations and an event with subscript
i takes place on ωi. Moreover, E′(u, x; C0) is indexed to take place on configuration 1, which is
only accurate if C0 is regarded as a fixed set; otherwise, the event takes place on ω0 and ω1.

We proceed by splitting the sum over x in (5.7) (respectively, (5.6)) into different cases.
The case of |u| = 1, x= 0 contributes �pc: The event E′(u, x; C0)1 in (5.7) holds, the sum

collapses to 1, and the contribution is �pc.
The case of |u| = 1= |x| contributes �2p2c − 2�−1 +O(�−2): There are �− 1 choices for

x 	= u. We exclude the special case x=−u first. For other choices of x, we let v:= x+ u.

• For x=−u, we have E′(u, x; C0)1 ⊆ {u (4)←−→ x}1 by Observation 4.3. Hence, (5.7) is bounded
by

�pcτ (4)(u− x)=O(�−2).

• Let x 	= ±u and v ∈ω1, so that 0, u, v, x span a ‘square’ in one of the hyperplanes. Note first
that there are �− 2 choices for x, and we can treat them equally by symmetry. Since x∼ 0
and hence x ∈ 〈C0〉, we have that on the event {v ∈ω1}, the occurrence of E′(u, x; C0)1 implies
that either v is not pivotal for {u←→ x}, or it is pivotal but v /∈ 〈C0〉:

E′(u, x; C0)1 ∩ {v ∈ω1}1 = {v ∈ω1}1 ∩
(
{v /∈ 〈C0〉}0 ∪ {v /∈ Piv(u, x)}1

)
.

Note that all three appearing events on the right are independent of each other. Recalling that
C0 is shorthand for C̃ u(0,ω0), we see that {0↔ v}0 if either x ∈ω0 or if there is an occupied
path of length ≥ 4 in ω0 \ {u}:

P(v /∈ 〈C0〉)= 1− P
(
x ∈ω0

)− P
(
0 (≥4)←−−→ v in ω0 \ {u}

)= 1− pc +O(�−2).

In order for v to be not pivotal, there must be a ‘second connection’ from u to x, either a short
one via 0, or via a longer path, that is,

P(v /∈ Piv(u, x))= P(0 ∈ω1)+ P
(
u (≥4)←−−→ x in ω1 \ {v}

)= pc +O(�−2).
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We can now replace the sum over x in (5.7) by a factor of (�− 2) and thus obtain the
contribution:

�pc(�− 2)P
(
E′(u, x; C0)1 ∩ {v ∈ω1}1

)=�(�− 2)p2c
(
1− pc + pc − (1− pc)pc

)
+O(�−2)

= (�pc)2(1− pc)− 2�p2c +O(�−2)
=�2p2c − 3�−1 +O(�−2).

• Let x 	= ±u, v /∈ω1 and 0 /∈ω1. For E′(u, x;C0)1 to hold, there needs to be aω1-path between u
and x. Its pivotal points cannot lie in 〈C0〉 however. First, note that any relevant path between
u and x is of length 4, as

�pc(�− 2)P
(
E′(u, x; C0)1 ∩ {u (≥6)←−−→ x}1

)≤�2pcτ (6)(x− u)=O(�−2).
We now investigate the 4-paths from u to x that avoid 0 and v—from Lemma 5.1, we already
know that there are 2(�− 4) of them. Let z be one of the �− 4 unit vectors satisfying
dim〈〈u, x, z〉〉 = 3, where we let 〈〈·〉〉 denote the span. We denote by γ1 and γ2 the two u− x-
paths of length 4 that visit y1:= u+ z. W.l.o.g., γ1 visits y2:= y1 + x second and y3:= y2 − u
third, whereas γ2 visits z second and y3 third. Let {γi ⊆ω1} denote the event that the three
internal vertices of γi are ω1-occupied. See Figure 2a for an illustration.
We now show that only γ1 produces a relevant term. Assume first that y2 /∈ω1, but γ2 ⊆ω1.
For E′(u, x; C0)1 to hold, z ∈ 〈C0〉must not be a pivotal point. Under γ2 ⊆ω1,

{z /∈ Piv(u, x)}1 ⊆
⋃

a∈{u,y1},b∈{y3,x}
{a←→ b in ω1 \ {z}}1. (5.8)

Resolving the right-hand side of (5.8) by a union bound gives four connection events. The
shortest ω1-path from u to x of non-vacant vertices is of length 4. Moreover, the shortest ω1-
path from y1 to y3 of non-vacant vertices that avoids z is of length 4 as well, and so (5.7) is
bounded by:

�(�− 2)pc
∑
z
P
(
E′(u, x; C0)1, {0, v, y2} ∩ω1 =∅, γ2 ⊆ω1

)
≤�3p4c

(
τ (4)(x− u)+ τ (3)(y3 − u)+ τ (3)(x− y1)+ τ (4)(y3 − y1)

)
=O(�−2).

We now show that γ1 ∈ω1 gives a contribution. Note that under {0, v /∈ω1, γ1 ⊆ω1},
E′(u, x; C0)1 =

⋂
i∈{1,2,3}

(
{yi /∈ Piv(u, x)}1 ∪ {yi /∈ 〈C0〉}0

)
. (5.9)

But P({yi /∈ Piv(u, x)}1 ∪ {yi /∈ 〈C0〉}0)≥ 1− P(yi ∈ 〈C0〉)≥ 1− τ (2)(yi)= 1−O(�−1) for all
i by Lemma 4.2, and so, by inclusion-exclusion,

�(�− 2)pc
∑
z
P
(
E′(u, x; C0)1, {0, v} ∩ω1 =∅, γ1 ⊆ω1

)
{
≤�(�− 2)(�− 4)(1− pc)2p4c

(
1−O(�−1)

)=�−1 +O(�−2),
≥�3p4c (1−O(�−1))−�2(�−4

2
)
p7c =�−1 +O(�−2).

• Let x 	= ±u, v /∈ω1, and 0 ∈ω1. By Observation 4.3,

�pc(�− 2)P
(
E′(u, x; C0)1 ∩ {v /∈ω1, 0 ∈ω1}

)≤�2p2cτ
(4)(x− u)=O(�−2).

The case of |u| = 1, |x| = 2 contributes �2p2c +�−1 +O(�−2): There are 1
2�

2 choices for x.
We first consider the �− 1 choices neighbouring u and, among those, exclude the special case
x= 2u first. For x a neighbour of u, we set v:= x− u.
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(a) (b) (c)

(d)

Figure 2. An illustration of several appearing cases for |u| = 1. In the first two cases, 0 and v are vacant in ω1. In case (a), the
black path is γ1, the red and dotted one is γ2. In case (b), the two 0− x-paths are marked as black chains of arrows. In case
(c), {v1, v2} ∩ω0 = {v1} and the only relevant u− x-path is marked in black:

• Let x= 2u. Since x∼ u, we have E′(u, x; C0)1 = {x ∈ 〈C0〉}0 ⊆ {0 (4)←−→ x}0, and so the contri-
bution to (5.7) is bounded by �pcτ (4)(x)=O(�−2).

• Let 2u 	= x∼ u and v ∈ω0. There are �− 2 choices for x. The event E′(u, x; C0)1 holds, and
so

�pc
∑

2u 	=x∼u
E0

[
1{v∈ω0}P1

(
E′(u, x; C0)

)]=�(�− 2)p2c =�2p2c − 2�−1 +O(�−2).

• Let 2u 	= x∼ u and v /∈ω0. We partition

E′(u, x; C0)1 =
(
E′(u, x; C0)1 ∩ {0 (≤4)←−−→ x in Zd \ {u}}0

)
∪

(
E′(u, x; C0)1 ∩ {0 (≥6)←−−→ x in Zd \ {u}}0

)
and treat the second event by observing

�pc
∑

2u 	=x∼u
P
(
{v /∈ω0}0 ∩ {0 (≥6)←−−→ x in Zd \ {u}}0 ∩ E′(u, x;C0)1

)
≤�2pcτ (6)(x)=O(�−2).

As the only 2-paths from 0 to x go through u and v, respectively, we can focus on paths of
length 4 avoiding v and u. Hence, the status of v is independent of such paths. Let z be one of
the �− 4 neighbours of 0 with dim〈〈u, v, z〉〉 = 3. For any such z, there are two 0− x-paths
of length 4 that first visit z and avoid {v, u}. More precisely, these paths are (0, z, u+ z, x+
z, x) and (0, z, v+ z, x+ z, x). Let Q4(z) denote the event that at least one of these paths is in
ω0. See Figure 2b for an illustration. As the events {Q4(z)} are pairwise independent,

{v /∈ω0}0 ∩ {0 (≤4)←−−→ x in Zd \ {u}}0 ∩ E′(u, x; C0)1 = {v /∈ω0}0 ∩
(∪z Q4(z)

)
,

P(∪z Q4(z))= (�− 4)P(Q4(z))+O(�−4)= 2(�− 4)p3c +O(�−3).
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Consequently,

�pc
∑

2u 	=x∼u
P
(
{v /∈ω0}0 ∩ {0 (≤4)←−−→ x in Zd \ {u}}0 ∩ E′(u, x; C0)1

)
=�pc(�− 2)2(�− 4)p3c +O(�−2)= 2�−1 +O(�−2).

• Let |u− x| = 3 and ‖x‖∞ = 2. There are �− 1 choices for x. Let 2v= x. Note first that

�(�− 1)pcP
(({x ∈ 〈C0〉}0 ∪ {u (5)←−→ x}1

)∩ E′(u, x; C0)1
)

≤�2pc
(
τ (2)(x)τ (3)(x− u)+ τ (5)(x− u)

)
=O(�−2).

The complementary event is that x /∈ 〈C0〉 and the presence of a u− x-path of length 3. The
former implies v /∈ω0. There are at most four potential sites that can make up internal ver-
tices on a u− x-path of length 3, namely 0, v, u+ v, u+ 2v. To avoid potential pivotality of 0
and v and still guarantee a path of length 3, we require {v+ u, u+ 2v} ⊆ω1. But both these
vertices are of distance at least 2 from the origin, and at least one of them must be in 〈C0〉. In
conclusion,

�(�− 1)pcP
(
{x /∈ 〈C0〉}0 ∩ {u (≤3)←−−→ x}1 ∩ E′(u, x; C0)1

)
≤ 2�2pcτ (2)(u+ v)τ (3)(x− u)=O(�−2).

• Let |u− x| = 3, ‖x‖∞ = 1 and x ∈ 〈C0〉. Write x= v1 + v2, where |vi| = 1. We first show that
contributions arise when precisely one point in {v1, v2} is ω0-occupied. Note that when both
v1 and v2 are vacant in ω0, the contribution to (5.7) is bounded by �3pcτ (4)(x)τ (3)(x−
u)=O(�−2). On the other hand, if {v1, v2} ⊆ω0, then the contribution is bounded by
�3p3cτ (3)(u− x)=O(�−2). Let now v1 ∈ω0 and v2 /∈ω0 (the other case is identical and is
respected by counting the contribution twice). There are 1

2�
2(1+O(�−1)) choices for x. If

{u (5)←−→ x}1, then the contribution to (5.7) is O(�−2). Set z1 = u+ v2, z2 = u+ v2 + v1 and
set y= u+ v1. We claim that the only u− x-path of length 3 that produces a relevant con-
tribution is (u, z1, z2, x). See Figure 2c for an illustration. First, assume z1 /∈ω1. Note that the
only other paths of length 3 from u to x go through either 0 or y. But {0, y} ⊆ 〈C0〉, and so
neither 0 nor y can be a pivotal point. Hence, E′(u, x; C0)1 ∩ {z1 /∈ω1} enforces {0, y} ⊆ω1.
To get to x and avoid pivotality of any points in 〈C0〉, at least two points in {v1, v2, z1} must
be occupied, and the contribution to (5.7) is at most

2�pc
( 1
2�

2(1+O(�−1))
)
p2c

(
3
2

)
p2c =O(�−2).

If z1 ∈ω1 and z2 /∈ω1, then the only u− x-path of length 3 through z1 visits v2 ∈ 〈C0〉. This
gives a contribution ofO(�−2) by the same bound as above. We may turn to the case zi ∈ω1
for i ∈ {1, 2}. Now, under {v1 ∈ω0, {z1, z2} ⊆ω1}, we can express E′(u, x; C0)1 similarly to
(5.9), replacing yi (i ∈ [3]) by zi (i ∈ [2]). Applying the same bounds, we obtain a contribution
to (5.7) of

2�pc
( 1
2�

2(1+O(�−1))
)
P
(
v1 ∈ω0, {z1, z2} ⊆ω1

)
(1−O(�−1))=�−1 +O(�−2).

• Let |u− x| = 3, ‖x‖∞ = 1 and x /∈ 〈C0〉. Let γ be a u− x-path in ω1. By assumption, there
needs to be some z ∈ γ with z ∈ 〈C0〉. Consequently, z cannot be a pivotal point and so there
needs to be another u− x-path γ̃ inω1 that contains a point z̃ /∈ γ with z̃ ∈ 〈C0〉. Assume first
that both γ , γ̃ are paths of length 3. If they are disjoint, then the contribution to (5.7) is at
most 9�3p5c =O(�−2). If they share their first vertex, then, in the terminology of Figure 2c,
it must be either y or z1 (otherwise 0 is pivotal). W.l.o.g., γ̃ must then pass through z2 and so
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z̃= z2 ∈ 〈C0〉 needs to hold, and the contribution to (5.7) is at most �3p4cτ (3)(z2)=O(�−2).
Assume next that γ̃ is of length 5. As γ and γ̃ share at most one internal vertex (and there
are two internal vertices in γ ), we count a factor of pc for the unique vertex of γ , and the
contribution to (5.7) is at most 18�3p2cτ (5)(x− u)=O(�−2). Similarly, when both γ and γ̃

are of length at least 5, the contribution isO(�−2).

The case of |u| = 1, |x| = 3 contributes 2�−1 +O(�−2): Note that when {u (4)←−→ x}1, then the
contribution to (5.6) is at most

pc
∑
u,x

�(8)(u, x, 0)+ p2c
∑
u,t,z,x

��(9) (u, t, z, x)=O(�−2), (5.10)

by Lemma 4.2. We can therefore focus on x with |x− u| = 2 and {u (=2)←−−→ x}1. Moreover, we
can assume that there is no u− x-path of length 4. Let x= u+ v1 + v2, where |v1| = 1= |v2|, and
assume first that dim〈〈u, v1, v2〉〉 = 3. There are 1

2 (�− 2)(�− 4) choices for x. Let zi = u+ vi be
the two internal vertices of the two shortest u− x-paths—see Figure 2a for an illustration.

We first claim that only x ∈ 〈C0〉 produces a relevant contribution. Indeed, if x /∈ 〈C0〉, and as
there is no u− x-path of length 4, we must have zi ∈ω1 ∩ 〈C0〉 for i ∈ {1, 2}. For {0←→ zi}0 to
hold, either vi ∈ω0, or {0 (4)←−→ zi}0, and so (5.7) is at most

�3pcP
(
{{z1, z2} ⊆ω1} ∩

({{v1, v2} ⊆ω0} ∪ {0 (4)←−→ z1}0 ∪ {0 (4)←−→ z2}0
))

=�3p3c
(
p2c + τ (4)(z1)+ τ (4)(z2)

)=O(�−2).
Turning to x ∈ 〈C0〉, note that when {z1, z2} ⊆ω1, then (5.7) is at most

�3pcP
({0←→ x}0 ∩ {{z1, z2} ⊆ω1}

)=�3p3cτ
(3)(x)=O(�−2).

W.l.o.g., we assume that z1 ∈ω1 (and z2 /∈ω1) and (by symmetry) count the contribution twice.
Now, the contribution to (5.7) is equal to

�(�− 2)(�− 4)pcP
(
{x ∈ 〈C0〉}0 ∩ {z2 /∈ω1  z1}1 ∩

({z1 /∈ 〈C0〉0 ∪ {z1 /∈ Piv(u, x)}1
))
. (5.11)

If v1 ∈ω0, then z1 ∈ 〈C0〉 and so z1 cannot be pivotal, which, in turn, forces {u (4)←−→ x}1. But this
was already shown to produce an O(�−2) contribution. Further, if {0 (5)←−→ x}0, then (5.11) is at
most �3p2cτ (5)(x)=O(�−2), and so 0must be ω0-connected to x by a path of length 3.

There are precisely two 0− x-paths of length 3 that use neither v1 nor u, namely γ1 =
(0, v2, v1 + v2, x) and γ2 = (0, v2, z2, x). If both are occupied, the contribution is O(�−2). Note
that

P(z1 /∈ 〈C0〉 | γi ⊆ω0)≥ 1− 3τ (2)(z1)= 1−O(�−1),
and so (5.11) becomes

�3(1−O(�−1))pcP
((∪i=1,2 {γi ⊆ω0}0

)
, z1 ∈ω1

)
= 2�3p4c (1−O(�−1))= 2�−1 +O(�−2).

Finally, if dim〈〈u, v1, v2〉〉 ≤ 2, then the same bounds with at least one factor of � in the choice of x
gives a contribution ofO(�−2).

The case of |u| = 1, |x| ≥ 4 contributesO(�−2): The bound is the same as in (5.10).

Contributions of |u| = 2. If u is one of the� points with |u| = 2= ‖u‖∞, then 	̂(1) is bounded
by �pc

∑
x P(0⇐⇒ u)τ (u− x). For fixed j= |u− x|, this is bounded by

�1+jpcτ (2)(u)τ (4)(u)τ (j)(x− u)=O(�−2).
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We now show that we can impose some further restrictions on u and x. Recall the bound in
(5.5), and observe that if x /∈ 〈C0〉, then
pc

∑
|u|=2

∑
x

P
({0⇐⇒ u}0 ∩ {x /∈ 〈C0〉}0 ∩ E′(u, x; C0)1

)≤ p2c
∑

1{|u|=2} =O(�−2).

Similar considerations enforce that |x| ≤ 3 and |x− u| ≤ 2 as well as {0 (≤4)⇐==⇒ u}0. Before going
into the different cases, we note that there are 1

2�(�− 2) choices for u= v1 + v2 (where |vi| = 1),
and on every choice, {v1, v2} ⊆ω0 need to hold for a relevant contribution to arise. Taking all this
into consideration, the contribution to 	̂(1) becomes

1
2�(�− 2)p3c

∑
x∈Zd

1{|x|≤3,|u−x|≤2}P
(
{x ∈ 〈C0〉}0 ∩ E′(u, x; C0)1 | {v1, v2} ⊆ω0

)
, (5.12)

where v1 and v2 is a pair of arbitrary but fixed independent unit vectors (and u= v1 + v2).
The case of |u| = 2, x= 0 contributesO(�−2): As |u− x| = 2, the contribution to (5.12) is at

most �2p3cτ (2)(x− u)=O(�−2).
The case of |u| = 2, |x| = 1 contributes �−1 +O(�−2): Note that we only need to consider x ∈

{v1, v2} (otherwise |u− x| = 3). For these choices of x, both x ∈ 〈C0〉 and E′(u, x; C0)1 hold and
the contribution to (5.12) is as claimed.

The case of |u| = 2, |x| = 2 contributes �−1 +O(�−2): By the indicator in (5.12), we only con-
sider |x− u| = 2. Let first ‖x‖∞ = 2. There are only two such points at distance 2 of u, and so the
contribution to (5.12) is at most �2p3cτ (2)(x− u)=O(�−2).

Let thus x be one of the 2(�− 3) points with ‖x‖∞ = 1. W.l.o.g., we assume that x= v1 + v3,
where |v3| = 1. If v3 =−v2, then the contribution is bounded by �2p3cτ (2)(x− u)=O(�−2). Let
x be one of the remaining 2(�− 4) points with dim〈〈v1, v2, v3〉〉 = 3. As x∼ v1, the event x ∈ 〈C0〉
holds. We partition E′(u, x; C0)1 into whether {u (=2)←−−→ x}1 or {u (≥4)←−−→ x}1 and see that in the
latter case, the contribution to (5.12) is at most �3p3cτ (4)(x− u)=O(�−2).

For the existence of a path of length 2, either v1 or v4:= x+ v2 need to be ω1-occupied. As
v1 ∈ C0, it cannot be a pivotal point for the ω1-connection between u and x and there needs to
be another path. The contribution to (5.12) is therefore at most �3p4cτ (2)(x− u)=O(�−2). We
observe that

E′(u, x; C0)1 ∩ {v4 ∈ω1} = {v4 ∈ω1} ∩
(
{v4 /∈ Piv(u, x)}1 ∪ {0 	←→ v4 in Zd \ {u}}0

)
.

As previously,P(v4 /∈ Piv(u, x))=O(�−1) andP(0 	←→ v4 in Zd \ {u})= 1−O(�−1), and so the
contribution to (5.12) is

�3(1−O(�−1))p4c (1+O(�−1))=�−1 +O(�−2).
The case of |u| = 2, |x| = 3 contributes �−1 +O(�−2): We only need to consider neighbours of
u, otherwise |u− x| ≥ 3. Recall that for |u− x| = 1, the event E′(u, x;C0)1 holds precisely when x ∈
〈C0〉. Under our conditioning, x must be connected to {0, v1, v2}. Note that there are two choices
for x with ‖x‖∞ = 2. Since P(x ∈ 〈C0〉)≤ 3 maxy∈{0,v1,v2} τ (2)(x− y)=O(�−1), we may focus on
the �− 2 choices of x with ‖x‖∞ = 1.

Let x= u+ v3 and set z1:= v1 + v3, z2:= v2 + v3. If {z1, z2} ∩ω0 =∅, then {0 (5)←−→ x}0 holds,
and the contribution to (5.12) is at most�3p3c maxy∈{0,v1,v2} τ (3)(x− y)=O(�−2). If {z1, z2} ⊂ω0,
then the contribution to (5.12) is at most �3p5c =O(�−2).

We consider the case where z1 /∈ω0  z2 and respect the other case with a factor of 2. The
contribution to (5.12) is

�3(1+O(�−1)) p4c (1+O(�−1))=�−1 +O(�−2).
This finishes the analysis of 	̂(1).
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5.3 Analysis of ̂�(2)

Lemma 5.3 (Asymptotics of 	̂(2)). As d→∞,

	̂(2) = 10�−1 +O(�−2).
Proof. For the proof, we recall that

	̂(2) = p2c
∑

u,v,x∈Zd

P
(
{0⇐⇒ u}0 ∩ E′(u, v; C0)1 ∩ E′(v, x; C1)2

)
, (5.13)

where C0 = C̃ u(0; ω0) and C1 = C̃ v(u; ω1). We first show that when either v /∈ 〈C0〉 or x /∈ 〈C1〉,
then the contribution to 	̂(2) isO(�−2). Indeed, by Lemma 2.10 and Proposition 2.8,

p2c
∑

u,v,x∈Zd

P
(
{0⇐⇒ u}0 ∩ E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩

({v /∈ 〈C0〉}0 ∪ {x /∈ 〈C1〉}1
))

≤ p2c
∑ (

p3c +p2c
+ p2c +pc +pc

)
(5.14)

≤
∑ (

�•
pc(�•◦

pc )
2�pc +�•

pc�pc�•◦
pc +�•

pc�•◦
pc�••◦

pc �pc +�•
pc(�•◦

pc )
2
)

+ p3c
∑ (

pc +
)

(5.15)

≤O(�−3)
∑

=O(�−2).

We expanded the third diagram in (5.14) to get the two diagrams of (5.15). We next show that
only |u| = 1 gives a relevant contribution. Indeed,

p2c
∑

u,v,x∈Zd :|u|≥2
P
(
{0⇐⇒ u}0 ∩ E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩ {v ∈ 〈C0〉}0 ∩ {x ∈ 〈C1〉}1

)
≤ p2c

∑
1{|u|≥2} ≤�•

pc�•◦
pc

∑
1{|u|≥2} =O(�−2).

We can thus fix u to be an arbitrary neighbour of the origin and need to investigate

�p2c
∑

v,x∈Zd

P
(
E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩ {v ∈ 〈C0〉}0 ∩ {x ∈ 〈C1〉}1

)
. (5.16)

Before going into specific cases, we exclude some of them right away:When |x| ∨ |u− x| ≥ 4, then
the contribution to (5.16) is

p2c
∑

1{|x|∨|u−x|≥4} ≤
∑
u,t,v,x

��(9) (u, t, v, x)=O(�−2)

by Lemma 4.2. In the above, a line decorated with a ‘∼’ symbol denotes a direct edge. Similarly,
when |v| ≥ 3 or |x− v| ≥ 3, the contribution to (5.16) is at most

p2c
∑

1{|v|∨|x−v|≥3} ≤ pc�•
pc

(
τ (3) ∗ τ ∗ τ • ∗ J)(0)+ p2c

∑
1{|x−v|≥3}

≤ pc�•
pc

∑
u,v

�(6)(u, v, 0)+ p4c
(
J∗3 ∗ τ ∗3

)
(0)+ pc�•◦

pc

∑
t,x

�(6)(t, x, 0)=O(�−2).

We now investigate (5.16) by splitting the double sum over v and x. We organise this by con-
sidering the three main cases for |v| ∈ {0, 1, 2}. An overview of the contributions is given in the
following table:

https://doi.org/10.1017/S0963548321000365 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000365


450 M. Heydenreich and K. Matzke

	̂(2): x= 0 |x| = 1 |x| = 2 |x| = 3

v= 0 2�−1 �−1

|v| = 1 �−1 2�−1 �−1

|v| = 2 �−1 �−1 �−1

Contributions of v= 0. The events E′(u, v; C0)1 and {v ∈ 〈C0〉} hold.
The case of |x| = 1 contributes 2�−1 +O(�−2): First, consider the choice of x= u. It is easy

to see that the event in (5.16) holds and the contribution is �p2c =�−1 +O(�−2).
Consider 0∼ x 	= u. As v∼ x, we have E′(v, x;C1)2 = {x ∈ 〈C1〉}1. If x=−u, then {x ∈ 〈C1〉}1 ⊆

{u (4)←−→ x}1 and we receive a contribution of order O(�−2). Consider now one of the �− 2
remaining choices for x and set z= u+ x. Then

P(x ∈ 〈C1〉)= P(z ∈ω1)+ P(z /∈ω1, x ∈ 〈C1〉)= pc +O(τ (4)(x− u))= pc +O(�−2),

yielding a contribution to (5.16) of �(�− 2)p3c +O(�−2)=�−1 +O(�−2).
The case of |x| = 2 contributes �−1 +O(�−2): If |u− x| = 3, then the contribution to (5.16)

is bounded by �3p2cτ (2)(x− v)τ (3)(u− x)=O(�−2). Similarly, if x= 2u, we obtain a bound of
�p2cτ (2)(x− v)=O(�−2). Let therefore x be one of the �− 2 remaining neighbours of u and
note that {x ∈ 〈C1〉} holds.

We set z= x− u. If z /∈ω2, then E′(v, x; C1)2 ⊆ {v (4)←−→ x}2 by Observation 4.3, and the
contribution to (5.16) is at most �2p2cτ (4)(x− v)=O(�−2). If z ∈ω2, then E′(v, x; C1)2 = {z /∈
Piv(v, x)}2 ∪ {z /∈ 〈C1〉}1. By a similar argument to the one below (5.9), the contribution to (5.16)
becomes

�(�− 2)p2cP
(
{z ∈ω2} ∩

({z /∈ Piv(v, x)}2 ∪ {z /∈ 〈C1〉}1
))=�2p3c (1−O(�−1))=�−1 +O(�−2).

The case of |x| = 3 contributesO(�−2): Distinguishing between |u− x| = 4 (at most �3

choices for x) and |u− x| = 2 (at most �2 choices), the contribution to (5.16) is at most

�p2cτ
(3)(x− v)

(
�3τ (4)(u− x)+�2τ (2)(u− x)

)=O(�−2).

Contributions of |v| = 1. Let us first consider v=−u and show that this case contributes
O(�−2). Indeed, E′(u, v; C0)1 ⊆ {u (4)←−→ v}1 by Observation 4.3. With the further inclusion
E′(v, x; C1)2 ∩ {x ∈ 〈C1〉} ⊆ {v←→ x}2, we have that the contribution to (5.16) is at most

�p2cτ
(4)(u− v)

( ∑
|x|=1

τ (2)(x− v)+
∑
x:v∼x

1+
∑

|x|=2,|x−v|=3
τ (3)(x− v)

+
∑

|x|=3,|x−v|=2
τ (2)(x− v)+

∑
|x|=3,|x−v|=4

τ (4)(x− v)
)

≤O(�−3)
(
�O(�−1)+�+�2O(�−2)+�2O(�−1)+�3O(�−3)

)
=O(�−2).

We may therefore take v 	= ±u to be one of the �− 2 remaining neighbours of the origin. Set
t= v+ u. We first claim that t /∈ω1 results in anO(�−2) contribution. Note that, by Observation
4.3, E′(u, v; C0)1 ∩ {t /∈ω1} ⊆ {u (4)←−→ v}1. As there is only one choice of x such that u∼ x∼ v and
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at most � choices such that |x| = 3 and x∼ v, we can bound (5.16) by

�2p2c
∑
x∈Zd

(
τ (4)(v− u)

(
1{x=0} + 1{|x|=1}τ (2)(x− v)+ 1{|x|=2,u∼x∼v}

+ 1{|x|=3,|u−x|=2=|v−x|}τ (2)(x− v)
)+ 1{|x|=2,v∼x}P

(
E′(u, v; C0)1 ∩ {t /∈ω1} ∩ {x ∈ 〈C1〉}

))
≤O(�−2)

(
2+ 2�τ (2)(x− v)

)+O(1)
∑

|x|=2,x∼v
P(2)(E′(u, v; C0)1 ∩ {t /∈ω1} ∩ {x ∈ 〈C1〉}

)
.

It remains to bound the last probability. There are at most � choices for x. If {u (5)←−→ x}, then
the contribution is O(�−2). Note that the u− v-path in ω1 cannot use and is independent of the
status of 0, as the origin may not be a pivotal point. Hence, if 0 ∈ω1, the contribution is at most
�pcτ (4)(v− u)=O(�−2). We therefore assume 0 /∈ω1 and aim to bound

�P
({u (4)←−→ v}1 ∩ {0, t /∈ω1} ∩ {u (≤3)←−−→ x}1

)
(5.17)

When avoiding 0 and t, there are only two u− x-paths of length 3, namely γ1 = (u, y, z, x) and
γ2 = (u, y, y− u, x), where y:= x+ u− v and z:= y+ v. See Figure 3a for an illustration. But now,
(5.17) is bounded by:

�P
(
{0, t /∈ω1} ∩

⋃
i=1,2

⋃
s∈γi\{x}

{γi ⊆ω1} ◦ {s←→ v}1
)

≤ 2�p2c
(
τ (4)(v− u)+ τ (3)(y− v)+ 2τ (2)(z− v)

)=O(�−2).
As a consequence, we can focus on t ∈ω1, and (5.16) reduces to

�(�− 2)p2c
∑
x∈Zd

P
(
E′(u, v; C0)1 ∩ E′(v, x; C1)2 ∩ {t ∈ω1, x ∈ 〈C1〉}1

)
.

But under t ∈ω1, we have E′(u, v; C0)1 = {t /∈ Piv(u, v)}1 ∪ {t /∈ 〈C0〉}0. The latter event has
probability 1−O(�−1), and so we can can instead investigate

�2p2c (1−O(�−1))
∑
x∈Zd

P
(
E′(v, x; C1)2 ∩ {t ∈ω1, x ∈ 〈C1〉}1

)
, (5.18)

where u and v are two arbitrary (but fixed) neighbours of 0 (satisfying (u 	= ±v).
The contribution of x= 0 is �−1 +O(�−2): Note that x ∈ 〈C1〉 holds, and so does

E′(v, x; C1)2. Hence, the contribution to (5.18) is �−1 +O(�−2).
The contribution of |x| = 1 isO(�−2): If x ∈ {±u,−v}, we can bound the contribution to

(5.18) by �2p2cτ (2)(u− v)τ (2)(x− v)=O(�−2) (as both {v←→ x}2 and {u←→ v}1 need to
hold). Consider thus one of the �− 4 choices for x satisfying dim〈〈u, v, x〉〉 = 3. Conditional on
t ∈ω1, we have {x ∈ 〈C1〉}1 ⊆ {u (2)←−→ x}1 ∪ {t (3)←−→ x}1, and so the contribution is at most

�3p3cτ
(2)
p (x− v)

(
τ
(2)
p (x− u)+ τ

(3)
p (x− t)

)=O(�−2).

The contribution of |x| = 2 is 2�−1 +O(�−2): We can restrict to the choices of x where v∼ x
by the considerations made in the beginning of the proof.

• Let x∼ u. There is only one choice for x such that |u− x| = |v− x| = 1, namely x= t. For
this choice, E′(v, x; C1)2 certainly holds, and also x ∈ 〈C1〉. We get a contribution of �−1 +
O(�−2).

• Let x 	∼ u. There are�− 2 choices for x. We first exclude x= v− u. As P(x ∈ 〈C1〉 | t ∈ω1)≤
τ (4)(x− t)+ τ (3)(x− u)=O(�−2), the contribution in total isO(�−2).
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(a) (b) (c)

Figure 3. An illustration of several appearing cases for |v| = 1. In (a), the two paths from u to x of length 3 that avoid 0
and t are drawn. In (b), the path along t, z which ensures x ∈ 〈C1〉 for a contribution of �−1 is drawn. In (c), the scenario
|x− u| = 2= |v− x| is shown, and the path along z ensuring {v←→ x}2 is drawn in black.

Let now x be one of the �− 3 remaining neighbours of v. As v∼ x, we have E′(v, x; C1)2 =
{x ∈ 〈C1〉}. We set z= x+ u (see Figure 3b) and assume first that z /∈ω1. Then

{z /∈ω1  t, x ∈ 〈C1〉} ⊆ {z /∈ω1  t} ∩ ({u (3)←−→ x off {t}} ∪ {t (4)←−→ x})
and the contribution to (5.18) is at most �2p3c (1−O(�−1))(τ (3)(x− u)+ τ (4)(x− t))=
O(�−2). On the other hand, if z ∈ω1, then x ∈ 〈C1〉 holds and (5.18) becomes

�2p2c (1−O(�−1))(�− 3)P(t, z ∈ω1)=�−1 +O(�−2).

The contribution of |x| = 3 is �−1 +O(�−2): There are at most �3 choices for x such that
|u− x| = |v− x| = 4 and there are at most 2�2 choices where |x− u| 	= |v− x|. The contribution
of those x to (5.18) is therefore bounded by

�2p2c
( ∑
|x|=3

τ (4)(x− v)τ (4)(u− x)+ 2
∑

|x−v|=2 	=|u−x|
τ (2)(x− v)τ (4)(u− x)

)
=O(�−2).

It remains to investigate those x with |u− x| = 2= |v− x|. This is only possible when x∼ t. Let
first x= 2u+ v. By Observation 4.3, E′(v, x; C1)2 ∩ {t ∈ω1} ⊆ {v (4)←−→ x}, and (5.18) is at most
�2p2cτ (4)(x− v)=O(�−2).

Let now x be one of the �− 3 remaining neighbours of t (note that either ‖x‖∞ = 1 or x=
2v+ u).We set z:= x− u and point to Figure 3b for an illustration. As t is occupied inω1, we have
x ∈ 〈C1〉. Assume now z /∈ω2. By Observation 4.3, E′(v, x;C1)2 ⊆ {v (4)←−→ x}2 and the contribution
to (5.18) is at most �2p3cτ (4)(x− v)=O(�−2). On the other hand, if z ∈ω2, (5.18) becomes

(1+O(�−1))(�− 3)P
({t ∈ω1, z ∈ω2} ∩

({z /∈ 〈C1〉}1 ∪ {z /∈ Piv(v, x)}2
))=�−1 +O(�−2).

Again, we have used that {z /∈ 〈C1〉}1 has probability 1−O(�−1) conditional on t ∈ω1.

Contributions of |v| = 2. We first show that when |u− v| = 3, no relevant contributions arise.
Indeed, for those v, (5.13) is at most

p2c
∑

1{|v|=2,|u−v|=3} ≤ pc
∑ (

1{|v|=2,|u−v|=3}
(
sup
•,•

pc
∑ ))

≤�•
pc

( ∑
1{|v|=2,|u−v|=3}pc +p2c

∑
1{|v|=2,|u−v|=3}

)
≤�•

pc

(
pc

∑
u,v

�(6)(u, v, 0)+ 2p4c
(
J∗3 ∗ τ ∗3

)
(0)

)
=O(�−2).

Moreover, v= 2u implies {v ∈ 〈C0〉}0 ⊆ {0 (4)←−→ v}0.We can thus bound the contribution to (5.16)
by �pc�•

pτ
(4)(v)=O(�−2). Let v be one of the �− 2 remaining neighbours of u, implying
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E′(u, v; C0)= {v ∈ 〈C0〉}0. Let z= v− u. Then for v ∈ 〈C0〉 to hold, either z ∈ω0 or there must be
a path of length at least 4. In the latter case, we can bound (5.16) by p2c

∑
u,v,t,x ��(9) (u, t, v, x)=

O(�−2). We can therefore restrict to investigating

�(�− 2)p3c
∑
x∈Zd

P
(
E′(v, x; C1)2 ∩ {x ∈ 〈C1〉}1

)
, (5.19)

where u is an arbitrary (but fixed) neighbour of 0 and v /∈ {0, 2u} is some fixed neighbour of u.
The contribution of x= 0 isO(�−2): As {0←→ v}2 needs to hold, we get a bound on (5.19)

by �2p3cτ (2)(v)=O(�−2).
The contribution of |x| = 1 is �−1 +O(�−2): We only need to consider |v− x| = 1, and there

are two such choices for x. If x= v− u, then the contribution is bounded by �2p3cτ (2)(u− x)=
O(�−2).

On the other hand, if x= u, both E′(v, x; C1)2 and {x ∈ 〈C1〉}1 hold and the contribution to
(5.19) is �−1 +O(�−2).

The contribution of |x| = 2 is �−1 +O(�−2): Note that only |v− x| = 2may produce relevant

contributions. Writing v= u+ z, we first consider x= u− z. Again, E′(v, x;C1)2 ⊆ {v (4)←−→ x}2 by
Observation 4.3, and so the contribution to (5.19) is at most�2p2cτ (4)(v− x)=O(�−2). Similarly,
If |u− x| = 3, the contribution is at most �3p3cτ (2)(v− x)τ (3)(u− x)=O(�−2).

Let now y be one of the �− 4 unit vectors satisfying dim〈〈u, z, y〉〉 = 3. Write x= u+ y and
set t= x+ z= v+ y. We claim that we only get a relevant contribution if t ∈ω2: As {t /∈ω2} ⊆
{v (4)←−→ x}2 by Observation 4.3, this gives a bound on the contribution to (5.19) by �3p3cτ (4)(x−
v)=O(�−2). Under t ∈ω2, (5.19) becomes

�3(1−O(�−1))p3cP
(
{t ∈ω2} ∩

({t /∈ Piv(v, x)}2 ∪ {t /∈ 〈C1〉}1
))

(5.20)

=�3(1−O(�−1))p4c (1−O(�−1))=�−1 +O(�−2). (5.20)

The contribution of |x| = 3 is �−1 +O(�−2): We only need to consider terms where |v− x| =
1. Let x= v+ y, where |y| = 1. If y= z, then {x ∈ 〈C1〉} ⊆ {v (4)←−→ x}1 and the contribution to
(5.19) isO(�−3). For the other�− 2 choices for x, we set t= u+ y. When t /∈ω2, we require {x ∈
〈C1〉} ⊆ {v (4)←−→ x}1 and the contribution isO(�−2). When t ∈ω2, the contribution is identical to
(5.20) and hence �−1 +O(�−2). �
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