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MONOCHROMATIC TRIANGLES IN THREE COLOURS

S.S. SANE AND W.D. WALLIS

Suppose the edges of the complete graph on 17 vertices are coloured in three colours. It
is shown that at least five monochromatic triangles must arise.

1 INTRODUCTION

By a proper colouring of a graph G in n colours is meant a way of assigning n or
fewer colours to the edges of G in such a way that no monochromatic triangle results.

We are interested in edge-colourings of complete graphs. If Kr denotes the com-
plete graph on r vertices, then Ramsey's theorem guarantees the existence of a number
rn(2) such that Kr has a proper colouring in n colours if and only if r < rn(2). (For
a discussion see [7].) These numbers have been investigated; however only r2{2) and
r3(2) are known.

PROPOSITION 1. [6] r2(2) = 6; r3(2) = 17.

Since T"2(2) = 6, any colouring of K§ must contain a monochromatic triangle. In
fact, it can be shown that at least two triangles must occur. This follows from a more
general result of Goodman:

PROPOSITION 2. [1] Iii any edge-colouring of Kr in two colours there must be at
least f(r) monochromatic triangles, where:

f{r) — —r(r — 2)(r — 4) if r is even;

f(r) = ^r(r - l)(r - 5) if r = 1 {mod 4);

/(»•) = ^(r + !)(»• - 3 ) ( r - 4) if r = 3 (mod 4).

Moreover, these bounds can all be attained.

When the number of colours is 3, there must clearly be a function like / , but
we know very little about it.- A recent paper by Goodman [2] discusses the 3-colour
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198 S.S. Sane and W.D. Wallis [2]

case, and earlier we showed in [6] that the number of monochromatic triangles in a
3-colouring of the edges of Kn must be at least 3, and that 5 could be attained. But
the main information to be gleaned from those two papers is that this problem is very
much more difficult than the 2-colour case.

Our object in this paper is to prove the following result, which was conjectured in

[«]•

PROPOSITION 3. At least five monochromatic triangles occur in any 3-colouring of
the edges of Kn .

Harary and Prins [5] define the Ramsey multiplicity of a graph. In their termi-
nology, the result of Goodman for r = 6 can be expressed by saying that the Ramsey
multiplicity of K3 is 2, and one might say that we shall prove the "Ramsey 3-colour
multiplicity" of K3 to be 5. For results on Ramsey multiplicities of other graphs, see
[5].

A related result of interest is the proof by Harary [4] that up to isomorphism
there are precicely seven ways of edge-colouring A'6 in two colours with precisely two
monochromatic triangles. We do not need all of that paper, but we shall use some results
on the structure of colourings with only two monochromatic triangles. For convenience
we prove them in the next section, but we point out that the proofs can be found by
going through [4].

2 SOME TERMINOLOGY

In most of this paper we are concerned with colouring Kn. We assume that the
colours are red, blue and green. If x is any vertex, then R(x), B(x) and G(x) are
the sets of vertices joined to x by red, blue and green edges respectively; r(x) is the
cardinality of R(x) and so on. We refer to the three sets as the colour classes of x
and the three cardinalities as the chromatic valencies or simply valencies of x. We
sometimes write R(x) to refer to the coloured graph induced by the set of vertices
attached by red edges to x , instead of simply meaning the vertex-set of the graph; no
problems arise.

We shall be concerned with monochromatic triangles throughout. Since no confu-
sion will occur, it is convenient simply to say "triangle" when "monochromatic triangle"
is meant. By a four-triangle colouring of Kn we shall mean an edge-colouring of Kn
in which at most four triangles occur.

3 COLOURING K6

Among the 2-triangle 2-colourings of K6 there are two special cases which we
consider.
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LEMMA 1. If a 2-colouring of K$ includes exactly two triangles, and the triangles

are disjoint, then they are the same colour.

PROOF: Suppose the K$ contains a red triangle abc and a blue triangle xyz.

Since none of abx, acx and bcx can be a red triangle, at most one of ax , bx and ex

can be red. Similarly at most one of ay, by and cy can be red. So either ax and ay are
both blue, or bx and by, or ex and cy. In any case there is a blue triangle containing
x, y and some point other than x; this is a third triangle, which is impossible. |

LEMMA 2. Suppose a 2-colouring of K$ contains exactly two triangles, and sup-

pose they cover only four vertices a, b, c, d between them; denote the other vertices

by z, w. Then the edge zw is the same colour as the edges of two triangles, and the

graph of the edges of that colour is determined up to isomorphism: it is isomorphic to

the one shown in Figure 1.

PROOF: The configuration spanned by {a,b,c,d} must consist of a K4 with five

edges of one colour and one of another, so assume ad is blue and the other edges are

red. The only triangles in the A'e are abc and bed.

Assume zw is blue. Since azw is not a triangle, az and aw cannot both be blue;

assume az is red. Then bz must be blue. Since bz and zw are blue, bw must be red.

Thus cio must be blue, to avoid triangle bew. What colour is cz ? If it is red, then

acz is a red triangle; if it is blue, then czw is a blue triangle—a contradiction. So zw

is red.

From now on we assume that zw is red. We observe that not both aw and dw

can be blue, since adw is not a triangle. Without loss of generality, assume aw is red.

Then both bw and cw are blue. Moreover az is blue, to avoid a red triangle awz.

So dz is red (to avoid triangle adz), and dw is blue (to avoid triangle dwz). It is

easy to see that the edges bz and cz must also be blue. We obtain the configuration

of red edges in Figure 1 (any edge of KQ not shown in the diagram is coloured blue).

The graph is unique, except for the possibility of changing to an isomorphic version by

relabelling among {a, b, c,d} or {w,z}. |

LEMMA 3. If a 2-coiouring of K6 contains exactly two triangles and between them

they contain exactly five points, then the two triangles are of different colours.

PROOF: Suppose not: say abc and ade are the triangles, and both are red. Then

bd, be, cd and ce must all be blue. If / is the sixth point then at most one of bf

and c / can be red; without loss of generality, say bf is blue. Similarly either df or ef

is blue. In the first case bdf is a blue triangle, and in the second case bef is blue; in

either case we have an impossiblity. |
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FIGURE 1

4 T R I A N G L E - F R E E VERTICES

Suppose the vertex x does not lie in any triangle in a 3-colouring of the edges of
K17 . Such a point will be called triangle-free relative to the colouring. Then it is clear
that R(x) can contain no red edges, B(x) no blue edges and G(x) no green edges.
If R(x) has r vertices, it will contain at least f(r) triangles (where f(r) was defined
in Lemma 2) because it consists of a copy of Kr coloured in blue and green. Such
considerations tell us immediately that if a; is a triangle-free vertex in a 3-colouring
which contains at most four triangles altogether, then x can have no valency greater
than 7. We can also eliminate the possibility of valency 7, but first we need a Lemma.

LEMMA 4. No 2-colouring of K7 which contains exactly four triangles can contanin
a monochromatic A'4 .

PROOF: Suppose K7 is coloured in blue and green, and has a blue K4 with vertices
x, y, z , w. Consider the 2-colouring of K6 obtained by deleting w. It must contain
at least two triangles, one of which is xyz. Now these two triangles, together with
xyw , xzw and yzw, are all triangles of K7 — at least five triangles. |

THEOREM 1. Suppose K17 is coloured with exactly four triangles, and x lies on
no triangle. Then x can have no valency greater than 6.

PROOF: Assume the contrary: say r(x) ^ 7. Then R(x) contains at least four
triangles; from the data it can contain at most four, so r(x) = 7; also, b(x) < 5 and
g(x) ^ 5, to avoid further triangles.

Select y and z both in B(x) or both in G(X), such that yz is red. Neither y
nor z belong to triangles, since all four triangles are in R(x). Suppose M is a colour
such that m(y) ^ 6 (there must, be one, since the valencies of y add to 16). Since y
lies on no triangle, M(y) contains at least two triangles. Say Ty is the union of the
vertex-sets of two triangles in M(y). Now Ty has at least 4 elements, and Ty lies in
M{y)C\R{x).
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If M — B, then all edges joining members of Ty must be green (they cannot be

red, as that would put x in a triangle; and if any were blue we would have a triangle

containing y). Similarly M = G gives a monochromatic K4 in R(x) but this would

mean there are at least five triangles, by Lemma 4: a contradiction. So M = R.

Now R(x) and R(y) have at least four common elements, the members of Ty.

Similarly R(x) and R(z) have at least four common elements. Therefore R(y) and

R(z) have a common element, w say, and yzw is a red triangle: an impossibility. |

5 O N X-BASED COLOURINGS

Since we shall always be considering one special case in this section, it is convenient

to introduce a corresponding special definition. We define an x-based colouring of Kn

to be an edge-colouring in which there are precisely four triangles, and in which the

particular vertex x lies on no triangles and has valencies r(x) — b(x) = 6, g(x) = 4 .

We shall prove that no x -based colouring exists.

Consider an x-based colouring. Since x is on no triangle, R(x) is coloured entirely

in green and blue; so it contains at least two triangles. Similarly B(x) contains at least

two triangles. As the total number of triangles is precisely four, we have the following.

LEMMA 5. In an x-based colouring, each of R(x) and B(x) contains precisely

two triangles and no triangle lies in G(x) or has vertices in more than one of the sets

R{x), B(x) or G{x).

Since G(x) contains no red triangle and no greeii edge, it is easy to see that it

either consists of a red path and a blue path, each of length 3, or else it consists of a

4-cycle in one colour and two independent edges in the other. Therefore every vertex

in G(x) lies on edges of both colours. In symbols this can be expressed as follows:

LEMMA 6. In an x-based colouring, if y belongs to G(x), then

\R(y)nG(x)\^0, \B(y)nG(x)\^0;

in fact, one set will have size 1 and the other size 2.

LEMMA 7. In an x-based colouring, any y in G(x) satisfies g(y) ̂  5.

PROOF: Suppose not. Since y can be in no triangle, Theorem 1 says g(y) < 6; so
g(y) = 6 and G(y) contains at least two triangles. Now x £ G(y), so

\G(y)nB{x)\ + \G(y)nR(x)\ = 5.

If one of the two intersections has size 3 and the other has size 2, then we cannot
come to two triangles—the larger intersection can contain only one, the smaller none,
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and there can be no other triangle in G(y) (any such triangle would either contain x

or else contain elements of both R(x) and B(x), an impossibility). So one intersection
has at least four elements. Say \G(y)<~) B(x)\ ^ 4. Since all edges of G{y)C\B(x) must
be red, we have a red K4 , which is made up of four red triangles. So B(x) contains
four triangles — too many. |

LEMMA 8. In an x-based colouring, neither B(x) nor R(x) can contain two tri-
angles which between them cover only four points.

PROOF: Suppose the two triangles in B(x) cover only four points. Then Lemma

2 applies. Suppose the triangles are red, and suppose the vertices are labelled as in

Figure 1 and the red edges are as shown in Figure 1. From Lemma 5, neither w nor z

can belong to any triangle, so by Theorem 1 none of their valencies is greater than 6.

Suppose b(z) = 6 Then B(z) contains at least two triangles. These triangles must lie

entirely within R(x), by Lemma 5. So B(z) (1 R{x) has four (or more) vertices, which

must constitute a green A'4 , giving too many triangles. So b{z) < 6.

Next suppose g(z) = 6. Then G(z) contains two triangles. One is bed, which

is red. The other must lie entirely within R(x), so it is not red. Therefore G(z) is

a two-coloured K& with two triangles of different colours. From Lemma 1, it must

contain a further triangle, so the Kn contains a triangle which touches both B(x) and

R(x): an impossibility. So g(z) < 6.

It follows that r(z) = 6, and similarly r(w) = 6. Now R(z) must contain two
triangles, and neither w nor a wil be in either of them. So R(z) ("I R(x) has four
elements. Similarly R(iu) f~l R(x) has four elements. Since r(x) = 6, there must be at
least two points in common to R(z) and R(x), and z and w lie in at least two red
triangles: an impossibility.

(ii) Suppose now that the triangles in B{x) are green. Again we assume that the

points of B(x) are labelled as in Figure 1, but we assume that the figure shows the

green edges.

Let us label the members of G(x) as {p,q,s,t}. None of these points lies in
a triangle, so each has a maximum valency of 6. From Lemma 7, none has a green
valency of 6.

Suppose r(p) = 6. Then R(p) contains two triangles. As p lies on a red edge
in G(x) (from Lemma 6), we cannot have \R(p) n B(x)\ — \R(p) n R(x)\ = 3, so the
two triangles cannot be one in B(x) and one in R(x): R(p) must have at least four
vertices in common with one of the two sets R(x) and B(x). If R(p) n B(x) had four
vertices, they would span a green K4 , which is impossible. So R(p) ("I R(x) has at least
four elements, and contains all the vertices of the two triangles in B(x).

If there were three points in G(x) whose red valencies all equalled 6, then no

https://doi.org/10.1017/S0004972700026733 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026733


[7] Three-colouring graphs 203

two of them could be joined by a red edge,so they would form a blue triangle, which
is impossible. So G(x) contains at most two vertices with red valency 6. The same
argument shows that there are at most two vertices with blue valency 6. So there must
be two of each kind. Without loss of generality we assume

r{p) = r(q) = 6, b(s) = b(t) = 6;

necessarily both the other valencies of each vertex must equal 5. Moreover s and t are
both joined by blue edges to each of a, b, c and d. Edge pq must be blue and st

must be red. To avoid triangles, G(x) must consist of two paths of length 3; without
loss of generality, assume ps and qt are blue, and qs and pt are red.

Two blue edges go from p to G(x), and at most two to R(x). So B(x) n B{p)

has at least one member. It cannot be a, d, c or d, because that would result in a
blue triangle with ps . So either pz or pw is blue — but not both, for either z or w
must also be connected to q by a blue edge. Let us assume that pz is blue. Then
\B(p) n R(x)\ must equal 2, and \R(p) n R(x)\ = 4.

Now consider z. Just as in part (i) we see that 6(z) < 6. If g{z) — 6 then G(z)
contains two triangles; since G(z) O B(x) = {a,w} which contains no triangle, and
G(z)D R(x) has at most three elements, this is impossible. So g(z) < 6, and r(z) = 6,
fc(z) = «,(*) = 5.

R{z) contains two triangles. One is bed; the other must lie entirely in R(x). So
R(z) n R(x) has three elements, all of which lie in R(p) •

Where are the five elements of 5(z)? No member of B(x) can belong to it, nor
can 5 or J , and three of the members of R(p) n R{x) are excluded. Also the elements
of B(p) fl R(x) cannot be included, as they would form a blue triangle with zp. Only
four possible vertices remain — a contradiction. |

THEOREM 2. No x -based colouring of K17 exists.

PROOF: We first show that, in an a;-based colouring, no member of G(x) has
{6,6,4} as its set of valencies.

Suppose y were such a vertex. By Lemma 7 and Theorem 1 we have r(y) = b(y) =
6 and g(y) — 4. So from Lemma 6 either

\B{y) n G(x)\ = 2 or \R(y) n G{x)\ = 2.

We assume \B(y)nG(x)\ = 2 and obtain a contradiction; by symmetry, \R(y)r\G(x)\ =
2 is impossible also.

Since b(y) = 6 we have

\B(y)n{R(x)UB(x)}\ = 4,
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so

\B(y)nR(x)\ + \B(y)nB(x)\=4.

If B{y) intersects R(x) in four elements, all members in that set of four elements must
be joined by green edges, and we have a monochromatic A'4 in R(x), an impossibility.
Now B(y) must contain two triangles, which must each lie entirely within R(x) or
entirely within B(x), so the cases where one intersection has three members and the
other one, or both have two, are easily eliminated. Therefore \B(y) C\ B(x)\ = 4.

Now suppose a, 6, c, d are the vertices of B{y) which lie in B{x). The other
two members of B(y) lie in G(x). Since those two lie in no triangle, the vertices a, b,
c, d must form two triangles. Therefore B(x) contains two triangles which together
cover only four points, in contradiction of Lemma 8.

We can now assume that all members of G(x) have valencies of {6,5,5}, where
the green valency is 5. Let y be such a vertex; assume r(y) = 5 and b(y) = 6.

Since y is on no triangle, B(y) contains two triangles. As B(y) contains at least
one member of G(x), either \B(y)C\R(x)\ ^ 4 or \B{y)C\B{x)\ ^ 4. In the former case
R(x) contains a green K±, which is impossible. In the latter, if \B(y) n B(x)\ = 4 we
obtain a contradiction via Lemma 7. So B(y) C\ B(x) has 5 elements, and necessarily
\B(y) fl G{x)\ - 1 and \R(y) D G(x)\ = 2 (using Lemma 4). Since R(x) H G(y) cannot
have four members, necessarily \R(x) D R(y)\ ^ 3.

So a member y of G{x) must fit one of the following two descriptions:

(i) y lies on one blue edge in G{x), and

\B{y) n B(x)\ = 5, \R(y)nR(x)\ = 3;

(ii) y lies on two blue edges in G(x), and

\B(y) n B(x)\ = 3, \R(y)nR(x)\ = 5.

Suppose y lies on one blue edge in G{x), the edge yz. Since B(x) has only
six elements, B(y) D B(z) is non-empty, and yz lies in a blue triangle. But this is
impossible. Therefore G(x) consists of a blue four-cycle and two independent red
edges. But by the same argument the endpoints of the red edges must lie in a triangle:
a contradiction. So no x -based colouring exists. |

6 RESTRICTIONS ON THE LARGE COLOUR CLASS

From now on we can assume that any triangle-free vertex has valencies {6,5,5}.
The colour in which the triangle-free vertex has valencey 6 will be called the large colour
class of the vertex.

In this section we assume that a; is a triangle-free point in a 4-triangle colouring
of Kn whose large colour class is R{x), so r(x) = 6 and b(x) — g(x) = 5. We prove
that R(x) cannot contain more than two triangles.
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LEMMA 9. R{x) cannot contain a, monochromatic K4.

PROOF: Suppose R(x) contains a blue K4 . Consider any vertex y in B(x).

Either r(y) = 6, in which case R(y) must contain two triangles, so y is joined to the

points of the A'4 by red edges, and we call y a red point; or g(y) = 6, the joins are all

green, and we call y a green point.

As b(x) = 5, B(x) either contains three red points or three green points. Suppose

there are three red points. If any edge joining two of them is red, we get four red

triangles formed by them and the vertices of the K4 . But no edge in B(x) is blue. So

the three edges are green and we have a green triangle, giving at least five triangles in

total. I

Although the above Lemma is written in terms of R(x), it is clear that any

monochromatic K4 in a 4-triangle colouring would lie within R(x), so no colouring

contains a monochromatic K4 .

THEOREM 3. R(x) contains at most two triangles.

PROOF: Suppose R(x) contains three triangles; write S for the set of vertices of
those triangles. We first show that there must be another triangle T which contains at
most one vertex of R{x). For, if not, any set of two triangles must contain four members
of R(x). Consider any triangle-free vertex y. If g(y) = 6, then G(y) contains two
triangles and \G(y)C\R(x)\ ^ 4; we must have a blue A'4 in R(x), which is impossible.
Similarly b(y) ^ 6. So r(y) = 6, and \R{x) D R{y)\ > 4. This implies that for any
two triangle-free vertices y and z, R(y) and R(z) have non-empty intersection, and
consequently yz cannot be red. But there are at least eight triangle-free vertices, and
we cannot colour the A'8 spanned by them in blue and green without a triangle. So
the situation is impossible.

Now assume there is a fouth triangle T with at most one vertex in R(x). (Observe

that if T does have a vertex in R(x), that vertex must be in S.) We distinguish two

cases; T is red, or T is blue. (The proof when T is green is the same as for T blue.)

First, suppose T is blue. Since T PI R(x) and T fl B(x) can have at most one

element each, there is at least one vertex of T in G(x). If there is only one, so that

T consists of vertices tr, tb and tg in R{x), B(x) and G(x) respectively, consider

the two vertices y and z in G(x) which are joined to tg by blue edges. Both are

triangle-free. The edge yz is red. Neither tr nor <(, can belong to B(y), so T does

not lie in B(y), R(y) or G(y). So, if any of those three sets has six elements, that set

must contain two triangles in R(x), so it contains at least four elements of R(x). It

follows that the six-element set must be R(y), in order to avoid a monochromatic AT4 .

Similarly r(z) = 6 and \R{x) n R(z)\ > 4 . So there is a common element of R(y) and

R(z) and it forms a red triangle with yz.
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On the other hand, if T D G(x) has two elements, t and w say, consider the two
further points y and z in G(x) which are joined to t and w respectively by blue edges.
If M(y) is the six-element set joined to y by one colour, then M ^ B; if M = G then
G(y)nR(x) has four members, a blue K4 ; so we have M(y) = R(y) and M(z) = R(z) •

Since yz is necessarily red, we again derive a contradiction.

Now suppose T lies entirely within G(x). Select any member z of B(x) and
suppose M is the colour such that m(z) = 6. If T is in M{z) then M{z) must
contain the three members of T and also the three members of R(z) which belong
to some triangle. If M = B, then M(x) also contains x ; otherwise M(x) contains
two members of B(x), since B(x) consists of red and green 5-cycles. So M(z) cannot
contain T . We then deduce that M(z) = R(z) , and that R(z) contains four of the six
members of R(x). The existence of red edges in B(x) implies a red triangle containing
two members of B(x), which is impossible.

We now assume T is red. If T lies entirely within G(x) the above proof remains
valid, since we did not use the colour of T; and the proof when T lies in B{x) is
analogous. So we can assume that T lies in two of the sets. First assume that T has
110 point in R(x); without loss of generality, say \T H G(x)\ = 2 and \T PI B(x)\ — 1.
Say 2 is the point of T which is in B{x), and let w and t be the points of B(x) which
are connected to z by green edges.

What is the 6-element set M{w)1 If M(w) = B(w) then B{w) f~l R(w) has four
elements, which is impossible. If M(w) = G(iv) then G(w) must contain three vertices
of a triangle from R(x), the three points of T and at least one further point of B(x),
which gives too many points, or else G(w)C\ R(x) has four points, which is impossible.
So M(w) = R{w), and \R(w) n R(x)\ > 4. But \R(t) D R(x)\ ^ 4 also, so R(t) and
R(w) have a common element, and tiu is a red edge, so tw lies in a red triangle — a
contradiction.

So finally T must be red and must have a vertex t in R(x); as we have noted, t

must be a vertex of one of the triangles entirely within R(x). We can also assume that
T has one or two vertices in G(x) (if they both lie in B{x), we simply reverse blue
and green throughout).

Say T fl G(x) — {y, z} . Let us label the other vertices in G(x) as u , v , w where
(u,y, z,v,w) is a red 5-cycle and the other five edges are blue. If M is the colour such
that m(u) — 6, then M(u) does not contain T (since T is joined to u by both red and
blue edges), so M(u) contains at least four elements of R(x) and M = R. Similarly
r(v) = 6 and R(v) contains at least four elements of R(x). As R(u) and R(v) each
contain two elements of G(x) , it follows that

|.R(tt) O R(x)\ = \R{v) n R(x)\ = 4.

Moreover, both R(u) and R(v) contain two triangles in R(x). Since neither contains
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t, they do not contain the triangle in R(x) which contains t. So they contain the same

two triangles, and R{u) n R(x) - R(v) n R{x).

Now B(u) does not contain any member of B(v) (because u and v do not lie in

a blue triangle) and the only member of B(u) in R(v) is z. (The other five members

of R{v) are accounted for — w and four members of R(x)—and all lie in R(u).) So

\B(u) O G(v)\ = 3 . Those three points must form a red triangle which is not one of the

four triangles we already know: a contradiction.

Lastly, say T n G(x) = {y}, T D B(x) = {z}. Let u and v be the two vertices

in B(x) joined to z by red edges. The edge uv is green. Just as before we see that

r(u) = r(v) = 6 and that R(u) and R(v) contain the same four elements of R(x). They

also each contain z , and R(u) n G(v) and G(u) f~l R(v) each have one element, which

is in B(x). So again \B(u) ("I G(i>)| = 3 yielding a new red triangle, a contradiction. |

7 T H E MAIN RESULT

Suppose a; is a triangle-free vertex in a four-triangle colouring of Kn . From the

previous sections, x has valencies {6,5,5}; and if m(x) — 6 then M(x) contains

exactly two triangles. If those triangles are Ti and T2 , define f(x) to equal {Ti,T2}.

Then / is a well-defined map from the triangle-free points of Kn to the unordered

pairs of triangles in the colouring.

LEMMA 10. Suppose f(x) = f(y). Then the large colour classes of x and y are

the same colour.

PROOF: Suppose f(x) = f(y) = {Ti,T2}. Then the large colour classes of x and
y both contain the four or more members of T\ U T2 • If the two large classes are of
different colours, then all the edges between those vertices must be the same colour: for
example, if R(x) PI B(y) has four elements, then all the edges joining the four points
must be green. But a monochromatic A'4 is impossible, by Lemma 9. |

LEMMA 11. If Ti and T2 are two triangles with 0 or 1 common points, then there

cannot exist distinct triangle-free points x and y with f(x) = f(y) = {Ti ,T2}-

PROOF: Suppose f(x) = f(y) = {Ti,T2} . Suppose also that the large colour class
of x is R(x). Then the large colour class of y is R(y), and R(x) D R(y) has at least
five elements. Clearly, xy is not red; suppose it is blue. Then B(x) n B(y) has no
elements; since r(x) = 6, R(x) D B(y) can have at most one element; so G(x) D B(y)

has at least three elements.

If 71! and T2 are disjoint then \R(x) n R(y)\ = 6, R(x) n B{y) is empty, and
\G(x) n B(y)\ = 4 . Then G{x) D B{y) is a blue K4, wliich is impossible. So Ta and
T2 cannot be disjoint.
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If Ti and T2 have one common element, write T3 for G(x) D B(y) and T4 for
B(x) (~l G(y). Both T3 and T4 must be red triangles, and each is disjoint from T\
and T2. Neither Tj nor T2 is red. It follows from Lemma 1 that {Ti,T3}, {TUT4},
{T2, T3} and {T2, T4} can never be values of /(z) for any triangle-free vertex z . More-
over, from the first part of this proof, {T3,T4} cannot equal f(z) for more than one
value of z. Since T] U T2 U T$ U X4 contains eleven points, there must be five different
points with / = {T\,T2} • Call them 2,1/1,1/2,2/3,1/4. Now the intersections of G(x)
and B(yi), B(y2), B{y$) and B{y4) are all triangles; since B(x) can contain only
one triangle, these intersections must be equal. So B(yi) C\ B(yj) is non-empty for all
i and j , and yiyj cannot be blue. But it also cannot be red: R{yi) C\ R{yj) contains
T\ U T2 . So we have a green K4 , which is impossible. |

LEMMA 12. Suppose T3 and T$ are triangles with two common points. Then
there can be no more that two vertices x, y such that f(x) = f(y) = {Ti,T2}.

PROOF: Suppose T\ = abc and T2 = bed. Without loss of generality we assume
that two triangles are blue and that they lie in R(x), which is the large colour class of
x. By Lemma 8, R(y) is the large colour class of y. Clearly xy cannot be red.

First assume xy is blue. There are two vertices in R{x) but not in T"i U T2 •
Call them u and v. By Lemma 2, uv is blue. So uy and vy cannot both be blue.
Therefore, B(y) D R(x) has at most one member. But B(y) n B(x) must be empty.
Therefore B(y) n G(x) has three elements which must constitute a red triangle T3 .
Similarly G{y) C\ B(x) must constitute a red triangle X4. As Tj and T2 are disjoint
and have different colours, no triangle-free point z has f(z) = {Ti,T2} • Similarly
{Ti,T4}, {22,^3} and {T2,T4} are impossible. From Lemma 10, at most one point
can have f(z) = {T3, T4} . Since |T, UT2 UT3 UT4| = 10, there must be six triangle-free
points Xi , x2 , £3 , X4 , X5 , £6 such that f(xi) ~ {Xi,^} and R(xi)nR(xj) contains
T2 U T2. All edges X^XJ must be blue or green, so we get at least two more triangles:
an impossibility.

So xy is green. If there is a third point z with f(z) — {Ti,T2} then xyz is a
green triangle, which is impossible, proving the Lemma. |

One easy observation which is now available to us is that at least four triangles
must appear in any 3-colouring of the edges of Kn : if there were only three triangles,
then there could only be three possible values of the function / , and consequently there
would be at most six triangle-free points; not enough points iii total. (Although most
of the subcases have been such as to guarantee four triangles, we had not outlawed
the three-triangle possibility until now.) The union of the four triangles must contain
between five and twelve points (four points would mean a monochromatic K4 , banned
by Lemma 9; fewer points could not give four triangles). Given a four-triangle colouring
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of A"i7 we write T\ , T2, T3 , T4 for the four triangles and T for their union (considered
as a set of points); we show that the values of \T\ from 5 to 12 are impossible.

It will be useful to establish some notation. The set of triangle-free points is labelled

F; it has 17 — \T\ elements. Also we call a pair of triangles {T],T2} rich if there are

two points x and y in F such that f(x) = f(y) = {T1,T2}. A rich pair spans four

points and consequently both triangles are the same colour.

THEOREM 4. \T\ ^ 12.

PROOF: Suppose ]T\ = 12. There are four disjoint triangles. Five of the six
possible pairs are images under / , so there is one triangle, 2~i say, such that {T\,T2} ,
{Ti, T3} and {Ti, T4} are all images. Consequently the triangles are all the same colour,
blue say. Suppose f(x) = {Ti ,T 2 } , and say Ti and T2 belong to R(x). Then B(x)

contains at most two points, y and z say, from the other two triangles, so it contains
three triangle-free points a, b, c. Since B{x) contains no triangle and no blue edge,
one of these three must be connected to the other by edges of different colours, not
blue—say ab is red and ac is green. Let M(a) be the large colour class of a. Then
M(a) =fi R(a) and M(a) ^ G(a), since M(a) is the union of two disjoint triangles and
thus it may not contain a triangle-free point such as b or c. So M(a) = B(a)\ but
then B(a) contains blue triangles, which is impossible. |

THEOREM 5. | r | ^ 11 .

PROOF: Suppose \T\ = 11 . Say Tj n T2 has one point; T3 and T4 , the other

triangles, are disjoint from T\ U T2 and from each other.

There are six triangle-free points; from Lemma 10 there are no rich pairs; so every

pair of triangles must appear as one image under / . Since {Ti,T2}, {T2,T4} and

{TjjTi} are disjoint pairs, all four triangles must have the same colour.

But suppose f{x) — {Ti, T2} , which must occur for some x . Say Ti U T2 C R(x).

Since Tj and T2 are the same colour, this contradicts Lemma 3. |

THEOREM 6. | r | ^ 10.

PROOF: Suppose |T| = 10. Then there must be a rich pair of triangles, T\ and
T2 . Those triangles must be the same colour. To attain 10 points, T3 and T4 must
be disjoint from Ti U T2 and from each other; just as in the proof of Theorem 4, all
must be the same colour—say blue. Again as in Theorem 4 we can find a triangle-free
point in B(x) which is joined to other triangle-free points by a red edge and a green
edge, and we have a contradiction. (Since xy is green, a ^ y, so / ( a ) consists of two
disjoint triangles.) |

THEOREM 7. \T\ ^ 9 .
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PROOF: If \T\ = 9 then F has 8 members so there are at least two rich pairs.

Say {Ti,T2} is rich, and T\ U T2 contains four points. Without loss of generality, the

other rich pair is {Tj ,13} or {T3, T4} . In the former case, T\ U T2 U T3 cannot contain

more than five points; in the latter T3 U T4 has only four. In either case \T\ ^ 8. So

\T\*9. I

THEOREM 8. \T\ ^ 8.

PROOF: Suppose | r | = 8. There are nine triangle-free points, so there must be at
least three rich pairs. Thus there must be some set of triangles T\, T2, T3 such that
{Ti,T2} and {Ti,T3} are rich. Since Tj U T2 contains only four points, and T3 can
contain one point outside of T\ , therefore T4 must be disjoint from the others to yield
\T\ = 8 , and {T2,T3} must be the other rich pair; if there were more than three rich
pairs then not even eight points are possible. It is easy to see that the only possible
configuration is that shown in Figure 2, where the three triangles in rich pairs have a
common edge: Ti = abd, Ti = abc, T3 = abe, T4 = uvw say.

FIGURE 2

Even allowing every rich pair to be the image of two points under / , there must
be a point whose image is each non-rich pair: write

f(x) = {T1,Ti}, f(y) = {T2,T4}, f(z) = {T3,T4}.

Now Lemma 1 tells us that all four triangles are the same colour—blue say. Let R(x)

be the large colour class of x: R(x) = T1UT4. So all the edges joining T\ to T4 must
be blue or green, and at least two of the edges au, av, aw must be green (or else we
would have a blue triangle). Since the large colour class of y is T2 U T4 , it must also
be R(y) (since it contains aw, av and aw) and the large colour class of z is R{z).

Now consider the edges joining c, d, e to u, v, w. To avoid a blue triangle

involving c and an edge of uvw, at least two of cu, cv and cw must be green, and
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so also must two of du, dv and dw. If cd is green we have a green triangle. But this

means cd must be red; and similarly for ce and de. So we have a red triangle — a

contradiction. I

THEOREM 9. \T\ > 7.

PROOF: If \T\ < 7 we must have four or more rich pairs, and if \T\ ^ 6 then

there must be at least five rich pairs. We first show that the case of four rich pairs is

impossible. If there are exactly four rich pairs, then without loss of generality we can

take them to be either {TUT2} , {TUT3} , {TUT4} and {T2,T3} or { T j , ^ } , { T 2 , r 3 } ,

{T2,X!j} and {T4,Ti}. In either case, Tx U T2 can contain only four points, T3 can

contain at most one not in T\ U T2 , and T4 at most one not in T\ U T2 U T3 . This gives

only six points, a contradiction. So at least five rich pairs are needed.

Suppose there are five rich pairs; all the possibilities except perhaps {T3,T4}.

Without loss of generality, T\ = abc and T2 = abd; the only triangles to form a rich

pair with both of these are T3 = bed or acd or abe. The first two possibilities give

monochromatic K4 , which was eliminated by Lemma 8. The other case can be extended

by T4 = abf . So there is no case of five rich pairs, and only one of six, to be eliminated.

In the latter case, suppose the four triangles are all blue. Since F has 11 elements,

and since none of them have large colour class blue, these must be either at least 6 with

large class red or at least 6 with large colour class green. Suppose 6 have large colour

class red. If x and y are both in that set of six, then a € R{x) H R{y) 1 s o XV is n ° t

red. We have a Ke coloured in blue and green. But this must contain two triangles —

a contradiction. |

In view of the remarks before Theorem 4, we have established Proposition 3.
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