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An important problem in nuclear fusion plasmas is the prediction and control of
turbulence which drives the cross-field transport, thus leading to energy loss from
the system and deteriorating confinement. Turbulence, being a highly nonlinear and
multiscale process, is challenging to theoretically describe and computationally model.
Most advanced computational models fall into one of the two categories: fluid or
gyro-kinetic. They both come at a high computational cost and cannot be applied for
routine simulation of plasma discharge evolution and control. Development of reduced
models based on (physics informed) artificial neural networks could potentially fulfil the
need for affordable simulations of plasma turbulence. However, the training requires an
extensive data base and the obtained models lack extrapolation capability to scenarios not
originally encountered during training. This leads to reduced models of limited validity
which may not prove adequate for predicting scenarios in future machines. In contrast,
we explore a data-driven model discovery approach based on sparse regression to infer
governing nonlinear partial differential equations directly from the data. Our input data are
generated by simulations of drift-wave turbulence according to the Hasegawa–Wakatani
and modified Hasegawa–Wakatani models. Balancing model accuracy and complexity
enables the reconstruction of the systems of partial differential equations accurately
describing the dynamics simulated in the input data sets. Sparse regression is not
data hungry and can be extrapolated to unexplored parameter ranges. We explore and
demonstrate the potential of this approach for fusion plasma turbulence modelling. The
findings show that the methodology is promising for the development of reduced and
computationally efficient turbulence models as well as for existing model cross-validation.
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1. Introduction

Creating an energy source by means of harnessing energy released in nuclear fusion
reactions has been a long outstanding goal in energy research. The prospect of clean
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energy production with virtually inexhaustible fuel reserves has motivated the efforts to
overcome the many engineering challenges and to fill the gaps in our understanding of
relevant fundamental processes.

For practical fusion applications hydrogen isotopes – deuterium and tritium – need to be
heated to extreme temperatures at which the fuel becomes a high-temperature plasma. The
plasma can be thermally insulated and confined by a strong magnetic field, which is why
the most advanced fusion concepts rely on magnetic confinement. The most promising is
the tokamak: a device with a toroidal geometry featuring closed magnetic flux surfaces
traced out by the field lines. The tokamak field geometry reduces the loss of charged
particles in the direction perpendicular to the confining field. The experiments have shown
that the quality of plasma confinement scales with the confining field strength and that it
is determined by mechanisms which drive cross-field transport from the core to the edge
and, in this way, drive the energy loss from the system. Thus our capability of putting
fusion energy on the grid has been limited by both our capability to build large-scale
high-field fusion magnets and our understanding of cross-field transport mechanisms
– in particular of turbulence. Massachusetts Institute of Technology’s SPARC (Creely
et al. 2020) tokamak currently under development will incorporate high-temperature
superconductors (HTS) (Hartwig et al. 2020) into large-scale high-field fusion magnets1

and will realize a tokamak magnetic field strength over a factor of 2 larger than presently
possible. The higher magnetic field will improve confinement and overall performance
but it will also put the reactor into an unexplored parameter range when it comes to
turbulence in the plasma edge. For this reason, edge turbulence modelling and its reliable
extrapolation to SPARC conditions is critical.

Nonlinear gyrokinetic models (Wang et al. 2006; Brizard & Hahm 2007; Garbet et al.
2010; Cheng et al. 2020) capture the microscopic plasma behaviour and can simulate
the plasma dynamics but at a high computational cost. Computationally less expensive
fluid models, in certain parameter ranges of interest, can be applied for modelling
the large-scale plasma dynamics but at the cost of excluding potentially important
microscopic processes. The development of new reduced plasma models that optimally
balance between physical accuracy and computational complexity are therefore essential
for modelling these systems. However, their theoretical development is hindered by the
complexity and the nonlinearity of plasma turbulence where first principle derivations are
difficult and often elusive.

Machine learning and data science tools are offering a new approach to develop these
models based on the data. Valuable results for fusion plasmas have been achieved by
using neural networks trained on extensive data bases either generated by kinetic codes
(van de Plassche et al. 2020) or experimental data (Churchill et al. 2020). Such neural
networks are fast and for this reason useful in practical applications such as routine
simulation of tokamak discharge evolution and control. Limitations of the neural network
approach are its necessity for an extensive training data base and the lack of interpretability
of the learning algorithms. The extrapolation of the results to scenarios not originally
present in the training data base present a challenge although significant efforts are being
made to improve the extrapolation capabilities of neural networks (Raissi, Perdikaris &
Karniadakis 2019; Moseley, Markham & Nissen-Meyer 2020; Moseley, Nissen-Meyer
& Markham 2020). For these reasons the application of neural networks to complex
systems modelling leads to reduced models of limited validity. Other data-driven methods
exist which could potentially be applied to turbulence in fusion plasmas. Among others

1Magnets developed for SPARC will be the first ever large-scale HTS magnets useful also in various applications
other than fusion. For more details on SPARC see Creely et al. (2020).
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these include: nonlinear Laplacian spectral analysis (Giannakis & Majda 2012), Koopman
analysis (Mezic 2005, 2013), dynamic mode decomposition (Rowley et al. 2009; Schmid
2010; Kutz et al. 2016), symbolic regression (Bongard & Lipson 2007; Schmidt & Lipson
2009; Schmidt et al. 2011; Daniels & Nemenman 2015a,2015b) and sparse regression
(Brunton, Proctor & Kutz 2016; Rudy et al. 2017).

In this paper we explore a novel data-driven approach for the discovery of reduced
plasma models based on sparse regression (Brunton et al. 2016; Rudy et al. 2017). Our
approach also stems from machine learning methods and attempts to infer nonlinear
differential equations from synthetic time-series data. Sparse regression in theory selects
parsimonious models by balancing model accuracy and complexity, enabling identification
of governing partial differential equations directly from the data. The identified equation
terms are dominant features selected from a matrix which spans the feature space
containing all equation candidate terms. Unlike the artificial neural network or other
data-driven model discovery methods (DDMD), sparse regression does not require large
amounts of data. Moreover, the output of this algorithm is an interpretable partial
differential equation, which offers insight into the underlying physics and has a greater
capability to generalize beyond the training data. In addition, the integral formulation has
more recently been proposed to offer robustness to noise (Schaeffer & McCalla 2017;
Alves & Fiuza 2020; Reinbold, Gurevich & Grigoriev 2020; Messenger & Bortz 2021)
crucial for applications to experimental data.

Sparse regression has been shown to successfully recover the fundamental hierarchy
of plasma physics models from the kinetic Vlasov equation to single-fluid magneto-
hydrodynamics from first principles (Alves & Fiuza 2020; Kaptanoglu et al. 2021).
Here, we extend that work by applying it to resistive drift-wave turbulence simulations
based on the Hasegawa–Wakatani (HW) and modified Hasegawa–Wakatani (mHW)
models (Hasegawa & Mima 1978; Wakatani & Hasegawa 1984; Hasegawa & Wakatani
1987). These models couple the continuity and vorticity equations in reduced
magnetohydrodynamics to describe drift-wave turbulence near the edge of a tokamak
plasma. They are important yet simplified models and are therefore often used for
benchmarking of fluid based turbulence simulations. The successful application of DDMD
to HW and mHW shows the potential of this approach for inferring reduced but accurate
descriptions of plasma turbulence which are directly relatable to analytic theory. We use
the data generated by numerically solving the HW and mHW equations as input for our
DDMD procedure and demonstrate that we can recover the correct set of coupled partial
differential equations. To further probe the potential for applications to experimental
data, we repeat the procedure at increasing noise levels and lay the groundwork for the
development of feature space completeness analysis. Detailed description of our method
as well as the HW turbulence model is given in § 2. In § 3 we present our main findings
and explore the issue of feature space completeness. The discussion and conclusions are
given in §§ 4 and 5.

2. Method
2.1. DDMD and sparse regression

In general, sparse (symbolic) regression is a type of machine learning algorithm which
searches a predefined feature space in order to output mathematical expressions which best
describe the input dataset. The objective is to use sparse regression to infer the underlying
partial differential equations (PDEs) from the data. The inference of a PDE is done by
regression on a predefined line up of candidate PDE terms – the feature space. The method
used for this work is suited to be applied to time-series data with spatio-temporal variation,
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in particular data sets containing the evolution of the system dynamics in the nonlinear
regime. The feature space Θ is defined as a matrix in which each column represents a
scaled feature: a numerical estimate of a variable, its derivatives, linear combinations of
variables and derivatives or polynomial combinations of terms up to a specified order,
over a data sample over time. The algorithm discovers both the model structure and the
model parameters. In practice prior knowledge and physical intuition about the systems
dynamics informs the design of candidate terms – features – included in the feature space.
However, in theory, prior knowledge about the system dynamics is not used. This makes
the approach potentially suitable for both model validation as well as probing for new
underlying physics.

The balance between the discovered model accuracy and complexity is achieved via
Pareto analysis that prevents overfitting. In practice this leads to the optimization favouring
models with less selected features (equation terms) over the ones with more features at the
same accuracy. The cost function being minimized is of the following general form:

||∂t〈F〉 − 〈Θ〉ξ ||22 + λ||ξ ||0, (2.1)

where the variable F is a quantity whose dynamics is governed by a PDE that we seek
to discover. The terms of this equation are the features in Θ selected by multiplication
with the sparsest vector ξ which contains the model parameters (coefficients in front
of the corresponding terms in the PDE). The vector elements of ξ are computed using
a thresholded least-squares algorithm (Brunton et al. 2016), while its level of sparsity
is obtained by means of a 30-fold cross-validation procedure. Vector λ contains 100
regularization parameters used in sequentially thresholded least-squares optimization of
ξ . The values of the regularization parameters are logarithmically increased from 10−6 up
to 1 to obtain increasingly sparser solutions of ξ . Each candidate feature in Θ and the
time derivatives vector ∂tF are approximated by central finite differencing and integrated
over volumes on the sampled data. The angle brackets denote averaging over the sampled
volumes. Therefore the governing PDE is discovered in its integral form, this methodology
has been described in detail in Alves & Fiuza (2020) where it is applied to a hierarchy of
basic plasma physics models.

2.2. The HW model
In our particular case the input data are generated through direct numerical simulation of
resistive drift-wave turbulence according to two-dimensional (2-D) HW and mHW models
(Hasegawa & Mima 1978; Wakatani & Hasegawa 1984; Hasegawa & Wakatani 1987)
in the (x, y) plane perpendicular to the magnetic field along the z axis. These models
are a good test bed for our model discovery method for two main reasons. Firstly, these
are relevant models providing a description of drift-wave turbulence near the tokamak
plasma edge. Secondly, they are simple consisting of two coupled PDEs with a relatively
small number of terms and therefore allow straightforward interpretation and checking of
obtained results. The HW couples the continuity and vorticity equations in reduced MHD
(Wakatani & Hasegawa 1984; Hasegawa & Wakatani 1987; Biskamp & Zeiler 1995)

∂n
∂t

= −[φ, n] + α(φ − n) − κ
∂φ

∂y
− Dn∇4n, (2.2)

∂ω

∂t
= −[φ, ω] + α(φ − n) − Dω∇4ω, (2.3)
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where n and ω represent the electron density and vorticity,2 respectively, φ stands for
the electrostatic potential and the constants α and κ are the electron adiabaticity and the
background density gradient driver. The Poisson bracket for two functions of phase space
and time, f and g, is defined in the usual manner [ f , g] = ẑ × ∇f · ∇g. Similarly, mHW
couples the continuity and vorticity equations but captures the electron adiabatic response
with the substitutions n → ñ and ω → ω̃ where the new variables are defined by

f̃ = f − 1
Ly

∫
f dy (2.4)

and the equations being numerically solved become

∂n
∂t

= −[φ, n] + α(φ̃ − ñ) − κ
∂φ

∂y
− Dn∇4n, (2.5)

∂ω

∂t
= −[φ, ω] + α(φ̃ − ñ) − Dω∇4ω. (2.6)

Inclusion of the electron adiabatic response enables (for certain parameter values) the
simulation of elongated asymmetric vortex modes, so-called, zonal flows.3 The introduced
substitutions as defined by (2.4) relaxes the coupling between the electric potential φ and
the density n for these modes as they are not subject to the coupling arising from the
parallel momentum equation. Zonal flows are driven by nonlinear energy transfer from
drift waves and represent a self-regulation agent for drift-wave transport and turbulence
(Diamond et al. 2005). Zonal flows play an important role in fusion plasmas because they
suppress plasma turbulence and thus reduce the transport driven by it in turn improving
plasma confinement.

It should be noted here that the standard drift-wave normalizations (Wakatani
& Hasegawa 1984; Biskamp & Zeiler 1995) were used: φ −→ (eφ/Te)Ln/ρs,n −→
(n/n0)Ln/ρs, t −→ tcs/Ln, ∇⊥ −→ ρs∇⊥ and ∇‖ −→ L‖∇‖, where ρs is the ion Larmor
radius, n0 the background electron density, e the electron charge, cs the ion acoustic
velocity, νei the electron ion collision rate and the Ln the scale length of the density
background. The parallel scale length is defined by L‖ = (LnTe/mecsνei)

1/2.

2.3. Simulation set-up
The simulation outputs the changes in plasma density, vorticity and potential in the
(x, y) plane. The size of the simulated domain was 16π × 16π. The temporal resolution
was varied while keeping the total simulated time t constant and sufficient to allow for
nonlinear effects to develop and evolve. Once the input data sets are available what follows
is setting up the data sampling routine. In our particular case the data were sampled with
varying sampling density both spatially (distribution and number of sampling volumes)
and temporally (time-series length). Uniform sampling was applied only in space while
the time sampling was non-uniform/random within the specified time interval. This time
sampling allows enables capturing both fast and long-time scale features. The sampling is a
routine which may require adjustment tailored to the input data structure and the expected
underlying physics. For some problems the uniform sampling might not be appropriate
and one might choose to use threshold-based sampling or targeted sampling restricted to
predefined regions of the phase space.

2Note here that the vorticity is given by ω = ∇2
⊥φ and that one should not dismiss the significance of the background

magnetic filed in the HW model (Wakatani & Hasegawa 1984; Hasegawa & Wakatani 1987; Biskamp & Zeiler 1995).
3Although it should be noted that zonal flows can in principle be obtained with the standard HW model at low α

values.
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The features (the potential terms in the sought after PDE) need to be chosen and
evaluated on the sampled data points. The choice of features to include in the Θ matrix
relies on the physical intuition about the problem at hand. Once the feature matrix is
constructed, sequentially thresholded least-squares regression is applied to the sampled
data in order to obtain the sparsity vector ξ which reveals the retained features and
the numerical values of their corresponding coefficients (for code structure diagram see
figure 1). Plotting the fraction of variance unexplained (FVU) as a function of the number
of retained features reveals the discovered PDE. The FVU is in this work defined as the
ratio of the model’s mean squared error and the variance of the partial time derivative of
the dependent variable (density n or vorticity ω). Therefore, for the density equation we
have the following definition of FVU:

FVU = MSE(model)

var
(

∂n
∂t

) , (2.7)

and similarly for the vorticity we have

FVU = MSE(model)

var
(

∂ω

∂t

) . (2.8)

A significant reduction in FVU is observed for the optimal number of features necessary
for describing the dynamics underlying the input data.

2.4. Structural similarity index
Successful regression requires that the sampled data set contains sufficient change in the
system dynamics in the nonlinear regime. To quantify this change in our sample we use
the so-called, structural similarity index (SSI). The index was originally defined for the
purpose of image quality assessment based on degradation of structural information (Wang
et al. 2004). It is calculated for two given images and has the value in the range [1,−1]
where the extremes of the range indicate that the two images are identical (SSI = 1) or
completely different (opposite) (SSI = −1). The SSI for two images is defined by the
following expression:

SSI(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (2.9)

where x and y are two images of size N × N which are being compared based on the
luminance l, contrast c and structure s functions weighed by the exponents α, β and γ .
The luminance function l(x, y) is given by

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
, (2.10)

where μ denotes the average of all pixel values (mean luminance intensity) and the
constant C1 prevents instability for denominators approaching 0. Similarly, the contrast
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FIGURE 1. Code structure: the arrows denote the flow of information and the blocks depict the
sequence of steps performed by the sparse regression (SR) algorithm. The colour coding refers
to parts of the code which might need to be adapted to a particular physics problem depending
on the input data structure and content (red) and the parts which essentially remain the same
regardless of the input data structure and content (blue).

function c(x, y) is given by

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
, (2.11)

where σ denotes the standard deviation of all pixel values and C2 is a constant. Finally, the
structure function s(x, y) is given by

s(x, y) = σxy + C3

σxσy + C3
(2.12)

where the correlation coefficient σxy is equal to

σxy = 1
N − 1

N∑
i=1

(xi − μx)( yi − μy) (2.13)

Equations (2.9)–(2.13) are given here for the sake of completeness, for more details on the
derivation and the SSI metric we refer the reader to the original reference (Wang et al.
2004). Our data is a series of snapshots of the configuration space which can be converted
to a series of images (see figure 2) to which a sequence of SSI can be attributed.

3. Results
3.1. Data generation and sampling

Simulation data were obtained by running the phw.f90 code4 on the MIT Engaging cluster.
The code solves (2.2) and (2.3) in two dimensions for the density and vorticity. The
simulated domain was temporally resolved with �t = 0.01 ms and spatially resolved with
�x = 0.19 and �y = 0.19 on a grid of size 256 × 256. The total simulated time allowing

4The phw.f90 is a reduced version of the Global Drift Ballooning code (Fisher & Rogers 2017; Zhu, Francisquez &
Rogers 2017) and has been benchmarked against BOUT++ and MFEM.
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(a) (b)

(c) (d )

FIGURE 2. The HW (a,b) and mHW (c,d) density and vorticity data.

Resolution α κ Dn Dω dt

256 × 256 0.1 1 10−4 10−4 0.01

TABLE 1. Simulation set-up and correct model coefficients.

for the nonlinear behaviour to develop was t = 1000. Snapshots (time frames) of the
density, potential and vorticity were collected and stacked together forming a long time
series containing the evolution of the system over the total simulated time. Values of other
input parameters used for the simulation data in this work are given in table 1. Prior to
building of the feature matrix Θ , the dynamics captured by the data has to be sampled
adequately in phase space and in time. Designing the sampling routine is done with the
input data structure in mind. In this work the sampling is volumetric and uniform: volumes
sampled in phase space are uniformly distributed over the simulation grid. Both the sample
grid size and the length of the time series from which the data points are sampled were
varied (see figure 4). The results of this sensitivity study are given in § 3.4.

https://doi.org/10.1017/S0022377822001192 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001192


Data-driven model discovery for plasma turbulence modelling 9

3.2. Constructing the feature space Θ

Once the data sampling is complete, we proceed to construct the matrix Θ containing
the possible terms in the sought after PDE. Each column of the matrix represents a
feature evaluated at each sampled data point. For our HW data, the primary features are
the variables density n, electrostatic potential φ and vorticity ω. Secondary features we
considered are the spatial gradients of the primary features up to fourth order and the
polynomial combinations of the primary and secondary features up to n order. In total we
considered 120 features (columns of Θ) in our analysis. The second-order centred finite
differencing is applied to sampled data neighbouring points and is used to evaluate the
derivative terms. A 30-fold sequentially thresholded least-squares regression is applied
to the sampled data divided into training, test and validation sets in order to obtain the
sparsity vector.

3.3. Results of sparse regression
The 30-fold sequentially thresholded least-squares regression applied to our Θ
feature matrix yields the accuracy/complexity curves and the sparsest vector ξ . The
accuracy/complexity curves show the dependence of FVU (accuracy) on the number of
features retained (complexity), while the multiplication of Θ and ξ , for given complexity
or number of features retained, yields the features with their corresponding coefficients.
The last step enables the reconstruction of the PDE system of (2.2) and (2.3). The Θ
matrix contained all features that were necessary to completely describe the dynamics in
the input data. The success or failure of the procedure is indicated by the inflection in the
accuracy/complexity curves, for the HW data, presented in figure 4. The FVU suddenly
drops due to the thresholding of a dominant term, this marks the trade-off between model
accuracy and complexity. The pronounced inflection in the accuracy/complexity curves is
observed at the model complexity of 5 terms for the density equation and at the model
complexity of 4 terms for the vorticity equation (see figure 3 and tables 2 and 3). This
corresponds to the complete system of HW equations (2.2) and (2.3) given here in their
explicit form for completeness

∂n
∂t

= ∂φ

∂y
∂n
∂x

− ∂φ

∂x
∂n
∂y

+ αφ − αn − κ
∂φ

∂y
− Dn∇4n, (3.1)

∂ω

∂t
= ∂ω

∂y
∂n
∂x

− ∂ω

∂x
∂n
∂y

+ αφ − αn − Dω∇4ω. (3.2)

3.4. Sensitivity study
Once the regression has been shown to successfully recover the complete system of HW
equations, a sensitivity study has been designed to test the method’s robustness to three
main aspects: spatial sampling domain, length of time series considered in the sampling
and the noise level. Each of the aspects has been studied independently from the others; for
each a reference regression set-up has been fixed and only the parameter directly related
to the aspect studied has been varied.

3.4.1. Spatial domain size
Assessing the sensitivity to the spatial sampling domain size entailed reducing the

domain size from the optimal, which covered most of the grid, to a size comparable
to characteristic lengths in the data (such as the eddy dimensions) (see figure 4). An
increase in the error on the model coefficients as well as a change in model-form variance
(change in the sparsity vector ξ ) was observed when reducing the spatial sampling domain
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FIGURE 3. Main result on the noise-less synthetic data. The two different markers, circles and
triangles, represent model-form variance obtained in the cross-validation procedure (variance in
the sparsity vector ξ ). The red ellipses circle the points of optimal accuracy/complexity trade-off
and correspond to identification of correct features of the HW system of PDE. The ‘error’ bars
represent the minimum and maximum FVU encountered during cross-validation.

Sampling grid # time frames Recovered features Avg. coef. error K-fold cross val.

241 × 241 700 5/5 ≈2 % 30

TABLE 2. Results of SR for the density equation of the HW and mHW models.

Sampling grid # time frames Recovered features Avg. coef. error K-fold cross val.

241 × 241 700 4/4 ≈2 % 30

TABLE 3. Results of SR for the vorticity equation of the HW and mHW models.
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Spatial sampling domain size Total recovered features Avg. recovered coef. error

241 × 241 9/9 ≈2 %
206 × 206 9/9 ≈2 %
181 × 181 7/9 ≈3 %
156 × 156 6/9 ≈5 %
50 × 50 5/9 ≈6 %

TABLE 4. Results of the sensitivity to the spatial domain size of the sampling region.

Total time-series length Sampled time-series length Total recovered features Avg. recovered coef. error

4000 100 7/9 ≈5 %
4000 200 9/9 ≈6 %
4000 500 9/9 ≈4 %
4000 700 9/9 ≈5 %
4000 1500 7/9 ≈4 %
4000 2000 5/9 ≈3 %

TABLE 5. Results of the sensitivity to the sample time-series length.

(a) (b)

FIGURE 4. Sensitivity to spatial sampling domain size: largest (a) and smallest (b) sampling
regions used in the study.

size (see table 4). Here, the number of sampled points per sampling volume has not been
varied in order to probe solely the effect of sampling domain size reduction. However,
the results can be improved by increasing the number of sampled points per sampling
volume until the mean coefficient error saturates (provided that the sampling domain size
remains comparable to the characteristic lengths in the data). This would be analogue to
the increase in number of points per volume for the case of clean data (see table 6). More
details on this technique have been given in the supplementary material of Alves & Fiuza
(2020).
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Volume

p 5 × 5 × 5 6 × 6 × 6 7 × 7 × 7 8 × 8 × 8 9 × 9 × 9 10 × 10 × 10

0 % ≈3 % ≈2 % ≈1 % ≈1 % ≈1 % ≈1 %
6 % ≈5 % ≈3 % ≈2 % ≈3 % ≈2 % ≈2 %
12 % ≈10 % ≈8 % ≈5 % ≈4 % ≈4 % ≈4 %
18 % ≈14 % ≈12 % ≈9 % ≈9 % ≈9 % ≈5 %

TABLE 6. Average error on the recovered feature coefficients from noisy data.

3.4.2. Time-series length
Assessing the sensitivity to the sampled time-series length entailed gradually increasing

the number of frames to sample from (see table 5) and establishing the minimal number
necessary for recovery of the HW system of equations. This minimal length of the sampled
time series is determined by the change or evolution of the system dynamics contained
in it. The quantification of this change is not trivial and to our knowledge has not been
examined in available literature on application of sparse regression to identification of
PDE. However, it is important for establishing whether a sample is suitable for sparse
regression and it is useful in reducing the sample size. The metric proposed and used in
this work is the rate of change in the slope of the, previously introduced, SSIs calculated
over samples of differing length. Namely, we set the reference image for SSI calculation
to be the first frame in our data set. We then chose the sampling time-series length (the
number of frames) and compare our reference frame with consecutive frames from the
series by calculating the SSI. The sequence of SSI indices obtained characterizes the
system evolution from the reference frame to the last frame in the sample. As expected
the value of SSI will decrease and level off as the similarity between the reference frame
and the consecutive frames becomes lesser due to the system evolving further from its
initial state. For the sparse regression to successfully recover the HW system of equations,
it proves optimal to set the length of the sample to the length for which the SSI value levels
off. To find this value we look at the extremum in rates of change in the slope of the SSI –
the first derivative of SSI for samples of different length. The SSI levels of when the first
derivative of SSI becomes ≈0 see figure 5.

3.4.3. Noise sensitivity
A particularly interesting application of sparse regression would be application directly

to experimental data. On the one hand, due to the possibility of discovering reduced
turbulence models useful in practical applications such as control, and on the other due
to the possibility of discovering new physics. However, experimental data always contain
noise and it is therefore necessary to investigate to what extent the noise corrupts the
recovery of underlying PDEs. To do this, prior to applying the sparse regression, we
added Gaussian noise to our simulation data. The noise had a mean μ = 0 and a standard
deviation defined as a function of the input data: σ = σ(input data) · p, where p denotes
percentage. The noise level was increased from 0 % up to 18 % while the sampling settings
were kept fixed. As the noise level is increased the model error increases and the inflection
in the accuracy/complexity curve is reduced until it vanishes completely, as shown in
figure 6. With noise, model-form variance and the error of the model coefficients increase
while the number of recovered features progressively decreases. The model-form variance
is observed not to be affected by the size of the integration volumes. However, the model
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FIGURE 5. First derivative of the SSI over the sample. The SSI is calculated between the first
data frame and every consecutive data frame throughout the sample. The curve indicates the
evolution of the dynamics in the data starting from the first frame.

FIGURE 6. The FVU for the density equation of the HW model for noisy data. The level of noise
is increased from 0 % to 18 % (see table 6 for details). The inflection in the accuracy/complexity
curve is reduced as the noise level is increased. The number of recovered terms of the density
PDE progressively drops from 5 to 2.

coefficient errors are affected by the changes in integration volumes and can be reduced
up to a certain extent, but not indefinitely, by increasing their size.

It is important to note that, in the presence of noise, fewer terms from the governing
equations may be recovered. This is illustrated in table 7 for 6 % noise added to the input
data set. As the size of the sampling volumes is increased the algorithm is able to recover
progressively more terms. For the example of a relatively low noise level this eventually
leads to the recovery of all features and accompanying coefficients. The dominant features
recovered in the example for the smallest sampling volume considered (5 × 5 × 5) are:
(∂φ/∂y)(∂n/∂x), (∂φ/∂x)(∂n/∂y), ∂φ/∂y, (∂ω/∂y)(∂n/∂x) and (∂ω/∂x)(∂n/∂y).
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Volume

p 5 × 5 × 5 6 × 6 × 6 7 × 7 × 7 8 × 8 × 8

6 % 5/9 7/9 7/9 9/9

TABLE 7. Number of features recovered in the presence of 6 % noise and increasing sampling
volume size.

3.5. Feature space completeness
This section has been added for the sake of completeness as a comment specifically on the
model bias error – associated with missing features in the Θ matrix (Alves & Fiuza 2020).
Spatio-temporal distribution of the model bias error is defined as

εnm =
∣∣∣∣
∣∣∣∣dn

dt
− Θξnm

∣∣∣∣
∣∣∣∣
2

2
, εωm =

∣∣∣∣
∣∣∣∣dw

dt
− Θξwm

∣∣∣∣
∣∣∣∣
2

2
. (3.3)

If Θ is complete, contains all features needed to describe the input data set, the model bias
error vanishes for the correct model

lim
m→5

||ξnm ||22 = η2
n, lim

m→4
||ξwm ||22 = η2

ω, (3.4)

where ηn and ηω represent intrinsic noise.

4. Discussion and outlook

We have shown that the sparse regression algorithm described in Alves & Fiuza
(2020) can be applied to synthetic plasma drift-wave turbulence data to extract the
governing PDEs. Two parts of the algorithm are particularly important for successful PDE
identification: the sampling and the construction of the Θ feature matrix. Sampling used
in this work is uniform across the simulation grid meaning that the sampling volumes are
uniformly distributed (as depicted in figure 4), each volume containing a number of data
points in phase space and time.5 Sensitivity to both spatial and temporal sampling region
bounds has been studied. For successful SR it suffices to set the spatial sampling domain
size to be larger than the characteristic length. This, for turbulence data, is the typical eddy
size. Similarly, the sampled time-series length can be related to the characteristic time in
the data, in this case the time correlation length. In an attempt to define a systematic
approach to choosing the sampling time-series length for successful PDE identification,
we proposed the use of the SSI commonly found in applications involving image quality
and data compression. This metric is applicable to synthetic turbulence 2-D data for
quantification of the system evolution over time. Calculating the slope of SSI over the
sampled time series enables the evaluation of a time series truncation threshold beyond
which including more subsequent time frames does not improve the results of SR on
the sample. Defining the spatio-temporal bounds for sampling in this way provides a
methodology for minimizing the data requirements for successful SR on the sample. In
the prospect of applying SR to synthetic data from more complex turbulence simulations,
such as the full gyro-kinetic codes (Wang et al. 2006; Cheng et al. 2020) which produce
large data sets in comparison with what has been used in this work, the SSI based threshold

5The cubic volumes are defined as n�x × n�y × n�t, each volume containing n3 points.
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enables one to define the minimal part of a data set from which to sample in preparation
for SR.

We recovered all the physical terms from the HW and mHW equations. Terms which
were not recovered are the higher-order diffusion terms, namely Dn∇4n and Dω∇4ω, which
are terms added for numerical stability and have the purpose of dissipating the grid size
eddies.6 However, one can encounter data sets in which higher-order terms are physical and
therefore relevant. We speculate that recovering such terms, a few orders of magnitude
smaller than the leading terms, is possible and requires the use of targeted sampling:
predominantly sampling from regions of phase space where fine effects are expected to
be dominant.

The features in the Θ matrix were chosen based on domain knowledge and the matrix
contained all the features7 needed to fully describe the dynamics in the data. In cases
when Θ does not contain all the dynamical terms for a particular problem, one should
expand the feature library until the empirical signature8 of a successful PDE identification
is observed and the spatio-temporal error distribution is minimized. The spatio-temporal
error distribution can further be used to asses the importance of discovered terms as
described in § 3.5.

When the sampling and Θ construction are complete, SR can be applied to extract the
governing equations in their integral form. The integral formulation strategy makes the
approach suitable for application to noisy data as it mitigates the numerical differentiation
errors through averaging over more sampled points. The HW and mHW models were
successfully recovered with mean coefficient errors of ≈2 % for the clean data sets and 8 %
for noisy data sets up to a significant level of added noise (up to 18 % noise) at the sampled
volume size 5 × 5 × 5. The increase of the size of sampled volumes reduces the effects of
noise until the level of irreducible error is reached. At this level, as the noise is increased,
SR recovers progressively fewer terms from the governing equations. Nevertheless, the
retained terms correspond to the dominant processes underlying the dynamics. This is
promising in the prospect of applying SR methodology directly to experimental data which
inevitably contain noise. An important consideration in this context is the distinction
between the measurements and variable noise. Presence of such noise could corrupt the
discovered model form by selecting features from Θ characterizing the noise rather than
solely the physical phenomenon of interest. One approach has been proposed in Fasel
et al. (2022) and relies on statistical ensembling to improve robustness and accuracy
for SR-based model discovery. In particular, the work relies on bootstrap aggregating
to identify ensembles of ordinary and PDEs that govern the dynamics from noisy data.
Inclusion probabilities for features of Θ can be obtained thus increasing the success rate
for discovering the correct model and discarding the noise related terms. It remains to
be investigated whether the approach improves on our integral formulation of SR for
plasma turbulence simulation. In addition, future work will focus on applying the SR
methodology to more complex turbulence simulations for development of computationally
efficient reduced models. In the first instance, we will apply the methodology to the global
drift ballooning model (Fisher & Rogers 2017; Zhu et al. 2017). This requires expanding
the Θ matrix with rational function nonlinearities and their ratios, in order to
increase the descriptive capacity of SR for the more complex simulated dynamics and

6The diffusion coefficients Dn and Dω are three orders of magnitude smaller than the smallest recovered coefficient
in the system of PDEs.

7It is worth emphasizing that the features are not mutually orthogonal functions but rather possible terms in the
underlying differential equations.

8The empirical signature is defined as a pronounced inflection in the model accuracy/complexity curve signifying
the optimal trade-off between model complexity and accuracy (Alves & Fiuza 2020; Fasel et al. 2022).
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facilitate the application to experimental data. This application is of particular interest
for control purposes. There are substantial data bases of experimental data of turbulent
dynamics from fusion devices where the novel method could search for the underlying
physical models. What has to be considered when applying this method to experimental
data is that some coefficients are not constant over a wide range of plasma parameters.
Therefore, when the method is applied to experimental data it can be used to recover the
values of parameter-dependent coefficients. Based on prior knowledge about the data and
data availability, we can distinguish among the following situations:

(i) We have spatio-temporal data available in a wide range of plasma parameters:
in this case we intentionally retain a large number of degrees of freedom in Θ
and apply the methodology to spatio-temporal data in different parameter ranges.
This should enable to recover both the underlying physical model as well as the
coefficients which depend on plasma parameters.

(ii) We have spatio-temporal data available in a narrow range of plasma parameters:
in this case we need to proceed with caution and keep in mind that the coefficient can
depend on the plasma parameters. The methodology in this case is primarily applied
to recover the underlying dynamical terms but the interpretation of the recovered
coefficients has to be made based on physical intuition and prior knowledge.

If we decide to assume a physics model describing the experimental data, this assumption
can be used to reduce the number of degrees of freedom in our feature space Θ . The
methodology can then be applied identify plasma parameters featuring in our assumed
model.

Furthermore, we can use our methodology in an attempt to construct a reduced
reconciling model for the plasma edge and core dynamics as this is still lacking due
to the complexity of the collision operator and the asymptotic matching between fluid
and gyrokinetic models. Furthermore, if we could use our method to point out what the
most important terms in the feature space for turbulence data are, the result could inform
reduced model selection from the myriad of already established reduced models. It should
be pointed out that one can adopt a different approach to searching for the important terms
in the feature space for turbulence data. Namely, valuable attempts have been made by
using convolution neural networks such as the one described in Frezat et al. (2021).

5. Conclusion

In summary, we have presented a proof of principle study of the application of
data-driven integral sparse regression to fusion plasma drift-wave turbulence simulations.
We have shown that the methodology can successfully be applied to discover the system of
PDEs governing the simulated plasma dynamics both from clean and noisy data. We have
also conducted a sensitivity study of spatio-temporal characteristics of the sampling used
for SR and established that the spatio-temporal sample bounds can be defined in relation
to the minimal eddy size and correlation length characterizing the data. This approach
ensures that the sampling phase-space region contains sufficient system evolution in the
nonlinear regime for SR while at the same time ensuring one can use a subset of a large
data set for the study. We have also discussed the completeness of the feature space Θ from
which terms of the PDEs are selected by SR and formulated criteria for Θ completeness
based on the spatio-temporal error distribution following the reasoning expressed in Alves
& Fiuza (2020).
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