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1. Let V be a non-singular rational surface defined over an algebraic number field
k. There is a standard conjecture that the only obstructions to the Hasse principle
and to weak approximation on F are the Brauer-Manin obstructions. A prerequisite
for calculating these is a knowledge of the Brauer group of F; indeed there is one
such obstruction, which may however be trivial, corresponding to each element of
Br F/Br k. Because k is an algebraic number field, the natural injection

is an isomorphism; so the first step in calculating the Brauer—Manin obstruction is
to calculate the finite group ^(k, Pic V).

But although finding //*(&, Pic F) in any particular case is a finite calculation, the
standard method of doing it is frequently tedious; and it would be convenient to have
it done once for all. In the case when F is fibred by conies, this has been done by
Iskovskih[4]. In the case of Del Pezzo surfaces of degree d > 4, it is known that Hl

is trivial. The main purpose of this paper is to settle the case d = 3, when F is a non-
singular cubic surface; from this the case d = 4, when V is the intersection of two
quadrics in P4, follows easily. The cases d = 2 and d = 1 could presumably be dealt
with by the same methods, but they have not so far aroused sufficient interest to
justify the labour involved. The basic idea is to turn the problem back-to-front,
asking what are the conditions on F for a given expression to represent a non-trivial
element of Hl(k, Pic F).

If V is a non-singular cubic surface, it turns out that //*(&, Pic F) must be trivial
or isomorphic to one of C2, C2 x C2, C3 or C3 x C3, where Cn denotes the cyclic group
of order n; which one of these possibilities holds in any particular case can be read
off from Lemmas 1, 2, 4 and 5. If F1; defined over another algebraic number field kv

is the non-singular intersection of two quadrics in P4, it turns out that Hl(k1,J
iic Vx)

must be trivial or isomorphic to C2 or 6'2 x C2; which one of these possibilities holds
in any particular case can be read off from Lemmas 10 and 11. It is not hard to verify,
both for V and for F1: that all these possibilities actually arise.

Some particular cases of these results can already be found in the literature.
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Diagonal cubic surfaces are treated in [1]. Proposition 3-18 of [2] gives a necessary
condition for //*(&, Pic F) to be non-trivial when V is an intersection of two quadrics.
I am indebted to J.-L. Colliot-Thelene for showing me that the proof of that
Proposition can be extended to show that Hx(k, Pic V) is killed by 2 when V is an
intersection of two quadrics, and by 54 when V is a cubic surface; this gives
alternative proofs of Lemma 9 and of a crucial remark in Section 7. Manin[5] has
tabulated //*(&, Pic F) in the case when V is a cubic surface and all 27 lines are defined
over a cyclic extension of k; and under the same cyclicity condition Urabe[8] has
extended the table to the cases when V is a Del Pezzo surface of degree 2 or 1. He has
also corrected two errors in Manin's table 1 (pp. 176-7), where the entries Z2 in
column 7 should both be 0.

2. From here to the end of Section 6 we assume that V is a non-singular cubic
surface. Let K be the least extension of k which is a field of definition for each of the
27 lines on V, and denote by G the Galois group of K/k. If Go denotes the group of
order 2 7 -3 4 5 = 51840 whose elements are the incidence-preserving permutations of
the 27 lines, then G is canonically embedded in Go; in particular n divides 51840,
where n is the order of G.

Write for convenience P = Pic V and P = Pic V. In what follows, we shall usually
not distinguish between a divisor and its class. It is known that P is a free Z-module
of rank 7, and that we can choose a base A1;..., A6, ju, for it which is orthogonal with
respect to intersection number, where the At are mutually skew lines and /i is a
twisted cubic which does not meet any At. (If we map V to P2 by blowing down the
At, then fi becomes a straight line.) We denote the class of a plane section of V by

v = 3fi — Aj —... — A6;

n is in P. The classes of the 27 lines on V are the six At, the fifteen fi — Ai — Aj and the
six n + Ai— /i.

The cohomology group we are concerned with is

//*(&, P) = Cocycles/Coboundaries,

where a cocycle is a function <j>:G->P which satisfies

<P(gg') = g<t>(g') + <f>(g) ( i )

and a coboundary is a function <f> which has the special form

for some fixed a. in P. For any cocycle <f> we can sum (1) over all values of g' and obtain

n<p(g) = oco-gao where a0 =
It follows that

P-gP (2)

for some /? in P ® Q and we can even choose fi so that nfi is in P; moreover this
equation determines ft up to an arbitrary element of P ® Q. It follows that i/1(fc,P)
is killed by n, as is well known; so if it is non-trivial it must contain an element of
order p where p = 2, 3 or 5. It is such elements that we primarily seek.

Let <f> be an element of ^(k,?) of order precisely m, where we take m > 1, and let
ft in P ® Q satisfy (2) with mft in P. By hypothesis m'ft cannot be in P for any m' with
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0 < m' < m. Changing /? by an element of P changes <f> by a coboundary, which is
harmless; hence for fixed m we need only consider a finite number of candidates for
P, and the number of equivalence classes of these under Go turns out to be quite
small. This leads us to ask how the choice of /? constrains the allowable values of G.
It does so in two ways. The first, which stops P being too large and hence implicitly
stops G being too small, is that m'fi must not be in P ® Q + P for any m' with
0 < mf < m; and here we can clearly confine ourselves to those m' which divide m.
The second constraint, which arises from (2), is that

gfi = j3modP for all g in G; (3)

this implies that G cannot be too large.
We can put this second constraint into a more convenient form as follows. For any

two elements y1,y2 of P ® Q, we denote their intersection number by (y1"y2). Now
let A be any one of the 27 lines on V; then (3) implies

(A-0) = (A-g/?) = (g-1A-p) modi. (4)

For 0 ^ r < m let Sr be the set of lines A which satisfy

(A-fi) = r/m modi ; (5)

then (4) implies that G fixes each Sr. Conversely, if G fixes each Sr then (4) follows
for all A; and this implies (3) because if (ft—gfi) has integral intersection number with
each A then it lies in P.

In what follows, we shall show that the cases m = 4, 5, 6 and 9 are all impossible,
and for each /? of order 2 or 3 in (P ® <Q)/P we shall determine the two constraints
above on G in terms of the associated rationality properties over k of the 27 lines. All
the necessary information about the incidence properties of the 27 lines can be found,
for example, in Segre[6].

3. In this section we consider the case m = 2. Recall that a double-six on V consists
of two sets of six skew lines such that each line of one set meets five of the six lines
of the other set. Any set of six skew lines is contained in a unique double-six.

LEMMA 1. The order ofH1(k, P) is even if and only if there is a double-six SonV with
the following properties:

(i) each element of G maps the set S to itself;
(ii) if/?„ denotes half the sum of one set of skew lines in 8, then /?0 is not raP®Q +P.

Given G and S such that (i) holds, it is easy to check whether (ii) also holds; and
this depends only on the partitioning of S into conjugacy classes over k. Moreover,
if we choose A,,..., A6 to be one of the two sets of skew lines in S then the other one
consists of the lines n + At — /i. Hence the two candidates for /?0 in (ii) are|(3/< — n) and
\(5n — 3/t); so it does not matter which one we choose for the test.

Proof. In the recipe of Section 2 we can take /? to be of the form

A1 + ...+c6A6, (6)

where every ct is congruent to 0 or \ mod 1. We can force c0 to be 0, because if it
is \ we can replace /? by f} — \n, since TT is in P. Since the permutation group on the
A( is a subgroup of Go, we are only really concerned with q, the number of ct with
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1 ^ i ^ 6 which are not integers. Since q = 0 is ruled out, there are apparently six
cases to consider; but we shall show that they actually reduce to only two.

Suppose first that q = 1; without loss of generality we can take /? = §AX. In the
notation of (5), St consists of A1 and the ten other lines that meet it. The property
of meeting all the other lines in St picks out Ax uniquely within S1; hence not only
is St fixed by G but the same is true of Aj. It follows that Ax is in P and /? gives only
the trivial element of//1.

Next suppose that q = 2 and take /? = l(A1 + A2). Now S1 consists of Al and A2,
77 + Aj— ji and n + A2— ji, and the eight lines like /i — A1 — A3. I t is easy to verify that
these form a double-six, one set of skew lines consisting of A15 n + A1— /i and the
/i — A2 — Aj for i = 3,4,5,6. Hence G must preserve this double-six. But in this
notation /?„ = 7r + |(A1 — A2), and if this were in P ® Q+P the same would be true of
ft- in which case /? would induce the trivial element of//1.

To reduce the cases q = 3,4,5,6 to those already considered, we use the alternative
base for F given by

/*' = 2/t — A4 — A5 — A6, Ai = A1; A2 = A2, A3 = A3, | .„

A; = /* -A 5 -A 6 , A; = /M-A4-A6, A; = /*-A4-A5,J

which has exactly the same properties as the old one. We have

all taken mod (P ® Q +P). The first two show that the case q = 4 reduces to q = 1,
and the case q = 5 directly to q = 4 and thence to q = 1. The latter two show that the
case q = 3 reduces to # = 2, and the case q = 6 directly to g = 3 and thence to q = 2.
I t follows from what we have already proved that if the order of H1 is even then
there is a double-six S such that (i) and (ii) hold. Moreover, given an element of order
2 in H1 there is a canonical construction of the corresponding S; for the element of
H1 determines /?mod (\P+P) and S is then either the So or the S1 corresponding to
that p. (We cannot hope to be more specific than this, because adding \n to /?
interchanges So and S^)

Conversely, if S satisfies the conditions of the Lemma then /?„ generates an element
of//1 of order 2; and the double-six which we recover from /?0 is just S itself.

COROLLARY 1. If the order o///1(fc,P) is even then V contains points defined over k if
it contains points over every local field kb.

Proof. Let Gx be the subgroup of G which fixes each of the two sets of skew
lines in S, and let kx c K be the fixed field of Gv Clearly [0: GJ = 2 and therefore
[kt: k] = 2. But V contains a set of six skew lines defined over kx and therefore
satisfies the Hasse principle over kt; under the conditions of the Corollary V
contains points defined over kl and therefore points defined over k. I

We now turn to the question of how many elements of order 2 there can be in H1,
the answer plainly being 2°— 1 for some q. In fact we can only have q = 0, 1 or 2 and
criteria for distinguishing these three cases are given by Lemma 1 above (which tells
when <? ^ 1) and Lemma 2 below (which tells when q = 2).
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LEMMA 2. Hl(k,P) cannot contain more than three elements of order 2, and it contains
as many as three if and only if there are three disjoint sets S1, S2 and S3, each consisting
of three skew lines and their three transversals, with the following properties:

(i) the union of any two of the sets Sl is a double-six;
(ii) each of the S* is fixed tinder G:

(iii) if /?* denotes half the sum of one set of three skew lines in some Sl then no such
/?* isinP®Q + P.

Proof. We can assume that H1 contains at least three elements of order 2,
generated by fix, fl2 and fix — /?2 = /?3 say. In the light of the proof of Lemma 1, we can
assume that /? = |(Aj +. . . + A6) and that /?2 has the form (6) with c0 = 0 and just q of
the cf non-integral. From the proof of Lemma 1 we see that q = 2 or 3, and by
considering /?3 we find that 6 — q = 2 or 3 also. Hence q = 3. Reordering the At if
necessary, we can take

It follows that H1 cannot contain more than three elements of order 2; for if there
were a further one and /?4 were the associated /?, then /?4 and /?2 + /?4 could not both
have q = 3.

Now let S(P be the set denned by (5) with /? = /?e. By Lemma 1, each <S<° is fixed
under G. But now S^ D S(

o
2} consists of the three lines A1,Ai,A3 and their three

transversals, S^ D Si2) consists of the three lines A4,A5,A6 and their three
transversals, and S^ C\ S^ consists of the three lines ft — At — A2, fi — A1 — A3,
/i — A2 — A3 and their three transversals. Call these sets S1, S2 and S3; then (i) and (ii)
are trivial, the double-sixes being those which correspond to the ftt according to
Lemma 1. Moreover, each of the /?* is congruent to some /?t mod P ® <Q> + P. and hence
(iii) follows from (ii) of Lemma 1.

Conversely, suppose we have three sets Sl satisfying the conditions of the Lemma.
We can choose our standard base for P so that S1 consists of Alt A2, A3 and their three
transversals. Since S1 can be extended to a double-six in just two ways, *S2 and S3

must be as in the previous paragraph; and with that notation it follows easily that
the fit generate elements of order 2 in H1. I

4. LEMMA 3. Hl(k,P) contains no elements of order 4.

Proof. Suppose that fi corresponds to an element of order 4; then 2/? corresponds
to an element of order 2 and, as in the proof of Lemma 2, we can assume the canonical
base for P so chosen that

2/? = |(A1 + ...-l-A6) m o d P ® Q + P .

We can add \n to /?, permute the A4, subtract any element of P and replace /? by — /?;
so we can confine ourselves to the cases

for q = 3,4,5,6. In each case we derive a contradiction by noting that the sum of the
elements of Sr is in P. where «S'r is denned by (5); it will follow at once that 2/? is in
P<g)Q+F. contrary to the hypothesis that 2/? has order 2.

If q — 3 then S3 consists of A( and n + Af— /i for i = 1,2,3; and the sum of these six
elements is 2n + 4/?. If q = 4 then S3 consists of Ax, A2, A3, A4, n + Ab— fi and TT + A6— fi;
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the sum of these six elements is 4/i — 2(A5 +A6) — 4/?. If q = 5 then S1 consists of A6 and
n + A6— fi; the sum of these two elements is 2/i — 4/?. If q = 6 then $3 consists of
Aj,. . . , A6; the sum of these six elements is 4/?. In each case it follows at once that
2fi is in P®Q+P. I

5. In this section we consider the case m = 3. We can again take /? to be given by
(6), where this time each ct is 0 or +5 and not all of them are 0. We denote by the
symbol [c, s, t] the case when c0 = c/3, s of the c( with i =f= 0 are equal to 5 and £ of them
are equal to — §. Subtracting 77/3 from fi takes [c, s, <] to [c,6 — s — t,s], and replacing
/? by — fi takes [c,s,£] to [ — c,t,s]; so it is enough to consider the 16 cases

[c, 1,0], [c, 2,0] and [c, 2,1] for c = 0,1,2,

[c,l,l],[c,3,0] and [c,2,2] for c = 0,1, and [1,0,0].

Now consider the effect of the transformation (7). Taking all congruences mod-P, we
have

iA;

so that [0,1,0], [2,1,0] and [2,2,0] are equivalent;

so that [1,1,0], [0,2,0], [1,2,0], [0,2,1], [1,2,1] and [2,2,1] are all equivalent;

f(A;-A4) = - i7T-i(

so that [0,1,1], [1,3,0] and [1,0,0] are all equivalent;

i ( / - A ; + A4) = i ( -A 1 -A 4 +

so that [1,1,1] and [0, 2, 2] are equivalent; and

so that [0,3,0] and [1,2,2] are equivalent. We are therefore left with five cases to
consider, of which it will turn out that only the last is productive.

In order to state the next Lemma, we need to recall the concept of a triple-nine.
This is extensively investigated in Henderson [3], though without ever being given a
name; but it seems to have been hardly noticed since. A 'nine' consists of three skew
lines on V together with the six lines each of which meets two of the first three. It is
a highly symmetric object, though that is not evident from this description; a 'nine'
can be split into three triples of skew lines in two ways, and the same 'nine' is
generated by this construction, whichever triple one starts from. Given a 'nine', the
remaining 18 lines can be partitioned into two further 'nines' in just one way, and
the resulting three sets of lines are called a triple-nine.

LEMMA 4. The order o/Z/^^.P) is divisible by 3 if and only if there is a triple-nine
on V with the following properties:
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(i) each nine is mapped to itself by every element of G;
(ii) if /?„ denotes one third the sum of three skew lines within a nine, then /?„ is not in

P ® Q +P.

There are 18 candidates for /?„ but it does not matter which one we choose; for if
/?„ is any one of them, each of the others is congruent modP to /?0 or \TT — f!0.

Proof. For the case [0,1,0], or one of those equivalent to it, we can without loss of
generality take /? = §A6. In the notation of (5), S2 consists of the single line A6, whose
class must therefore be in P ; so ft is in P ® Q and induces the trivial element of H1.

For the case [1,1,0], or one of those equivalent to it, we can without loss of
generality take /? = (̂/* + A6). Now S2 consists of A6,7r + A6 — ft and their five common
transversals /i — Af — A6. The lines A6 and n + A6— fi are the only members of S2 which
meet five other members of »S2; so as a pair they are preserved by G. Hence their sum,
which is 7r + 3A6 — 3/?, is in P ; and hence /? is in P ® Q+P and induces the trivial
element of H1.

For the case [0,1,1], or one of those equivalent to it, we can without loss of
generality take P = \(^b — A6). Now 81 consists of A6,TT + A6— /I and the four lines
/i — A4 — A5 for i= 1,2,3,4; their sum, which is 277 — 9/?, is in P and hence /? is in
P ® <Q> and induces the trivial element of H1.

For the case [1,1,1] or one of those equivalent to it, we can without loss of
generality take /? = ji/^ + Aj — A6). Now the lines n + Ae — fi,fi — A5 — A6 and A5 are
coplanar, and each Sr consists of one of these lines and the eight lines not in this plane
that meet it. It follows that each of these lines is in P, whence ft is in P ® Q and
induces the trivial element of//1.

There remain the equivalent cases [0, 3,0] and [1,2,2]. Without loss of generality
we can take fi = 5(A4 + A5 + A6). It is now easy to verify that So, St and S2 constitute
a triple-nine and that /? is equal to one of the candidates for /?0; moreover, this
argument can be reversed because any two triple-nines can be taken into one
another by the action of Go.

LEMMA 5. For Hl(k,P) to have more than two elements of order 3, it is necessary and
sufficient that G should be a group of order 3, each of whose orbits consist of three coplanar
lines. In this case Hl(k,P) is isomorphic to C3xC3.

Proof. After the proof of Lemma 4, if//1 contains more than two elements of order
3 we can assume that one is generated by

and another is generated by some /32 not congruent to a multiple of fiv Thus we can
assume that /32 is of type [0,3,0] or [1,2,2], and each of fi2i.fii must belong to one
of the equivalent types [0,3,0], [0,3,3], [0,0,3], [1, 2,2] or [2,2,2] mod P. I t is easy
to check that /?2 cannot be in [0,3,0] and if it is in [1,2,2] then after permuting
ApA^Ag and A4,A6,A6 if necessary we have

Now the intersection of an Sg for /?x with an Sr for fi2 consists of three coplanar lines
for each q, r, and it is easy to see that there are only three elements of Go which fix
each of these triples.
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Conversely, if G is of this form then by the tables in [7] we can assume that a
generator of it is given by

Aj = fi—Aj — A2, A2 = fi — A2 — A3, A3 = ji — Aj — A3,

A'i = n + Ab-/i, A'r, = n + A6-n, A'e = n + Ai-/i.

Since we have (3) and we know that 3/? is in P, we must have

modP for some integers co,c1,c2. Only nine of these values of fi are incongruent
m o d P ® Q+P, and one of them is congruent to 0; so H1 can have at most eight
elements of order 3, and it is easy to check that it does indeed have eight. I

In what follows, it will be useful to have further information about the (7-orbits of
the 27 lines.

LEMMA 6. / / the order of //*(&, P) is divisible by 3 then every G-orbit of lines on V
consists of three coplanar lines, their complement in a nine which contains them, or a
nine.

Proof. Let S', S" and <$'" be the triple-nine constructed in Lemma 4, let 8 be a G-
orbit contained in S' and suppose that S contains q lines. By Lemma 4, no set of three
skew lines within a nine can be fixed by G.

If q = 1 then S is a single line A, and the three lines in S" which meet A form a skew
set fixed by G, contradicting what has just been said. If q = 2 we have two cases: S
can consist of two coplanar lines, in which case the third line in their plane is defined
over G; or it consists of two skew lines, in which case the line in S' skew to both of
them is defined over G. In either case the impossibility of q = 2 follows from that of
q = 1. If q = 3, transitivity shows that the lines of S are either coplanar or mutually
skew, and the second case is forbidden. If q = 4, suppose each line of <S' meets s of the
others; we have 5 ^ 3 , and there are just 4(4 — s) intersections of a line of S with a line
of S'\S. Since this number is not divisible by 5, S'\S must be a sum of more than one
G-orbit, and the impossibility of this case follows from those of q = 1 and 2. Finally,
the cases with q > 4 are constrained by the fact that S'\S must be a sum of 6'-orbits,
and is therefore either empty or a sum of three coplanar lines. I

6. In this section we deal with the remaining cases m = 5, 6 and 9, none of which
turn out to be possible.

LEMMA 7. Hl(k,P) contains no elements of order 9.

Proof. Suppose that there is such an element, and that it is generated by fi. In view
of the proof of Lemma 4, we can choose the canonical base for P so that

A6) modi 5 ;

hence if we take fi = CO/M + C1A1 + ... + c6 A6 mod./5

then c0, ...,c3 are 0, 5 or § and c4, c5 and c6 are 5, f or |. Interchanging A5 and A6 if
necessary, we can deduce from Lemma 6 that

Ai;/i — A4 — A5,7r + A5— fi are in the same Sr,
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together with the two statements derived from this by cyclic permutation of the
subscripts 4,5,6. This is equivalent to

— c4 = co + ci + ci = 2co + c1 + c2 + c3 + c4 + c6 mod 1

and two similar statements. Replacing /? by 4/? or 7/? if necessary in order to force
c4 = §, we deduce

Cl "̂  C2 ~t" C3 — 3' C5 = C0"l"9' C 6 S 2 C 0 + g. (8)

But, interchanging A2 and A3 if necessary, we also deduce from Lemma 6 that

/i — Aj — A4,/t — A2 — A5,/t — A3 — A6 are in the same <Sr,

together with the two statements derived from this by cyclic permutation of the
subscripts 1,2,3. This is equivalent to

co + c1 + ci = co + c2 + ci = co + c3 + c6 mod 1,

and in view of the last two congruences in (8) this implies

c1 = c2 + c0 = c3 + 2c0 mod 1

which cannot be reconciled with the first congruence (8).

LEMMA 8. Hx(k,P) contains no elements of order 6.

Proof. If there were such an element, then it would follow from Lemmas 1 and 6
that a double-six could be written as the sum of four triples of coplanar lines. Since
a double-six contains six mutually skew lines, this is absurd.

LEMMA 9. Hx(k,P) contains no elements of order 5.

Proof. Suppose otherwise. Since Hx is killed by n, the order of G, we must have
51 n. But Go only contains one conjugacy class of elements of order 5, so without loss
of generality we can assume that G contains one preassigned member g of this class;
we choose g to be the element which fixes Ax and cyclicly permutes A2, ...,Ag. It
follows from (3) that

where the dt are integers which can be taken mod 5. By subtracting a multiple of %n
we can force d2 to be 0; and by multiplying /? by 2, 3 or 4 if necessary we can reduce
to the six cases d0 = 1, dx = 0 or 0 < d0 < 5, dx — 1.

If /? = l/i then So consists of A1;..., A6 whose sum is 15/?—n. If /? = gAj, then £4

consists of the single line Aj = 5/?. If /? = ^(/t + Aj) then So consists of the five lines
A2, ...,A6 whose sum is 5fi + n — 2(n + A1— fi); and n + A1— /i is in P because it is the
unique transversal to the five lines in »S0. If /? = |(2/t + A1) then *S4 consists of A1 and
n + Al—/i whose sum is n — §(/? — Ax). If fi = KS/i + AJ then So consists of the five lines
A2, ...,A6 whose sum is |T7 + | /? — ̂ (n + A1— /i); and n + A1— /i is in P because it is the
unique transversal to the five lines in So. If/? = J(4/* + At) then S2 consists of the single
line n + Al—/i = n + 5(/l—fi). Hence in every case /? is in P ® Q + P and therefore
induces the trivial element of H1. I

7. In this last section, we assume that Vx is defined over kx and is the non-singular
intersection of two quadrics in P4, and we give P^P^ the obvious meanings. We could
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investigate H1(k1,P1) in this case by methods very similar to those which we used for
non-singular cubic surfaces; but there is a short-cut available. Let A be generic on Vl

over kx and let V, defined over k = h^A), be the cubic surface obtained from Fx by
blowing up the point A. We have canonical isomorphisms

mK pi) - Hl{k, Fx) ~ H\k, P) (9)

and we can apply all our previous Lemmas to the expression on the right because we
only used the assumption that k is an algebraic number field in the opening
paragraph of the paper and in the Corollary to Lemma 1. All we need to do, therefore,
is to specialize these Lemmas to the case when one of the 27 lines on V is defined over
k and then translate back from the 27 lines on V to the 16 lines on V1. The only
questions of interest relate to the elements of order 2 m//1 , for it follows from Lemma
6 that there can be no element of order 3.

Since the geometry of Vx is not as well known as that of V, and I do not know of a
convenient reference, it may be helpful to state some of it here. Two skew lines have
two common transversals, and the four lines constitute a hyperplane section of Vv A
double-four consists of four skew lines on V1 having no common transversal, together
with the four other lines which meet three of them; a double-four can be partitioned
into two sets of co-hyperplanar lines in three distinct ways. Conversely a set of four
co-hyperplanar lines can be extended to a double-four in three ways; in each case the
four lines added are co-hyperplanar, and in this way we get a partition of the 16 lines
into four co-hyperplanar sets. The complement of a double-four is another double-
four.

LEMMA 10. The order of ^(k^Pj) is even if and only if there is a double-four T with
the following properties:

(i) T is fixed under the action of G;
(ii) if y denotes half the sum of a line in T and the three others in T that meet it, then

y is not inP1®Q + PV

As with Lemma 1, it does not matter which of the eight possible values of y we use
for the test in (ii). It will turn out that the relationship between T here and S in
Lemma 1 is straightforward, but that is by no means so for the relationship between
y and /?.

Proof. In specializing Lemma 1 we appear to have two cases to consider, according
as the blow-up of A is in S or not. But in fact the first case is impossible, because that
set of six skew lines in S which contains the blow-up would then be defined over k
and (ii) of Lemma 1 could not be satisfied.

Suppose that the order of the groups (9) is even and that S is chosen to satisfy the
conditions of Lemma 1. We choose the canonical basis of P so that S consists of the
lines At and 77 + At —/*, and the blow-up of A is/< — A1 — A4; and we take for Tthe eight
lines in Vl whose images are in S - that is, the At and n + At—ju for i = 2,3,5,6. Clearly
T is a double-four fixed under the action of G. Moreover /? = §(AX + ... +A6) and the
image of y in V is

so y is in P1 ® Q +P1 if and only if /? is in P ® Q +P. If conversely we assume the
existence of T satisfying the conditions of Lemma 10. then we can take S to be the
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unique double-six which contains the image of T in V. Taking the same basis for P
as before, we see that S satisfies the conditions of Lemma 1 and therefore the order
of the groups (9) is even.

LEMMA 11. //1(A;1,P1) cannot contain more than three elements of order 2, and it
contains as many as three if and only if the lines on Fx can be partitioned into four
disjoint cohyperplanar sets T1 with the following properties:

(i) the union of any two of the sets 7* is a double-four;
(ii) each of the T1 is fixed under G;

(iii) if y* is half the sum of a line A in some T1, the two lines in the same T1 that meet
A, and one other line that meets A, then no such y* is in P1 ® Q> + Px.

Here it does not matter which of the 16 lines A we choose for our test, but we do
have to apply the test to all the y* arising from a given A.

Proof. Suppose that each of the groups (9) contains three elements of order 2. As
in the proof of Lemma 2, we can choose the canonical base of P so that S1 consists
of

A1; A2, A3,77 + A4—ji, n + A5 -ft, n + A8 -/i;

then S2 and S3 necessarily are

A4, A5, A6, n + Al — ji, n + A2 -/i, n + A3 — fi;

/ t -A 1 -A 2 , / i -A 1 -A 3 , / t -A 2 -A 3 , / t -A 4 -A 5 , / i -A 4 -A 6 , /<-A 5 -A 6 .

As in the proof of Lemma 10, the blow-up of A cannot be in any 8% and so we can take
it to be/t —Ax —A4. We take T1 to consist of those lines in Fj which are images of lines
in Sl for t = 1,2,3, and T74 to consist of the remaining four lines; hence these sets are
the images of

A2,A3,n + Ab-fi,n + A6-/i; (10)

A5, A6,7r + A2— JU,,7T + A3— fi; (11)

/*-A1-A2,/ i-A1-A3,/ t-A4-A5, /M-A4-A6; (12)

/ t-Aj — Ab,/i-A1-A6,fi — A2 — A4,/i-A3-A4. (13)

These clearly satisfy (i) and (ii) of Lemma 11. As for (iii), the three values of/?* are

and if we choose A = n + A5 — ft the three values of y* lifted to V are

i(7r + A2 + A3-A1),|(7r-l-A2-l-A3-A4))i(2/i-A1-A4)

and (iii) follows easily.
If conversely we assume the existence of the T1 satisfying the conditions of Lemma

11, then we can choose a basis for P so that the image of T* in F is given by (13) and
the blow-up of A is fi — A1 — A4. The images of the other T1 are then necessarily given
by (10), (11) and (12) and we have to show how to augment these last three to
suitable sets Sl. There are just three ways of augmenting the image of a T1 in V to
a set of three skew lines and their three transversals; we must add one of the three
pairs A1 and TT + A4— /*, A4 and TT + AJ— ft, or /* —A2 —A3 and fi — A5 — Ag. But once we
have decided to drop a particular T1, say T*. there is only one way of assigning one
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pair to each remaining T1 so that the resulting Sl satisfy (i) of Lemma 2. It follows
from this uniqueness, together with (ii) of Lemma 11, that each Sl is fixed under G,
and the rest of the proof is now trivial. I
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