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Abstract

The availability of genome-wide genetic data on hundreds of thousands of people has led to
an equally rapid growth in methodologies available to analyse these data. While the motiv-
ation for undertaking genome-wide association studies (GWAS) is identification of genetic
markers associated with complex traits, once generated these data can be used for many
other analyses. GWAS have demonstrated that complex traits exhibit a highly polygenic gen-
etic architecture, often with shared genetic risk factors across traits. New methods to analyse
data from GWAS are increasingly being used to address a diverse set of questions about the
aetiology of complex traits and diseases, including psychiatric disorders. Here, we give an
overview of some of these methods and present examples of how they have contributed to
our understanding of psychiatric disorders. We consider: (i) estimation of the extent of genetic
influence on traits, (ii) uncovering of shared genetic control between traits, (iii) predictions of
genetic risk for individuals, (iv) uncovering of causal relationships between traits, (v) identi-
fying causal single-nucleotide polymorphisms and genes or (vi) the detection of genetic het-
erogeneity. This classification helps organise the large number of recently developed methods,
although some could be placed in more than one category. While some methods require
GWAS data on individual people, others simply use GWAS summary statistics data, allowing
novel well-powered analyses to be conducted at a low computational burden.

Introduction

The reduction in costs of genotyping technologies in recent years has led to an explosion of
genetic and phenotypic information collected on large numbers of people. The primary aim
of these studies is to identify genetic polymorphisms associated with a quantitative trait or
with an increased risk of disease. These genome-wide association studies (GWAS) have led
to an important increase in understanding of the underpinnings of psychiatric and other dis-
orders (Sullivan et al. 2012; Visscher et al. 2012; Gratten, 2016). They have provided empirical
data demonstrating that common disorders are polygenic and have allowed interrogation of
the genetic architecture, in terms of number, frequency, effect size and interactions of genetic
risk factors. However, the potential use of GWAS data goes far beyond identification of trait
associated loci.

Here, we present an overview of some recently developed methods utilising genome-wide
genotype and phenotype data on large numbers of individuals and show how they can be
applied to the research of psychiatric disorders. These new methods serve at least one of
the following purposes: (i) estimation of the extent of genetic influence on traits
(Estimation of proportion of variance attributable to genome-wide single-nucleotide poly-
morphisms (SNPs), SNP-heritability or h2SNP), (ii) uncovering of shared genetic control
between traits (Estimation of genetic correlation from using genome-wide SNPs), (iii) predic-
tions of genetic risk for individuals (Polygenic risk prediction), (iv) uncovering of causal rela-
tionships between traits [Mendelian randomisation (MR)], (v) identifying causal SNPs and
genes (Fine-mapping and gene prioritisation), or (vi) Detection of genetic heterogeneity.
There is often an overlap between these applications: some methods can be applied for
more than one purpose, and some of the available software implements more than one
method. In this overview, it is not possible to be exhaustive, and we apologise to authors
whose methods have not been included.

Most of the methods presented here require genetic data in either of two formats. One is
that of full individual level genotype data and phenotypic measurements on each person,
where the genetic data can be represented as a matrix with allele counts for each genetic
marker for each person. While this offers the largest range of analytic options, file sizes can
be very large, which can become prohibitive as computational burden is usually non-linear
with increasing numbers of individuals and markers. Moreover, privacy concerns can prevent
this type of data from being shared across research groups. Summary statistics of genome-wide

https://doi.org/10.1017/S0033291717002318 Published online by Cambridge University Press

https://www.cambridge.org/psm
https://doi.org/10.1017/S0033291717002318
https://doi.org/10.1017/S0033291717002318
mailto:rmaier@broadinstitute.org
https://doi.org/10.1017/S0033291717002318


association analysis represent the second data format, for which
data sharing has fewer privacy concerns (Pasaniuc & Price,
2016). GWAS summary statistics comprise the association test
statistic (including direction of effect for a reference allele), stand-
ard error, p value of association and allele frequency of each SNP.
While it has been shown that it is possible to infer whether an
individual was part of a cohort using summary statistics, the
power to do so is limited (Homer et al. 2008; Sankararaman
et al. 2009; Visscher & Hill, 2009), and in any case requires the
genome-wide genotype data of the individual to be identified.
To guard against any privacy concerns GWAS summary statistics
can be provided using allele frequencies estimated in large inde-
pendent samples of the same ethnicity. Methods which require
only summary statistic data benefit from shorter analytical run-
times, much reduced computer memory requirements, and
applicability to a larger number of traits. These benefits usually
come at the cost of lower precision (larger standard errors),
when compared with methods that utilise individual level geno-
type data.

While genetic data in one of these two formats are required by
all methods presented here, some methods additionally make use
of other information, such as genomic annotation or expression
quantitative trait locus (eQTL) data. Genomic annotation can
give clues about the functional importance of a region in which
a SNP resides, whereas eQTL data are the result of an association
test where the phenotype analysed is expression of a gene.

Here we review a range of different polygenic methods and
highlight their aims and the input data they require (Fig. 1).
For each method, we provide some examples of applications rele-
vant to psychiatric genetics research (Table 1).

Estimation of proportion of variance attributable to
genome-wide SNPs

Heritability is the proportion of phenotypic variance that can be
attributed to genetic factors. It is a key quantity in genetics
research as it summarises the role of causal inherited variation.

Trait heritability can be estimated by comparing the phenotypic
resemblance among family members to their coefficients of rela-
tionships. However, estimating heritability from relatives can
result in upwards-biased estimates (Vinkhuyzen et al. 2013) if
non-genetic factors shared by relatives cannot be disentangled
from the shared genetic relationships. This can be circumvented
by estimating heritability from genome-wide markers in unrelated
(that is, very distantly related) individuals. Genomic-restricted
maximum-likelihood analysis (GREML) can be used to estimate
the proportion of phenotypic variance, which is captured by gen-
otyped SNPs (SNP-heritability), by using genetic data of unrelated
individuals (Yang et al. 2010). SNP-heritability estimates are typ-
ically lower than those from twin or family-based heritability esti-
mates, because genotyped SNPs account only for a subset of all
genetic effects (the remainder includes other types of polymorph-
isms and SNPs that are not tagged by genotyped SNPs). Hence,
the parameter estimated by SNP-heritability analysis depends
on the genotype data available in the data set analysed, and can
only converge to the traditional parameter being estimated from
family data, when the genotypes available are fully representative
of the variation in the genome.

Estimation of SNP-heritability has been of particular import-
ance for disease traits, especially those of low lifetime risk (<1%
is typical of most common diseases) for which it is difficult to col-
lect the large samples needed to calculate heritability from esti-
mates of increased risk in relatives of those affected. Both
traditional-heritability and SNP-heritability estimates are pre-
sented on the liability scale (and depend on lifetime risk of disease
in the population), and empirical data of the GWAS era (Lee et al.
2012a; Stahl et al. 2012) demonstrates that the polygenic model
implied in these estimates is justified. GWAS case–control sam-
ples for disease traits are usually heavily oversampled for cases
compared with a population sample and so SNP-heritability esti-
mates are made on this binary case–control scale and transformed
to the liability scale accounting for this ascertainment (Lee et al.
2011). The SNP-heritability estimates are relatively robust to
choice of lifetime risk for most common diseases (lifetime risk

Fig. 1. Schematic representation of the basic models underlying
the polygenic methods reviewed. All models assume that a
phenotype (P) is influenced by genetic (G) and environmental
(E) factors (with environmental defined loosely as anything
not captured by G including stochastic variation and measure-
ment error). (a) Model which considers only one phenotype
and no gene expression. (b) Model which considers only one
phenotype and gene expression (X). (c) Model which considers
two or more phenotypes and no gene expression. Methods
can be grouped into those where the focus lies on individual
SNPs, genes or people (nodes highlighted), and those where
the focus lies on aggregate measures affecting the relationship
between genetic and environmental factors and a phenotype
(edges highlighted).
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Table 1. Overview of selected polygenic methods

Program/method Data needed URL

Estimation of h2, rG

GCTA (GREML) Individual-level genotype data http://cnsgenomics.com/software/gcta/

BOLT-REML/BOLT-LMM Individual-level genotype data https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

LD score regression Summary statistics + LD scores https://github.com/bulik/ldsc; http://ldsc.broadinstitute.org/

HESS (local heritability) Summary statistics + LD reference panel http://bogdan.bioinformatics.ucla.edu/software/hess

Polygenic risk prediction

PLINK Summary statistics + individual-level data https://www.cog-genomics.org/plink2

PRSice Summary statistics + individual-level data http://prsice.info/

GCTA, MTG2 (GBLUP, MTGBLUP) Individual-level genotype data http://cnsgenomics.com/software/gcta/; https://sites.google.com/site/honglee0707/mtg2

BayesR Individual-level genotype data https://github.com/syntheke/bayesR

LDpred Summary statistics + individual-level data https://github.com/bvilhjal/ldpred

Causality of phenotypes

Mendelian randomisation Individual-level genotype data or summary statistics http://www.mrbase.org/

gwas-pw Summary statistics https://github.com/joepickrell/gwas-pw

Causality of genes (gene prioritisation)

gwas-pw Summary statistics https://github.com/joepickrell/gwas-pw

SMR Summary statistics + eQTL http://cnsgenomics.com/software/smr/

PrediXcan Individual-level genotype data + eQTL https://github.com/hakyimlab/PrediXcan

metaXcan Summary statistics + eQTL https://github.com/hakyimlab/MetaXcan

TWAS/FUSION Summary statistics + eQTL http://gusevlab.org/projects/fusion/

DEPICT Summary statistics https://data.broadinstitute.org/mpg/depict/

Causality of SNPs (fine-mapping)

PICS (Fine-mapping) Summary statistics http://pubs.broadinstitute.org/pubs/finemapping/

GCTA (COJO) Summary statistics http://cnsgenomics.com/software/gcta/

MANTRA Summary statistics Available on request from the author

Detection of genetic heterogeneity

BUHMBOX Summary statistics + individual-level data http://software.broadinstitute.org/mpg/buhmbox/

Subtest Summary statistics https://github.com/jamesliley/subtest
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<1%). However, for the very common diseases such as major
depressive disorder (MDD) (lifetime risk 15%), SNP-heritability
estimates are more sensitive to the choice of lifetime risk estimate,
and to screening v. non-screening of controls (Peyrot et al. 2016).

The GREML method for estimation of SNP-heritability is
based on a linear mixed model (Meuwissen et al. 2001), where
a central component is the genetic relationship (or similarity)
matrix, which captures the genetic relatedness of all pairs of indi-
viduals (Hayes et al. 2009). For application to human data, the
algorithm is implemented in GCTA (Yang et al. 2011a). Several
independent studies have confirmed that GREML results in
unbiased estimates of SNP heritability when the model assump-
tions are met, or have investigated how departures from these
assumptions can influence the results (Speed et al. 2012; Zhou
& Stephens, 2014). Potential biases that might influence heritabil-
ity estimation are an association between minor allele frequency
(MAF) and SNP effect size, which does not fit the assumptions
of the model, or an overrepresentation of causal SNPs in regions
of high or low linkage disequilibrium (LD) (Lee et al. 2011; Speed
et al. 2012), both of which can be overcome in GCTA through the
use of the GREML–LDMS approach (Yang et al. 2015a). The run-
time of GCTA–GREML is a function of both the number of mar-
kers,M, and the number of individuals, N. Compute time is O(N3

+MN2), which includes a component for the construction of the
genetic relationship matrix and a component for the actual REML
algorithm. The steep increase in runtime with larger N makes it
impractical for data sets with very large numbers of individuals.
The software BOLT-LMM can estimate variance components
through a stochastic approximation algorithm, which circumvents
the costly calculation of a genetic relationship matrix and thus
reduces the runtime to only O(MN1.5) (Loh et al. 2015). Note
that both GCTA and BOLT-LMM have other features such as lin-
ear mixed model association analysis (Yang et al. 2014) and geno-
type × environment (G × E) analysis, which are not the topic of
this review.

LD score regression (LDSC) (Bulik-Sullivan et al. 2015b) is a
method, which requires only summary statistics to estimate
SNP-heritability and has therefore shorter runtime than the
methods discussed so far. Under polygenic genetic architecture,
SNPs which are highly correlated with many other SNPs (have
a high LD score) are more likely to tag a causal SNP and are there-
fore expected, on average, to have a higher association test statistic
than SNPs which are not highly correlated with many other SNPs.
The regression coefficient of the association test statistics of all
SNPs on their LD score is a function of SNP-heritability (Yang
et al. 2011b; Bulik-Sullivan et al. 2015b). Any factor that increases
the association statistic of a SNP independently of its LD score (as
might be found in population stratification, which induces corre-
lations in test statistics across chromosomes) will increase the
intercept term of this regression (Bulik-Sullivan et al. 2015b).
LDSC estimates SNP-heritability with vastly reduced computa-
tional speed compared with GREML, but with higher standard
error (S.E.) of estimates. The S.E. of GREML SNP-heritability esti-
mates is accurately approximated as 316/N, where N is the total
sample size (Visscher et al. 2014). For LDSC the standard errors
of the variance component estimates are typically larger (usually
by 50% or more) than those of a GREML analysis for the same
sample size (Yang et al. 2015b). However, it is typical that
LDSC can be applied to larger data sets (which generate smaller
S.E.) since only summary statistics are needed. Comparisons of
estimates from GREML and LDSC show that the accuracy of esti-
mates from LDSC are dependent on LD scores calculated from a

population representative of the population used to estimate
GWAS summary statistics (Yang et al. 2015a; Brown et al. 2016).

GREML, LDSC and similar methods can also be used to esti-
mate the SNP-heritability based on genomic partitioning, for
example by chromosome, minor allele frequency, genomic anno-
tations or single loci (Shi et al. 2016). Analyses partitioning
SNP-heritability by cell type-specific genomic annotations have
shown enrichment of GWAS discoveries in trait relevant cells
(Finucane et al. 2015).

Examples of applications to psychiatric disorders

GREML SNP-heritability estimated for psychiatric disorders usu-
ally ranges from 15% to 30%, depending on the disease, and
reported estimates are at most half of the estimates derived
from family studies (Lee et al. 2012a, 2013; Anttila et al. 2016).
SNP-heritability estimates of quantitative mental traits tend to
be relatively low (<0.15), for example, a meta-analysis of the Big
Five personality traits reported significant SNP-heritability esti-
mates below 0.2 for all five traits (Lo et al. 2016). This is in line
with another study of up to 300 000 people finding
SNP-heritability estimates for subjective well-being, depressive
symptoms and neuroticism in the same range (Okbay et al.
2016). Partitioning heritability by tissue-specific genomic annota-
tions has identified the central nervous system as the most rele-
vant tissue in the aetiology of schizophrenia and bipolar
disorder (Finucane et al. 2015).

Estimation of genetic correlation using genome-wide SNPs

Two traits are genetically correlated, if there is a correlation
between the true effect sizes of SNPs affecting the two traits, or
in other words, when, on-average, SNPs have directionally similar
effects on two traits. Genetic correlation can reflect pleiotropy,
which is defined as a genetic variant affecting both traits.
However, while a non-null genetic correlation can imply plei-
otropy is present at many SNPs, a genetic correlation of zero
could arise when pleiotropy is common, but the direction of
effects are uncorrelated across SNPs. Genetic correlations (rG)
are of interest because they suggest a shared aetiology. However,
misdiagnosis between two genetically uncorrelated diseases can
generate significant estimates of rG (Kendler, 1987; Wray et al.
2012). The availability of genetic marker data on disease case–
control samples has allowed the interrogation of the genetic rela-
tionship between diseases, often for the first time, since traditional
methods to estimate genetic correlation based on increased risk of
a disease in relatives of those with another disease requires often
unattainably large samples (Visscher et al. 2014).

Formally, genetic correlation is defined as genetic covariance
between two traits, scaled by the genetic standard deviations of
the two contributing traits. Methods used to estimate SNP herit-
ability can be extended into a bivariate form to estimate rG. In
order to estimate genetic correlation using GREML, individual-
level genetic data and measurements on two phenotypes are
required (from the same or from different individuals). The
power of bivariate GREML analyses to detect rG departing from
0 or from 1 depends on the population value of rG, the
SNP-heritability of both traits, on the sample sizes, on whether
the same or different samples are used for the two traits, and
for disease traits, on the proportion of cases in the sample
(Visscher et al. 2014). For example, for two diseases with lifetime
prevalence of 1%, SNP-h2 of 0.2 and genetic correlation of 0.5,
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5000 cases and 5000 controls for each disease are sufficient to
have 89% power at type 1 error rate of 5% to detect a genetic cor-
relation greater than 0, corresponding to a standard error of 0.06.
The BOLT-LMM software is also capable of calculating rG in a
bivariate GREML analysis with shorter runtime (Loh et al.
2015). In contrast to heritability estimates, rG estimates are scale
independent (approximately) and hence scale transformation is
not needed (Lee et al. 2012b).

If summary statistics on two or more traits are available, LDSC
can be used to estimate rG between them, albeit with higher stand-
ard errors than GREML. To make the application of LDSC for
SNP-heritability and rG estimation even more user-friendly, the
LD Hub resource has been developed, which provides access to
summary statistics from more than 200 different traits. LD Hub
then calculates genetic correlation estimates between each of
these traits and any additional traits for which the user provides
summary statistics data (Zheng et al. 2017).

Estimation of rG is most commonly applied to uncover genetic
relationships between two different traits, but it can also be
applied to detect heterogeneity in genetic effects between two dif-
ferent groups, for example a trait might be under different genetic
control in men and in women or in old people and young people
(i.e. G × E). It has also been applied to two data sets of the same
disease, where rG is expected to be one (Lee et al. 2013), to infer
between-sample heterogeneity or two data sets of the same disease
but of different ethnicity (De Candia et al. 2013). Calculating rG
across populations using LDSC is not straightforward, however,
due to between population differences in both allele frequencies
and LD structure. The program Popcorn addresses this problem
and allows one to estimate the transethnic genetic correlation
based on summary statistics and LD matrices from two popula-
tions (Brown et al. 2016).

Examples of applications to psychiatric disorders

One of the first applications of the bivariate GREML method to
disease traits was to estimate genetic correlations between psychi-
atric disorders, presenting evidence that most pairs of disorders
result in estimates that are significantly different from zero
(PGC cross disorder group (Lee et al. 2013)). From those initial
estimates the high correlations between schizophrenia and bipolar
disorder (~0.6) and between bipolar and MDD (0.5) were consid-
ered plausible given evidence from family studies; however, the
high genetic correlation between schizophrenia and MDD was
more surprising for the clinical community. In fact, close study
of the literature from family studies (PGC Cross disorder group,
2013) showed that all three genetic correlation estimates were
consistent with published increased risk to relatives (RR) of one
disorder for individuals diagnosed with another. However, for
the same genetic correlation the size of RR involving a very com-
mon disorder (~15% lifetime risk) such as MDD is much smaller
than when both disorders are less common (<1% lifetime risk for
both schizophrenia and bipolar disorder).

Genetic correlation can arise through misdiagnosis between
two diseases. For example, those first presenting with clinical fea-
tures consistent with a diagnosis of bipolar disorder can in the
long-term receive a diagnosis of schizophrenia (and vice versa)
(Joyce, 1984; Meyer & Meyer, 2009). However, it can be shown
analytically that very high misclassification rate of 20% would
be needed under no shared aetiology to result in rG of ~0.6 esti-
mated between schizophrenia and bipolar disorder (Wray et al.
2012). In contrast, a high genetic correlation between disorders

would be consistent with some clinical presentations being diffi-
cult to classify.

LDSC has been applied to a full battery of GWAS summary
statistics and report higher estimates of genetic correlations esti-
mates between pairs of psychiatric disorders than between
psychiatric- and non-psychiatric disorders (Bulik-Sullivan et al.
2015a). Some notable examples include a positive genetic correl-
ation between schizophrenia and anorexia nervosa, and a positive
genetic correlation between bipolar disorder and years of educa-
tion. A study investigating genetic sharing between neurological
and psychiatric traits found that among neurological disorders
significant genetic correlations are rare, but that there is some
overlap in genetic risk between migraine and MDD, and
ADHD and Tourette syndrome (Anttila et al. 2016). On the
other hand, genetic correlations between psychiatric traits and
personality traits are more common. Figure 2 shows the top gen-
etic correlations for psychiatric disorders and traits. Data obtained
from LD Hub.

Polygenic risk prediction

Estimates of SNP effects can be used to predict the genetic risk of
individuals. Simple risk scores for each individual are calculated
as the sum over all per SNP effects, where the per SNP effect is
the allele count of the SNP for the individual multiplied by the
effect size of the SNP (Wray et al. 2007; Purcell et al. 2009).
Here the SNP effects come from a typically large and well-
powered discovery (sometimes called training) data set. While
the ultimate goal of genetic risk prediction is in applications
where the phenotype has not yet been observed, in research appli-
cations the risk predictor is evaluated for individuals in a target
(sometimes called validation or testing) data set where the pheno-
type has already been recorded, so that the efficacy of the pre-
dictor can be evaluated.

Screening of high-risk individuals for early intervention or
prevention programs is a potential clinical application of poly-
genic risk prediction that at present is not widely used because
of the low accuracy of genetic risk predictors (Chatterjee et al.
2016). However, there are applications of polygenic risk predic-
tion in research where low prediction accuracy is less limiting;
for example, it could be a cost-effective strategy to conduct
follow-up studies in samples ascertained to be low or high for
polygenic risk. The genetic predictor is evaluated against a mea-
sured phenotype in the target sample, which may or may not
be the same phenotype from which the predictor was constructed.
Generally, if the predicted and the measured trait are genetically
correlated, then there should be positive prediction accuracy,
given enough power in both data sets (Dudbridge, 2013).

In the usual implementation of polygenic risk scores, SNP
effect sizes have been estimated from the standard, one SNP at
a time GWAS analysis. The construction of polygenic risk scores
is based on some decision about the proportion of SNPs to
include in the predictor. As the discovery sample p value thresh-
old becomes more lenient, the increased predictive power of
including estimated effect sizes from more true positive associated
SNPs is balanced by the inclusion of more false positives. The
optimum proportion of SNPs to include depends on the
(unknown) genetic architecture and size of the discovery sample.
In the latest schizophrenia GWAS, the optimum p value threshold
was identified as 0.05 (based on variance explained in
out-of-sample prediction across many samples), although inclu-
sion of all SNPs did not lower accuracy drastically (Ripke et al.
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Fig. 2. Genetic correlations between psychiatric disorders and traits, and almost 200 other traits. For each trait, the 10 traits with the highest absolute genetic correlations are shown. Colours indicate whether genetic correlations are
positive or negative. One star indicates a genetic correlation p value <0.05. Three starts indicate a p value below the Bonferroni threshold of 2.81 × 10−6 for 17 766 tested trait pairs. Data obtained from LD Hub (Zheng et al. 2017).

1060
R
.
M
.
M
aier

et
al.

https://doi.org/10.1017/S0033291717002318 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0033291717002318


2014). Often a range of different p value thresholds are used to
determine the best predictor, although this approach is prone to
overfitting. Software such as PLINK (Purcell et al. 2007; Chang
et al. 2015) implements basic polygenic risk scoring, while
PRSice compares polygenic risk predictors using a large number
of p value cutoffs to find the optimum threshold given the data
(Euesden et al. 2015). In polygenic risk scoring, LD among
SNPs is usually accounted for by applying LD-clumping, i.e.
pruning of SNPs based on LD but with higher preference to
SNPs with lower p values (usually simply termed ‘clumping’).
Prediction accuracy can be improved by using methods that pro-
vide estimates of SNP effects that are conditional on all other
SNPs, thereby directly taking SNP LD correlations into account
(de Los Campos et al. 2013), such as Genomic Best Linear
Unbiased Prediction (GBLUP) (Meuwissen et al. 2001), which
is widely used in animal breeding. In GWAS, there are many
more SNPs compared with individuals so effects sizes of each
SNP are not estimable in a multiple regression model. In
GBLUP, it is assumed that SNP effect sizes are drawn from a nor-
mal distribution and a shrinkage term, or penalty term, propor-
tional to the trait heritability is introduced in the model. More
complex models are BayesR (Moser et al. 2015) or LASSO (least
absolute shrinkage and selection operator) (Abraham et al.
2013). These methods shrink the SNP effect estimates (i.e. the
effect attributable to SNPs in LD with each other is shared
between the correlated SNPs) and will ensure the predicted phe-
notypes are more accurate, and in LASSO and BayesR shrink a
proportion of SNPs to zero. The gains in prediction accuracy
are dependent on underlying genetic architecture (Moser et al.
2015).

If individual-level genotype data are not available, it is still pos-
sible to transform marginal SNP effects (standard GWAS sum-
mary statistics) into penalised, conditional SNP effects, by
making use of an LD reference data set (Yang et al. 2012;
Robinson et al. 2017). This is implemented in GCTA (Yang
et al. 2011a) and in LDpred (Vilhjálmsson et al. 2015), which
not only accounts for LD between SNPs, but also uses a
Bayesian framework to adjust the SNP effects for traits where
an infinitesimal model (all SNPs have some effect) is not the
best fit to the data (e.g. autoimmune disorders). This is analogous
to the selecting SNPs based on p value in standard polygenic risk
prediction and can further improve accuracy.

Finally, GBLUP approaches can be extended to a multi-trait
model, which can further improve prediction accuracy when phe-
notypes are genetically correlated, because measurements on each
trait provide information on the genetic values of the other corre-
lated traits. This approach has been implemented in the program
MTG2 and has been shown to improve prediction accuracy for
schizophrenia and bipolar disorder (Maier et al. 2015).

Examples of applications to psychiatric disorders

Polygenic risk prediction is widely used in psychiatric genetics,
not to infer an individual’s case control status, but to gain a better
understanding of disease aetiology. Polygenic risk prediction in
applications relevant to psychiatry has been reviewed previously
(Wray et al. 2014). Some more recent examples include schizo-
phrenia polygenic risk scores calculated for community samples
of individuals, which explain variation in creativity (Power et al.
2015) and cannabis use (Power et al. 2014). An association
between schizophrenia polygenic risk scores and negative symp-
toms and anxiety disorder in adolescents gives reason to hope

that these kind of studies can not only lead to a better under-
standing of disease aetiology, but may someday also contribute
to early intervention programmes (Jones et al. 2016; Kendler,
2016). Polygenic risk prediction additionally provides a novel
approach to studying gene – environment interactions (G × E).
Traditional G × E studies, which test for an interaction effect
between single genetic variants and an environmental exposure
on disease risk, often suffered from low power caused by the
small amount of variance explained by individual genetic loci.
In contrast, interactions between a polygenic risk score and envir-
onmental exposure can be detected more easily, because polygenic
risk scores explain more of the variance in disease risk than indi-
vidual loci. This type of G × E study has been applied to investi-
gate a potential interaction between a polygenic risk score for
MDD and childhood trauma on the risk for MDD. Two inde-
pendent studies found that both the polygenic risk score and
exposure to childhood trauma increase the risk for MDD, but
came to different conclusions about the nature of the interaction
between the two: One study found a positive interaction, meaning
that those with both exposure to childhood trauma and high poly-
genic risk scores are at the greatest risk of developing MDD
(Peyrot et al. 2014), while another study found a negative inter-
action, where people with exposure to childhood trauma and
low polygenic risk scores are at the highest risk (Mullins et al.
2016).

Mendelian randomisation

MR analysis investigates the causal relationships between traits. It
is a specific form of an instrumental variable analysis (Evans &
Davey Smith, 2015), where the goal is to test the causal effect of
an explanatory variable (exposure to a risk factor) on a dependent
outcome variable (such as disease risk). In MR, genetic markers
are used as the instrumental variables. The MR poster child is
the application to blood lipid levels and myocardial infarction
(Voight et al. 2012). Together with a number of randomised con-
trolled trials (Keene et al. 2014), this application of MR has had
major impact on drug development by providing evidence against
a causal role of HDL and thus helped in the search for effective
ways of preventing myocardial infarction, and demonstrates
how evidence from an MR analysis could be used to circumvent
costly randomised controlled trials.

Despite its great potential, MR is often limited by low power,
and by the fact that it is very difficult to show that all the assump-
tions (see Fig. 3) that are necessary to infer causality are met.
However, if MR is applied bidirectionally for trait pairs of
approximately comparable power, and evidence for significant
causality is detected in only one direction, then this can help to
infer causality over pleiotropy. The power in MR studies is a func-
tion of the true causal association between exposure and outcome
and of the variance explained by the instrumental variables (Brion
et al. 2013). Since statistically significantly associated SNPs often
only explain a small proportion of the genetic variance, for many
pairs of traits, very large sample sizes are needed to achieve suffi-
cient power to detect causal associations [see online calculator
(Brion et al. 2013)].

In recent years, many improvements to the MR method have
been developed. Of particular importance for polygenic traits is
the extension from single-SNP instrumental variables to instru-
mental variables that comprise multiple SNPs (Evans et al.
2013). This may increase power since in polygenic traits individ-
ual SNPs are likely to be weak instruments. Two-sample MR is an
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extension that makes it possible to combine independent data for
genotype – exposure and genotype – outcome in an MR experi-
ment, thus allowing to investigate causal associations among all
phenotypes for which well-powered GWAS data are available
(Burgess et al. 2013). Further developments of MR include better
ways to test some of the assumptions, modifications which allow
the relaxation of the no-pleiotropy assumption, and improve-
ments which increase the power to detect causal effects (Evans
& Davey Smith, 2015). The web-based resource MR BASE has
been developed to simplify the application of MR to test causality
between a large number of traits and to compare different varia-
tions of the method (Hemani et al. 2016). Summary data for more
than a thousand traits have been collected and can be tested for
causal associations with data provided by the user.

Examples of applications to psychiatric disorders

Several MR studies have investigated a potential causal influence
of variables, which are known to be associated with psychiatric
traits and diseases from observational studies. One study which
looked at BMI as a potential risk factor concluded that there is
no evidence of BMI being a causal influence on schizophrenia
and bipolar disorder, but weak evidence of BMI conferring a
higher risk of MDD. It was noted, however, that the BMI associ-
ation suffers from low power caused by small sample sizes for
MDD (Hartwig et al. 2016). C-Reactive protein (CRP) is a poten-
tial risk factor for psychiatric disorders with undisputed correl-
ational association, but unclear causality. A study from 2016
surprisingly found a protective role of genetically elevated CRP
levels on the risk for schizophrenia, as well as weak (nominally
significant) evidence for a risk increasing effect on bipolar dis-
order as well as a range of other somatic traits (Prins et al.
2016). This is in contradiction with another 2016 study, which
identified elevated CRP levels to confer an increased risk of
schizophrenia (Inoshita et al. 2016). There is much debate on
whether cannabis is a risk factor for psychosis or schizophrenia,
or whether the association is due to reverse causation or due to
a confounding factor (McGrath et al. 2010; Gage et al. 2016).
Recently MR studies have provided evidence for a causal role of
cannabis in the development of schizophrenia, but also for a
reverse causation (Gage et al. 2017; Vaucher et al. 2017).
Several other risk factors for schizophrenia, anxiety and

depression have been investigated through MR with negative
results (Bjørngaard et al. 2013; Gage et al. 2013; Taylor et al.
2016).

In summary, MR studies investigating risk factors for psychi-
atric disorders could in a few cases provide evidence for a risk
increasing effect. As the power of GWAS with increasing sample
sizes, there will be more robust SNP associations which can be
used as instrumental variables. This will provide more evidence
for whether the many negative results were just caused by low
power or by the absence of a true causal association, but interpret-
ation of causality needs to carefully consider confounding factors.

Fine-mapping and gene prioritisation

LD between SNPs is both a blessing and a curse for GWAS. On
one hand, it makes it possible to probe only a subset of all genetic
variants yet still detect associations for a much larger set, either
through tagging of non-genotyped SNPs by genotyped SNPs or
through LD-based imputation to sequenced reference samples.
On the other hand, it means that a detected association does
not necessarily imply a causal role for the associated SNPs.
Fine-mapping attempts to identify which out of a number of asso-
ciated SNPs in a LD region have a causal role, and which are
merely associated because they are in LD with causal SNPs
(Sekar et al. 2016).

To better understand disease aetiology, it may be of interest to
identify causal genes, rather than causal SNPs. In many cases the
causal gene may simply be the gene closest to the most strongly
associated SNP in a region, but this is not always so
(Claussnitzer et al. 2015).

Identifying causal SNPs

A range of different approaches have been developed for the fine-
mapping of SNPs. Most of them use information on functional
annotation of the genome and LD between SNPs, in addition to
SNP association statistics on one or more diseases. An algorithm
(PICS) utilising all these kinds of information has recently been
applied to 21 autoimmune disorders and identified many putative
causal variants by integrating information from different types of
functional annotations, including epigenetic marks and gene
expression information (Farh et al. 2015).

Fine-mapping methods can use LD information to either iden-
tify causal SNPs within a region that may not have the strongest
association signal, but are located in a functional genomic element
like an enhancer, or they can use LD information to identify mul-
tiple independently associated SNPs, by calculating the associ-
ation signal conditionally on the association signal of
neighbouring SNPs. Traditionally, this would require full geno-
type data on the trait of interest. However, it has been demon-
strated that it is possible to borrow LD information from a
reference genotype data set for a conditional analysis, making it
possible to apply this approach to traits for which only summary
statistics are available (Yang et al. 2012; GCTA-cojo). For this to
work well, the LD structure in the reference genotype population
should be a good approximation of the LD structure in the popu-
lation on which the GWAS has been performed. Cross-ethnic
genetic studies can aid fine mapping of disease loci, exploiting dif-
ferences in allele frequency and LD (Morris, 2011), but applica-
tion to psychiatric disorders has been limited by the dearth of
non-European data sets.

Fig. 3. Causal pathways in an MR experiment. A causal effect of exposure (X) on out-
come (Y) can be inferred if three core assumptions are met. These assumptions con-
cern the genetic instrumental variable, Z, and state that: (i) Z has to be robustly
associated with the exposure variable, (ii) Z cannot be related to any common causal
factors of X and the outcome Y (these are labelled U), and (iii) Z may only be related
to Y through X (Solovieff et al. 2013). The latter two assumptions can be summarised
as the absence of pleiotropy for the instrumental variable.
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Fine-mapping can benefit from data on multiple traits. When
two traits share regions of significant genetic associations it can be
investigated if they share causal loci at those shared regions, or if
different loci drive the regional association in each trait. This has
been investigated in a Bayesian framework using only summary
statistics and resulted in the identification of 341 loci associated
with more than one trait across 42 different phenotypes
(Pickrell et al. 2016). SNPs associated with two traits form the
basis of the previously discussed MR methods.

Identifying causal genes

Genome-wide association studies suffer from a massive multiple-
testing burden, owing to the large number of association tests
between SNPs and phenotype. To minimise the number of false
positive results, associations are usually required to be significant
at a p value of 5 × 10−8 (Bonferroni correction of a million inde-
pendent tests). Gene-based tests have a reduced multiple-testing
burden (~20 000 independent tests) and give biological meaning
to association results. In gene-based tests SNPs are aggregated
into larger groups (Neale & Sham, 2004) assuming that SNPs
exert their effect through nearby genes, which is not always
true. The PrediXcan method refines this aggregation step by
including external tissue specific eQTL data to predict gene
expression levels based on SNP data (Gamazon et al. 2015).
This has several advantages over conventional gene-based tests
as it limits the multiple-testing burden by only using SNPs,
which are known to affect gene expression, and the direction of
effect of a SNP on expression levels is not lost when aggregating
multiple SNPs. By using tissue-specific eQTL data, associations
can be tested between a phenotype and expression changes in tis-
sues relevant to the phenotype. PrediXcan has been used to iden-
tify genes which may play causal roles in amyloid deposition and
cognitive changes in Alzheimer’s disease (Hohman et al. 2017)
and genes associated with Asthma (Ferreira et al. 2017). While
PrediXcan requires individual-level genotype data, the extension
MetaXcan requires only summary statistics and promises similar
accuracy, if the right reference population is used for LD estima-
tion (Barbeira et al. 2016). Transcriptome-wide association study
(TWAS) is a summary statistics based method similar to
MetaXcan, which differs in the algorithm used to predict expres-
sion (Gusev et al. 2016a). More recently, TWAS has been applied
to detect pairs of traits with genetic correlations at the level of pre-
dicted expression (Mancuso et al. 2017). A current limiting factor
in this and other expression-based methods is the quality of
tissue-specific eQTL data. The previously mentioned methods
prioritise genes based on predicted effects of SNPs on expression.
This is in contrast to other methods, such as DEPICT, which use
gene expression data to predict gene function and prioritise genes
at specific loci based on the predicted function (Pers et al. 2015).

While an association of predicted gene expression and a
phenotype is suggestive of a causal role for that gene, pleiotropy
is an alternative explanation for this association. That is, the
same SNPs could independently lead to expression changes in
one gene and via a different route have an effect on the pheno-
type. The summary statistics-based MR (SMR) method (Zhu
et al. 2016) attempts to distinguish between these two scenarios
using eQTL SNPs as instrumental variables and gene expression
as exposure variable. This method also applies a follow-up test
(HEIDI), which identifies and excludes regions where multiple
linked SNPs are independently associated with gene expression
and phenotype, as a strategy to prioritise regions with evidence

of a simple causal mechanism for functional follow-up. The
method was applied to several complex human traits and has
identified 126 putatively causal genes, of which 77 were not the
closest gene to their respective top associated GWAS hit.

MetaXcan, TWAS and SMR use the same type of data to iden-
tify genes of interest. However, there are many subtle differences
between the methods, which will likely lead to unique results for
each method. To date, no systematic comparison of their relative
performance has been published.

Examples of applications to psychiatric disorders

PrediXcan has been applied to bipolar disorder, resulting in the
identification of two genes, PTPRE and BBX, for which predicted
increased expression in whole blood and the anterior cingulate
cortex, respectively, was associated with increased risk of bipolar
disorder (Shah et al. 2016). SMR has been applied to schizophre-
nia, highlighting two genes, SNX19 and NMRAL1, with a poten-
tially causal influence (Zhu et al. 2016). The previous two
examples have highlighted genes by using eQTL data, but the con-
cept can be extended to account for the fact that chromatin mod-
ifications may mediate the association between genetic variants
and eQTLs, and that splice-QTLs, rather than eQTLs, may under-
lie the genetic effect of a SNP. A TWAS study on schizophrenia
has incorporated these ideas and has highlighted 157 genes,
many of which were identified due to brain specific splice-QTLs
(Gusev et al. 2016b).

Detection of genetic heterogeneity

Most genetic studies are based on the assumption that individuals
who exhibit similar symptoms or who have been diagnosed with
the same disease are representatives of the same underlying biol-
ogy defined by a common genetic architecture. Under a polygenic
disease architecture, each individual is likely to have a unique
combination of risk loci, but with each combination drawn
from the pool of risk loci. Genetic heterogeneity occurs when
individuals with the same clinical presentation have risk alleles
drawn from independent (or perhaps correlated) sets of risk
loci, and the genetic risk profile of one or more subgroups of
cases departs from that of the rest. This may arise through mis-
classification of some cases, or through distinct aetiological path-
ways leading to the same diagnosis (Flint & Kendler, 2014; Jeste &
Geschwind, 2014). The inherent phenotypic heterogeneity within
psychiatry makes detection of genetic heterogeneity an appealing
goal and identification of distinct pathways holds the promise of
shedding light on disease aetiology. Furthermore, a biological
basis for disease stratification could lead to more personalised
treatments (Kapur et al. 2012).

Although the concept of identifying genetic sub-groups is
intuitively appealing simulations suggest it is very difficult to
find meaningful genetic groupings if each sub-group has a genetic
architecture of a large number of loci with small effects. The large
number of combinations of risk loci, their small effect sizes, the
uncertainty about the size or even about the presence of genetic-
ally heterogeneous groups, and the challenging disentanglement
from population stratification all contribute to the difficulty of
this problem. As a result, even data sets comprising hundreds
of thousands of individuals may not provide sufficient power
for naïve approaches to detecting even the simplest scenarios of
genetic heterogeneity (Han et al. 2016; Maier et al. unpublished
results).
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The BUHMBOX method (Han et al. 2016) frames the ques-
tion of disease heterogeneity in a different way and sets out to
test if two diseases that share a genetic basis (rG > 0) are correlated
because the shared genetic risk factors are present in the whole
sample (pleiotropy) or are confined to only a subgroup of indivi-
duals (identifiable genetic sub-type) (Han et al. 2016). The
BUHMBOX method investigates LD-independent risk loci for
disease B in individuals diagnosed with disease A. If only a sub-
group of individuals has a higher genetic risk for disease B, this
will induce a correlation among the disease B risk loci, which
would support the presence of genetic heterogeneity and not plei-
otropy. This approach can demonstrate presence of a genetic sub-
group without identifying which specific individuals diagnosed
with disease A are genetically more similar to those with disease
B. The method found evidence for heterogeneity among sero-
negative rheumatoid arthritis cases, suggesting that they may con-
tain a significant proportion of seropositive cases. The power of
the BUHMBOX method to detect heterogeneity depends on the
number of cases, number of markers, risk allele frequency, odds
ratio and proportion of disease A cases that are genetically disease
B cases (heterogeneity proportion). For example, with 2000 cases
and 2000 controls, a heterogeneity proportion of 0.2 and 50 risk
loci, the power to detect heterogeneity at a significance threshold
of 0.05 is 92% (Han et al. 2016).

Alternatively, genetic heterogeneity can be studied by first
grouping individuals (for example, disease cases) based on non-
genetic data and then testing for genetic heterogeneity between
these disease subtypes. A recent method follows this approach
by jointly modelling the probability for each SNP of whether its
frequency differentiates cases and controls and/or differentiates
disease subgroups. Applied to type 1 diabetes, this method sug-
gests that cases with and without autoantibodies exhibit a differ-
ent genetic architecture for type 1 diabetes disease risk (Liley et al.
2016).

Examples of applications to psychiatric disorders

The BUHMBOX method was used to investigate the shared gen-
etic basis between MDD and schizophrenia, and found no evi-
dence that suggested that a subset of MDD cases was
genetically more similar to schizophrenia cases, implying that
the genetic correlation estimated between the disorders reflect
pleiotropy (Han et al. 2016). Application of this method will
become more interesting as sample sizes increase.

Conclusions

For many psychiatric disorders, genetic factors explain more vari-
ation in disease risk in the population than any other known risk
factors (Sullivan et al. 2012), but only recently has it become pos-
sible to resolve the overall familial genetic risk into individual risk
factors at the DNA level. The evidence is now conclusive that psy-
chiatric disorders, like many other common disease and disorders
are highly polygenic underpinned by thousands of genetic loci,
each of which contributes a small amount to the overall genetic
risk. After a period in which many candidate gene studies have
reported association results, which failed to replicate (Chanock
et al. 2007), the hypothesis-free GWAS approach has established
itself as the dominating paradigm to find associated genetic loci.
With ever growing sample sizes, more and more SNPs surpass
the stringent p value threshold for almost all investigated traits.
However, it is also becoming clear that the bulk of genetic risk

factors remains hidden among those loci that do not achieve
genome-wide significance. Many of the methods presented in
this review leverage the large amount of information that is har-
boured by genetic variants, regardless of whether or not they
achieve significance. While the focus of some methods is on indi-
vidual SNPs or genes, other methods aggregate over a potentially
large number of loci to answer questions such as ‘What is the
combined genetic effect of all measurable SNPs on phenotypic
variance?’, ‘Do these traits have a shared genetic aetiology?’ or
‘Do these traits causally influence one another?’. One thing that
all of these methods have in common is that their utility crucially
depends on the power to detect an association, which in turn
depends on sample size. Larger sample sizes lead to a higher com-
putational burden, but for most analytical questions, which have
been presented here, there are methods which can utilise sum-
mary statistics and thus drastically reduce runtime and memory
requirements.

The literature on new methods is ever-growing and while we
have tried to present an overview of key methods to help naviga-
tion of this complex field, it is difficult to be fully exhaustive. In
particular, pathway analyses are important application of GWAS
summary statistics, but these methods have been reviewed
recently (Wang et al. 2010) and so were not considered here.
We have illustrated the methods with some example applications;
however, we expect the full potential of the data will only be
revealed in coming years when studies with half a million or
more people will be widely available. A key issue for the field is
to develop cost-effective strategies to capture larger sample sizes
with both DNA samples and phenotypic data as these are needed
to evaluate the extent to which genetic data can explain pheno-
typic heterogeneity and to fulfil the potential of more personalised
medicine.
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