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Hölder Compactification for Some
Manifolds with Pinched Negative
Curvature Near Infinity

Eric Bahuaud and Tracey Marsh

Abstract. We consider a complete noncompact Riemannian manifold M and give conditions on a

compact submanifold K ⊂ M so that the outward normal exponential map off the boundary of

K is a diffeomorphism onto M\K . We use this to compactify M and show that pinched negative

sectional curvature outside K implies M has a compactification with a well-defined Hölder structure

independent of K . The Hölder constant depends on the ratio of the curvature pinching. This extends

and generalizes a 1985 result of Anderson and Schoen.

1 Introduction

The Poincaré model of hyperbolic space has a natural geometric compactification:

one can compactify by adding the sphere at infinity. Taking this to be a model case
for other simply connected manifolds of negative curvature leads to a classical con-

struction made precise in [EO73]. Let M be a Cartan–Hadamard manifold, that is, a
complete, simply connected Riemannian manifold with nonpositive sectional curva-

ture. Define an equivalence relation on the set of geodesic rays parametrized by arc

length by saying that geodesic rays σ and τ are asymptotic if dM(σ(t), τ(t)) remains
bounded as t → +∞. Here dM is the distance function on M induced by the metric

g. We define M(∞) to be the set of all equivalence classes of this relation; this is the

geometric boundary at infinity.
In 1985, Michael Anderson and Richard Schoen proved that given a Cartan–Hada-

mard manifold M with pinched sectional curvatures like

−∞ < −b2 ≤ sec(M) ≤ −a2 < 0,

where a and b are positive constants, the geometric boundary at infinity has a Ca/b

structure [AS85]. Motivated by this result we investigate to what extent the simply

connected hypothesis may be relaxed when compactifying the manifold, and what

resulting regularity may be obtained for the compactified manifold with boundary.
In particular, let M be a complete, noncompact Riemannian (n+1)-manifold. Define

an essential subset K of M to be a compact (n + 1)-dimensional Riemannian subman-

ifold with boundary, such that Y := ∂K is a smooth hypersurface that is convex with
respect to the outward pointing unit normal and such that exp : N+Y → M\K is a

diffeomorphism, where N+Y ≈ Y × [0,∞) is the outward normal ray bundle of Y .
The main result of this paper is the following.
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Theorem 1.1 Let (Mn+1, g) be a complete, noncompact Riemannian manifold. Sup-
pose that there exists Kn+1 ⊂ M, a compact Riemannian submanifold with boundary

that satisfies:

(i) K is totally convex in M, i.e., if p, q ∈ K and γ : [0, 1] → M is any geodesic with

γ(0) = p and γ(1) = q, then γ([0, 1]) ⊂ K.
(ii) M\K satisfies the following curvature assumption:

(1.1) −∞ < −b2 ≤ sec(M\K) ≤ −a2 < 0.

Then K is an essential subset of M and M∗ := M ∪ M(∞) is a geometric compacti-

fication of M as a topological manifold with boundary. The boundary is homeomorphic
to ∂K. Further, M∗ is endowed with the structure of a Ca/b manifold with boundary,

independent of the choice of K.

Since any point x in a Cartan–Hadamard manifold M may be regarded as a pole,

any small closed ball about x is easily seen to be an essential subset for M. Therefore
Theorem 1.1 generalizes and strengthens the Anderson–Schoen result, for it allows

for much greater variety in the topology of M; essential subsets relax the stringent hy-
pothesis of simple connectedness used in the Anderson-Schoen paper. In addition,

the result here proves the regularity of the entire compactification M∗
= M ∪M(∞).

The Anderson–Schoen theorem only proves the regularity for the boundary at infin-
ity M(∞).

The outline of this paper is as follows. In Section 2 we outline our notation and ex-
plain our comparison theorems. In Section 3 we provide a condition for an essential

subset. In Section 4 we describe the compactification of M as a topological manifold,
and then in Section 5 we set up the necessary estimates to show the compactified

manifold has a well-defined Ca/b structure.

2 Notation and Basic Estimates

In this section we outline our notation and provide the estimates that will be used in
the subsequent comparison geometry. Throughout this paper M denotes a complete,

connected, noncompact Riemannian (n + 1)-manifold with metric g. The letter K

will always denote an essential subset, and Y := ∂K will denote the smooth hyper-
surface boundary. Throughout this paper we assume the curvature assumption (1.1)

and write α = a/b. There is no loss in generality in assuming that the pinching con-

stants in (1.1) satisfy a ≤ 1 ≤ b, for the ratio of maximum to minimum sectional
curvature a/b is invariant under a homothety of the metric. Further, we follow the

curvature sign conventions given in [Pet98]: for orthonormal vectors X,Z, the sec-
tional curvature of the plane they span is sec(X,Z) = R(X,Z,Z,X), where R is the

Riemannian curvature 4-tensor.

We trivialize the normal ray bundle with respect to the outward unit normal for

Y as N+Y ≈ Y × [0,∞). The exponential map restricted to N+Y is written E. For
p ∈ Y , the notation γp denotes the geodesic normal to Y emanating outwards from

p. We call a geodesic ray untrapped if it eventually escapes any compact set. A geodesic

segment is a distance minimizing geodesic curve between two points.

https://doi.org/10.4153/CJM-2008-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-051-6
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It is easy to verify that E : Y × [0,∞) → M is a local diffeomorphism at every
point of Y ×{0}. Therefore by compactness of Y we may obtain an ǫ > 0 and a one-

sided collar neighbourhood T of Y so that E : Y × [0, ǫ) → T is a diffeomorphism.
Let r : T → R denote the distance to Y , and obtain a decomposition of the metric

as g = dr2 + gY (y, r). If we choose any coordinates {yβ} on an open set U ⊂ Y we

may get coordinates on T by extending yβ to be constant along the integral curves of
grad r, and then (yβ , r) form coordinates on E(U × [0, ǫ)) ⊂ T. We will refer to such

coordinates as Fermi coordinates for Y , and in Section 4 we will see that total convexity

implies Fermi coordinates for Y exist on neighbourhoods of the form U × [0,∞).
We use Latin indices to index directions in M and consequently these indices range

from 0 to n. We use Greek indices to index the directions along Y which range from
1 to n, and a zero or r to index the direction normal to Y .

We fix signs for the second fundamental form of Y in M by taking our definition

as h(X,Z) = g(∇XZ,−∂r), where ∇ is the connection in M, and X,Z are vector
fields on Y extended arbitrarily to vector fields on M. Note that this definition uses

the inward pointing unit normal. Given this convention, we say Y is convex (respec-

tively strictly convex) with respect to the outward unit normal if the scalar second
fundamental form is positive semidefinite (respectively positive definite).

In Fermi coordinates the second fundamental form of r-level sets may be written
as (hr)βγ =

1
2
∂rgβγ . We raise an index to obtain a family of shape operators S(r),

where S(r)βγ = gβν(hr)νγ . A computation shows that S satisfies a Riccati equation

involving curvature, namely

(2.1) (∂rS(r) + S(r)2)νβ = −R ν
0β 0.

We will make use of Jacobi fields suitable to our coordinates. Fix p ∈ Y and con-

sider the outward normal geodesic γp. Choose any curve σ in Y such that σ(0) = p
and define a variation through geodesics by Γ(s, t) = E(σ(s), t). This gives rise to a

Jacobi field J(t) = ∂sΓ(s, t)|s=0 along γp. Explicitly, J(t) = σ̇β(0)∂β|(σ(0),t). So these

special Jacobi fields have constant components in Fermi coordinates. Convexity of Y
easily implies the following estimates.

Lemma 2.1 Let J(t) = σ̇β(0)∂β|(σ(0),t) be the Jacobi field along γ described above.
Then

(i) 〈 J(0) , Dt J(0)〉 ≥ 0,

(ii) | J(t)| ≥ | J(0)| cosh(at).

The comparison theorems we use are based on the treatment given in [Pet98].

These are obtained by analysis of the Riccati differential equation (2.1). In what
follows, an inequality involving the shape operator of the form S ≥ c means that

every eigenvalue of S is greater than or equal to c. Inequalities involving a metric are

to be interpreted as inequalities between quadratic forms.
For the metric comparisons that follow we require a covering of the compact hy-

persurface Y . Fix ǫ =
1
2

min{inj(Y ), π}, where inj(Y ) is the injectivity radius of
gY (y, 0). For any y ∈ Y , the ball BY

ǫ (y) is the domain of a convex normal coordinate

chart with image Bǫ(0) ⊂ R
n. On the ball Bǫ(0), we will need to consider three met-

rics, the original gY (transfered to Bǫ(0) by means of normal coordinates), the round
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metric on the unit sphere S
n (denoted g̊) in normal coordinates, and the flat metric

(denoted g) in coordinates. On compact subsets of Bǫ(0) all three of these metrics are

comparable. Since gY (0, 0)βν = g̊(0)βν = g(0)βν = δβν , continuity of the metrics
implies we may find an s = s(y) with 0 < s < ǫ/2 so that

• 1
4
g̊βν ≤ (gY )βν ≤ 4g̊βν on Bs(0),

• 1
4
gβν ≤ (gY )βν ≤ 4gβν on Bs(0),

• Bs(0) ⊂ B2s(0) ⊂ Bǫ(0).

Compactness of Y yields a finite subcover of the balls Bs(y)(y) that cover Y . Label
these finitely many balls Wi . Label the balls with the same centres and radius 2s(y) as

Vi and observe Wi ⊂ Wi ⊂ Vi . We refer to the covering of Y by {Wi} as the reference

covering for Y.
The choice of this covering ensures that distances between points in Wi ⊂ Y with

respect to the metrics (gY )i , g̊i , and g i are all comparable. We refer to this property

again as the distance comparison principle.
Throughout this paper we take eigenvalues of the metric gY with respect to the

euclidean metric g i in normal coordinates for the Vi . We let Ωi denote the maximum
eigenvalue of gY (y, 0) in each Wi , and then set Ω = maxi Ωi . Similarly, let ω be the

minimum eigenvalue of gY (y, 0) over the cover Wi . As this covering and constants

will be used throughout the paper, we always use normal coordinates along Y in any
choice of Fermi coordinates that follows.

An adaptation of the comparison theorems in [Pet98] yields the following theo-

rem.

Theorem 2.2 (Comparison theorems) Let (yβ , r) be Fermi coordinates for Y on

Wi × [0,∞) for an open set Wi in the reference covering described above. Let Λ, λ
denote the maximum and minimum eigenvalues of the shape operator over Y . We have
the following estimates:

Shape operator estimate:

a tanh(a(r + L1))δβγ ≤ Sβγ (y, r) ≤ b coth(b(r + L2))δβγ ,

where L1 =
1
a

tanh−1( λ
′

a
), L2 =

1
b

coth−1( Λ
′

b
), and

Λ
′
=

{
Λ if Λ > b,

2b if Λ ≤ b.
λ′

=

{
λ if λ < a,
a
2

if λ ≥ a.

Metric estimate:

L3 cosh2(a(r + L1))δβν ≤ gβν(y, r) ≤ L4 sinh2(b(r + L2))δβν ,

where L3 = ω/ cosh2 aL1, L4 = Ω/ sinh2 bL2, and Ω, ω are described above.

3 Essential Subsets

In this section we provide a sufficient condition for the submanifold K ⊂ M to be

an essential subset. We assume that K is a compact (n + 1)-dimensional Rieman-

nian submanifold with boundary such that Y := ∂K is a smooth hypersurface that
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is convex with respect to the outward pointing unit normal. We discuss a condition
that ensures that E : Y × [0,∞) → M\K is a diffeomorphism. This property allows

us to relax the hypothesis that M is simply connected in the Anderson–Schoen re-
sult; essential subsets replace the requirement that the map expp : TpM → M be a

diffeomorphism which is ensured by the Cartan–Hadamard theorem.

A subset K ⊂ M is totally convex in M if whenever p, q ∈ K and σ : [0, 1] → M is
a geodesic such that σ(0) = p, σ(1) = q, we have σ([0, 1]) ⊂ K . The inclusion of K

into M is a homotopy equivalence; see [Kli95] for details. It is interesting that totally

convex sets play an important and somewhat analogous role in the theory of souls of
positively curved manifolds. We again refer the interested reader to [Kli95] and the

references therein.
We have the following sufficient condition for an essential subset.

Theorem 3.1 Let K ⊂ M be a compact Riemannian submanifold with hypersurface

boundary Y . Suppose that K is totally convex in M, and sec(M\K) ≤ 0. Then K is an
essential subset for M.

Proof As K is totally convex, it is also geodesically convex, i.e., K contains a geodesic
segment between any two of its points. It is well known that K geodesically convex

implies that Y = ∂K is convex.

The image E(Y × [0,∞)) is a subset of M\K: any normal geodesic γp that re-
enters K must lie entirely inside K since K is totally convex, but this violates the fact

that γp is a geodesic ray with an outward pointing tangent vector at p.
Next, Jacobi field estimates and the nonpositive curvature assumption on M\K

imply that E is a local diffeomorphism on Y × [0,∞). We need only argue that E is

bijective. Surjectivity of E onto M\K is easy to see: for any point q ∈ M\K there is a
closest point p ∈ K to q, and it is straightforward to argue that γp(t0) = q for some

t0. If E is not injective on Y × [0,∞), then there is a largest ǫ where E is injective

on Y × [0, ǫ). Using sequences and a compactness argument, it is possible to obtain
distinct points p, q ∈ Y where m := E(p, ǫ) = E(q, ǫ). A straightforward argument

using the first variation may be used to prove that this “broken” geodesic segment
from p to q is in fact smooth at m. Consequently this geodesic is contained in K by

total convexity, a contradication.

4 The Topological Compactification

In this section we explain how to compactify M given a choice of essential subset K
by extending the exponential map to take values in M∗\K = (M\K) ∪ M(∞). Fix

an essential subset K and define an extension E : Y × (0, 1] → M∗\K by

(4.1) E(p, s) =

{
E(p, 2 tanh−1 s) if s ∈ (0, 1),

[E(p, t) :t ≥ 0] if s = 1.

The notation [γ] above represents the equivalence class of the geodesic ray γ un-

der the asymptotic equivalence relation (see page 1201). We have also collapsed the
normal component using a diffeomorphism. We now verify that E is a bijection. Rel-

ative to the diffeomorphism E : Y × [0,∞) → M\K of the previous section, we write

a generic curve σ in M\K as σ = (σY , σr).
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Proposition 4.1 E is injective.

Proof Given distinct points p, q ∈ Y , we show that the normal geodesics γp, γq have

unbounded distance as a function of time. It suffices to show, given any t > 0, that
the length of any curve σ from γp(t) to γq(t) is bounded below by an unbounded

function of time.

Suppose that σ leaves the collar Y × [t/2,∞). Then the normal contribution of
the length integral and the decomposition of the metric imply len(σ) ≥ t . In case

that σ remains in the collar, len(σ) ≥ len(σP), where σP is the projection of σ onto
Y × {t/2}, i.e., σP(s) = (σY (s), t/2). Then Jacobi field estimates imply that

len(σ) ≥ len(σP) ≥ cosh(at/2)dY (p, q).

In order to show that E is surjective, consider an untrapped geodesic ray σ para-

metrized by arc length. Eventually σ remains inside M\K and we take σ(0) to be any
point inside M\K . In this parametrization, the growth of σr is bounded below by a

linear function.

Lemma 4.2 Let σ = (σY , σr) be an untrapped geodesic ray in M\K parametrized by
arc length. Then there exist constants C,B, t0 > 0 such that σr(t) ≥ Ct + B, for all

t > t0.

The above lemma is proved by analyzing the normal component of the geodesic

equation for σ and applying the shape operator estimate from Theorem 2.2.

We now find a candidate base point for a normal geodesic asymptotic to σ.

Lemma 4.3 Let σY : [0,∞) → Y be the projection of σ onto Y . Then len(σY ) <∞.

Proof Since σ is parametrized by arc length, σ̇ασ̇βgαβ(σ(t)) = |σ̇Y |g ≤ 1. The
metric estimate of Theorem 2.2 applied to σ and the projected curve σY and Lemma

4.2 imply

σ̇ασ̇βgαβ(σY (t)) ≤
C(L2, L3, L4)

cosh2(a(Ct + B) + L1)
.

Integrating the square root of both sides we find that len(σY ) <∞.

Since len(σY ) < ∞, the completeness of M implies that σY has a limit p, and

p ∈ Y as Y is closed. Let γp(t) denote the outward normal geodesic emanating from
Y at p. We now show that E is surjective by showing that γp is asymptotic to σ.

Proposition 4.4 E is surjective.

Proof Given the untrapped geodesic ray σ above, the previous lemma establishes the

existence of a candidate normal geodesic γp to represent the equivalence class [σ] in

M(∞). We prove that d(γp(t), σ(t)) remains bounded as t → ∞; it is sufficient to
show separately that

d
(

(p, σr(t)), (σY (t), σr(t))
)

and d
(

(p, t), (p, σr(t))
)
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remain bounded as functions of time.
Step 1. d((p, t), (p, σr(t))) is bounded as t → +∞: In this situation,

d((p, t), (p, σr(t))) = |t − σr(t)|,

so we show |t −σr(t)| is bounded as t → ∞. It suffices to prove 1− σ̇r(t) ∈ L1(t0,∞)
for t0 sufficiently large:

|t − σr(t)| ≤

∫ t

t0

1 − σ̇r(s) ds + |t0 − σr(t0)|.

Since σ̇2
r + |σ̇Y |

2
= 1, the integrability of 1 − σ̇r(t) is related to the integrability of

|σ̇Y |
2, for 1 − σ̇r(t) ≤ (1 − σ̇r(t))(1 + σ̇r(t)) = |σ̇Y |

2, for large t . The estimates of

Theorem 2.2 imply that σ̈r ≥ 0 and |σ̇Y |
2 ≤ (1/a) coth(a(r +L1)σ̈r. The fundamental

theorem of calculus applied to σ̈r implies that σ̈r ∈ L1(t0,∞), and consequently, since
coth(a(r + L1) is bounded, shows that |σ̇Y |

2 ≤ Cσ̈r for large enough t . Thus |σ̇Y |
2 is

integrable and |t − σr(t)| remains bounded as t → +∞.
Step 2. d((p, σr(t)), (σY (t), σr(t))) is bounded as t → +∞: For each t0 consider

the curve τ (t0)(s) = (σY (s), σr(t0)), on [t0,∞). Clearly

d((σY (t0), σr(t0)), (p, σr(t0))) ≤ len(τ (t0)),

and so it suffices to show that len(τ (t0)) is bounded above by a constant independent
of t0. To this end we use Jacobi field estimates based at the r-level set of value σr(t0).

In particular consider the Jacobi field along γσY (s)(t) given in Fermi coordinates as

the constant vector field Js(t) = (σ̇Y (s), t) ∈ T(σY (s),t)M\K. See Section 2 for a de-

scription of these special Jacobi fields. Rescale the time parameter by λ = t − σr(t0).
Then Js(0) = τ̇ (t0)(s), and for s ∈ (t0,∞), t ∈ (σr(t0),∞), and λ ∈ (0,∞),

Lemma 2.1 implies | Js(λ)| ≥ | Js(0)| cosh(aλ). Therefore we may write

1 ≥ |σ̇Y (s)|gY (σr(s)) = | Js(σr(s))| ≥ |τ̇ (t0)(s)| cosh(a(σr(s) − σr(t0))).

Consequently this estimate and the estimate from Lemma 4.2, imply that

|τ̇ (t0 )(s)| ≤
1

cosh(a(Cs + B − σr(t0)))
,

for constants C,B. Upon integration of this expression we find

len(τ (t0)) ≤

∫
∞

t0

ds

cosh(a(Cs + B − σr(t0)))
≤ C(a).

Thus len(τ (t0)) is bounded independent of t0.

The proof of the above proposition can be extended to yield a stronger result that
will be useful in proving that the topology on M∗ is well defined. In the lemma below

we consider two hypersurfaces Y1,Y2 where Yi is the boundary of an essential subset
Ki . We use the notation γp ′ to denote the normal geodesic to Y1 emanating from the

point p ′ ∈ Y1, and σq ′ to denote the normal geodesic to Y2 emanating from the point

q ′ ∈ Y2.
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Lemma 4.5 Let K1 and K2 be essential subsets of M with Yi = ∂Ki . Given any point
q ∈ Y2, there exists an open neighbourhood Vq ⊂ Y2 of q and B > 0 such that for every

q ′ ∈ Vq d(σq ′(t), γp ′(t)) ≤ B for all t ≥ 0, where γp ′ is the unique normal geodesic
ray emanating from Y1 that is asymptotic to σq ′ .

Proof Let E1 denote the exponential map E : Y1 × [0,∞) → M\K1.

Fix q ∈ Y2 and R > 0. Now σq is eventually outside every compact set, so there
exists T ≥ 0 such that σq(t) ∈ E1(Y1 × [R,∞)) for t ≥ T. Further, the r-component

of this curve (σq)r is eventually strictly monotone increasing so we may increase T
if necessary to ensure that (σ̇q)r(t) > 0 for t ≥ T. By continuity of the exponential

map, there is a precompact open ball Vq in Y2 about q such that for any q ′ ∈ Vq we

have both σq ′(t) ⊂ E1(Y1 × [R,∞)) and σ̇q ′(t) > 0 for all t ≥ T. For each such q ′,
let p ′ be the unique element of Y1 such that γp ′ is asymptotic to σq ′ . By compactness,

for any q ′ ∈ Vq d(σq ′(t), γp ′(t)) is uniformly bounded for t ∈ [0,T]. We need only

check that a uniform bound holds for the tails of the geodesics emanating from Vq.

In order to estimate d(σq ′(t), γp ′(t)) for t ≥ T, proceed as in the proof of Propo-
sition 4.4. By continuity of the exponential map and by shrinking Vq if necessary all

constants may be chosen independently of q ′.

We may now prove the topological part of Theorem 1.1.

Theorem 4.6 If M is a complete, noncompact Riemannian manifold with an essential

subset K with curvature as in (1.1), then M admits a geometric compactification as a
topological manifold with boundary.

Proof Throughout the proof we use the notation for γ and σ as described preceding

Lemma 4.5.

Suppose K1,K2 are two essential subsets of M. The propositions above imply that

we get bijections Ei : Yi × (0, 1] → M∗\Ki . Endow each subset M∗\Ki with the
topology τi that makes Ei a homeomorphism. We now show that these topologies

are equivalent. Let K be a compact set such that K ⊃ K1 ∪ K2. Consider the identity

map from (M∗\K, τ1) → (M∗\K, τ2), i.e., the composition ψ = E
−1
2 ◦ E1. To show

that the topology on M∗\K is independent of Ki , it suffices to show that ψ is a home-

omorphism. By the symmetric roles of the Ki , it suffices to prove that ψ is an open
map.

We already have that ψ = E−1
2 ◦ E1 is a diffeomorphism. We need only check that

open neighbourhoods in τ1 of points in M(∞) are taken to open neighbourhoods in

τ2. Choose a basis element of the form E1(U × (c, 1]) where U is open in Y1. For
every [γp] ∈ M(∞) ∩ E1(U × (c, 1]) where γp is asymptotic to σq we must find a

neighbourhood Vq ⊂ Y2 of q and d > 0 so that E2(Vq × (d, 1]) ⊂ E1(U × (c, 1]). It

is sufficient to show that E2(Vq × (d, 1)) ⊂ E1(U × (c, 1)); equivalently, we may show
E2(Vq × (d,∞)) ⊂ E1(U × (c,∞)) for some different constants c, d.

Set W := E1(U × (c, 1)). The tail of σq is eventually in W; we may choose a T > 0

so that σq(t) ∈ W for t ≥ T. Since ψ is a diffeomorphism, for each t > T we can
get a ball Vq(t) about q and ǫ(t) > 0 such that E2(Vq(t) × (t − ǫ(t), t + ǫ(t))) ⊂ W .

We may assume that for t2 > t1 we have Vq(t2) ⊃ Vq(t1), and that the radii of these

balls are less than the injectivity radius of Y2. Now
⋂

t>T Vq(t) is either a ball or is the
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singleton set {q}. If the intersection is a ball Vq, we have that E2(Vq × (T, 1)) ⊂ W ,
which completes the argument. Otherwise choose qn → q such that qn enters W and

eventually leaves it. Let pn be the corresponding points on Y1 so that σqn
is asymptotic

to γpn
. By compactness of Y1, we may pass to a convergent subsequence and assume

that pn → p0. But now the uniform bound of Lemma 4.5 and continuity of the

exponential map imply that

d(σq(t), σp0
(t)) = lim

n→∞

d(σqn
(t), γpn

(t)) ≤ B.

This means that σq is asymptotic to γp0
, and so by injectivity of E1, p = p0. This

implies pn → p, and so pn is eventually inside U , a contradiction. Thus
⋂

t>T Vq(t)

contains a ball. Therefore the topology on M∗\K is well defined.

5 Regularity of the Compactification

In this section we lay the groundwork and prove that the topological compactification

M∗ has a Ca/b structure. In order to do this we first describe our explicit comparison

with hyperbolic space and how this relates to Fermi coordinates. Next, since the
manifold M\K is not complete and we estimate distances in M\K as compared to

hyperbolic space, we explain how to refine the reference covering for Y . Just as in

hyperbolic space with a compact set K removed, we have to check that for points p
and q far enough from K but with closest points p ′ to p and q ′ to q on K sufficiently

close, the geodesic segment from p to q remains in M\K . Such a refined covering will
be called a special covering for Y.

Given these geometric preliminaries we define a bounded metric dK on M\K .

Given two essential subsets K1, K2, each endowed with a special covering for Yi , we
establish a Ca/b comparability estimate for distances in a subset of M\(K1∪K2). Then

in the proof of the main theorem we explain why the distance estimate yields a Ca/b

structure for M∗.
We now describe our comparison geometry and modification of the metric com-

parison described at the end of Section 2. In particular, consider the reference cov-
ering of Y by small normal coordinate balls Wi ⊂ Wi ⊂ Vi as described preceding

Theorem 2.2. In each Wi we may use the metric g̊i to obtain a hyperbolic metric of

constant curvature −λ2 given by

(5.1) (hλ)i = dr2 +
sinh2(λr)

λ2
g̊i .

We will call these metrics hyperbolic comparison metrics. A little algebra applied to

the metric estimates of Theorem 2.2 implies the following.

Theorem 5.1 (Hyperbolic Metric comparison) Consider Fermi coordinates (yβ , r)

for Y on Wi × [0,∞). There exists R = R(Λ, λ,Ω, ω, a, b) independent of i such that
for every r > R,

sinh2(a(r − R))

a2
(g̊i)βν ≤ gβν(y, r) ≤

sinh2(b(r + R))

b2
(g̊i)βν .

https://doi.org/10.4153/CJM-2008-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-051-6


1210 E. Bahuaud and T. Marsh

We now provide an adaptation of the estimates used in [AS85]. We first begin with
some estimates in the two-dimensional hyperbolic plane of curvature−λ2, H2(−λ2).

Let p, q ∈ H2(−λ2), and take measurements from a third point x ∈ H2(−λ2). Sup-
pose that s = dλ(p, x), t = dλ(q, x), and let θ be the angle between the radial geodesic

connecting x to p and the radial geodesic connecting x to q. The well-known law of

hyperbolic cosines [Pet98, p. 324] yields a formula involving the distance between p
and q and these parameters:

(5.2) cosh(λdλ(p, q)) = cosh(λs) cosh(λt) − sinh(λs) sinh(λt) cos(θ).

We use this formula throughout this section. Assume t ≥ s > 2R. We have the
following.

Lemma 5.2 In a two-dimensional hyperbolic plane, there exist positive constants

c1, c2, c3 > 0 depending on λ so that the following estimates hold:

dλ(p, q) ≤

{
s + t + 2

λ log θ + c1 when eλsθ ≥ 1,

t − s + c2 when eλsθ ≤ 4.

dλ(p, q) ≥ s + t +
2

λ
log θ − c3.

Further, if s = t and σ is the geodesic segment from p and q, there exists positive con-

stants c4, c5 where

dλ(x, σ) ≥

{
− 1
λ log θ − c4 when eλsθ ≥ 1,

s − c5 when eλsθ ≤ 4.

The above lemma is proved by straightforward estimation of (5.2) and is essen-
tially the form that Anderson–Schoen obtained in [AS85].

We now convert the above estimates in hyperbolic space into estimates suited to
our Fermi coordinates.

Lemma 5.3 (Extended Anderson-Schoen estimates) Consider Fermi coordinates

(yβ , r) for Y on Wi × [R,∞).
Let p, q ∈ Wi × [R,∞). Then there exist positive constants {c j}

8
j=1 depending only

on R and the reference covering such that

db(p, q) ≤

{
sp + sq + c1 log dY (p ′, q ′) + c2 when ebsp dY (p ′, q ′) ≥ 2,

sq − sp + c3 when ebsp dY (p ′, q ′) ≤ 2,

da(p, q) ≥ sp + sq + c4 log dY (p ′, q ′) − c5,

where p = (p ′, sp), q = (q ′, sq) in coordinates, and sq ≥ sp.

Also if sp = sq and σ is a geodesic segment in the hyperbolic comparison metric (5.1)
from p to q, then the minimum r-value of σ satisfies

σrmin
≥

{
−c6 log dY (p ′, q ′) − c7, when ebsp dY (p ′, q ′) ≥ 2,

s − c8, when ebsp dY (p ′, q ′) ≤ 2.
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Note: In order to avoid a proliferation of constants we reuse the labels c1 through
c8 above, hence these constants are not the same as the constants in Lemma 5.2.

Proof The points p and q lie in exactly one coordinate 2-plane Π perpendicular to
Y . Distances between p and q in the hyperbolic comparison metrics are realized by

geodesics lying entirely in Π and so we may use Lemma 5.2 specific to two dimensions

stated above in our metric comparisons. Further by the choice of reference covering
and the distance comparison principle (see page 1204) the distance θ along the unit

sphere is comparable to distance along Y . From the choice of reference covering it
follows that if ebsp dY (p ′, q ′) ≥ 2, then ebsθ ≥ 1; similarly if ebsp dY (p ′, q ′) ≤ 2, then

ebsθ ≤ 4.

The manifold M\K is not complete. Therefore we need to be careful when apply-

ing comparison geometry to estimate distances in M\K , for geodesic segments could
potentially leave the manifold M\K entirely. Fortunately the curvature assumptions

imply that at least for points far enough from Y whose nearest points on Y are close

enough, geodesic segments remain in the domain of a Fermi chart. We now explain
how to obtain these special charts. For x ∈ Y, µ > 0 and t0 > 0, we call

TC(x, µ, t0) = {(yβ , t) ∈ Wi × [0,∞) : dY (x, y) ≤ µ and t ≥ t0},

a truncated cylinder about x in Fermi coordinates (Wi × [0,∞), (yβ , t)).

Lemma 5.4 (Double Buffer) Fix x ∈ Wi × {0} in the domain of a Fermi coordinate

chart. Then there exist positive constants ǫ, δ, TOB, TIB depending on x and the constant

R from Theorem 5.1 such that if we define

OB = TC(x, ǫ + δ,TOB), the “outer” buffer,

IB = TC(x, ǫ,TIB), the “inner” buffer,

then if p, q ∈ IB, the g-geodesic segment from p to q remains entirely inside OB.

Proof The proof proceeds by determining the above constants such that if p, q ∈ IB,

then

• there is a curve σ from p to q with σ ⊂ OB such that len(σ) ≤ db(p, q);
• for any curve σ ′ from p to q that escapes OB, len(σ ′) > db(p, q).

This implies that a geodesic segment between p and q lies in OB, and hence in the

domain of a Fermi chart. See Figure 1.

Lemma 5.3 provides the necessary distance comparison estimates to hyperbolic
space. The remainder of the proof follows by lengthy but straightforward estimation.

Having finished the geometric preliminaries, we are now ready to describe the Ca/b

structure for M∗ that is independent of an essential subset. We begin by describing
the basic philosophy of the proof. In order to show that M∗ has a Ca/b structure,

we must construct a Ca/b atlas for M∗. Given an essential subset K1 ⊂ M, we use

the double buffer lemma to obtain a collection of truncated cylinders that cover a
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Figure 1: Situation of Lemma 5.4.

neighbourhood of infinity in a sense that we make precise below. We then obtain

Fermi coordinates on these cylinders, and by collapsing the normal r-coordinate by

a diffeomorphism, we obtain a coordinate cylinder that covers a deleted neighbour-
hood of the boundary M(∞) ⊂ M∗. We will show that transition functions from

these cylinders to the collapsed truncated cylinders emanating from a second essen-

tial subset K2 are Ca/b functions. As will be seen in the proof of Theorem 5.6 below,
the transition functions will then extend by uniform continuity to Ca/b functions on

a coordinate cylinder including an open subset of M(∞).
Consider two essential subsets K1,K2 for M. We begin with K1. By Theorem 4.6,

every point p ∈ M(∞) is the image under E1 of exactly one point p ′ ∈ Y1. By

Lemma 5.4 we obtain parameters ǫ(p), δ(p), TIB(p), TOB(p). Since the collection
{Bǫ(p)(p ′)} covers Y1, we pass to a finite subcover

B1 := {Bǫ(pk)(p ′

k)}N1

k=1.

Set T1 = max{TIB(pk) : 0 ≤ k ≤ N1}. Notice in Fermi coordinates relative to Y1 if

we write p = E1(p ′, rp), q = E1(q ′, rq) and assume p ′, q ′ ∈ Bǫ(pk)(p ′

k) for some k and
min{rp, rq} ≥ T1, then a g-geodesic segment from p to q remains in some “double

buffer” where we have comparison to hyperbolic metrics. In what follows we only
use this property and we will not mention the underlying double buffer structure

explicitly again.

The same procedure may be repeated to obtain a collar neighbourhood of infinity
relative to Y2, and we let B2,N2,T2 denote the corresponding data for Y2 as described

above for Y1. We set

(5.3) T = max
{

T1,T2,
1

2a
(1 − log(e − 2)) + diam(K1 ∪ K2)

}
.
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The reason for the last term in the definition of T will become apparent during the
proof of Proposition 5.5. We call B j the special coverings for Y j , j = 1, 2, and the

region E1(Y1 × (T,∞)) ∩ E2(Y2 × (T,∞)) the special (deleted) neighbourhood of
infinity. Observe also that every p ∈ M(∞) is in the intersection of the M∗-closure

of two truncated cylinders, one emanating from each of Y1 and Y2. As such, the

truncated cylinders are deleted neighbourhoods of points in M(∞). We introduce
notation for these truncated cylinders and their images. For j = 1, 2, let

TCk
j := Bk × [T,∞) ⊂ Y j × [0,∞),where B j = {Bk}

N j

k=1,

TC j := {TCk
j : 0 ≤ k ≤ N j},

Ck
j := E j(TCk

j ) ⊂ M,

C j := {Ck
j : 0 ≤ k ≤ N j}.

Observe that in this notation, the lower index denotes the essential subset index and

the upper index denotes an element of the special cover.
Since each B ∈ B j is contained in some Wi from the reference covering for Y j , B

is the image of a coordinate parametrization φ : B̃ ⊂ R
n+1 → B ⊂ M. As E : Y ×

[0,∞) → M, we define Ecoord := E ◦ (φ× Id) : B̃ × [0,∞) ⊂ R
n+1 → M.

In what follows, we also consider the above constructions with r-coordinate col-

lapsed by the diffeomorphism ζ : Y × [0,∞) → Y × [0, 1) given by ζ(p, r) =

(p, tanh(r/2)). We use a circumflex to denote the collapsed version of subsets of
Y × [0,∞). For example if P ⊂ Y × [0,∞), then P̂ = ζ(P) ⊂ Y × [0, 1). We also

write the restriction of the map E (4.1) to Y × [0, 1) as Ê. Thus

Ck
j = E j(TCk

j ) = Ê j(T̂C
k

j).

To proceed we need to check that distances in the special neighbourhood of infin-

ity measured relative to each essential subset are Ca/b comparable. This will be the
key ingredient in showing that M∗ has a Ca/b structure. To facilitate this, given an

essential subset K j , for p, q ∈ M\K j with p = E j(p ′, rp), q = E j(q ′, rq) in Fermi
coordinates, define dK j

(p, q) = |e−rp − e−rq | + dY j
(p ′, q ′). This metric is defined on

the entire set M\K j . It is easy to verify that when restricted to a particular truncated

cylinder Ck
j with coordinate parametrization (Êcoord)k

j , this metric is equivalent to the

Euclidean metric in collapsed Fermi coordinates, i.e., that |e−rp − e−rq | + dY (p ′, q ′)
and

|((Êcoord)k
j)
−1(p) − ((Êcoord)k

j)
−1(q)| = |((p ′)α, tanh(rp/2)) − ((q ′)α, tanh(rq/2))|

are equivalent on ((Êcoord)k
j)
−1(Ck

j ).

We now prove the main Ca/b distance estimate.

Proposition 5.5 There exists a positive constant C, depending on a, b and
diam(K1 ∪ K2), such that if Ck

1 ∈ C1, Ck ′

2 ∈ C2, and Ck
1 ∩Ck ′

2 6= ∅, then

(5.4) dK2
(p, q) ≤ C(dK1

(p, q))a/b,

for all p, q ∈ Ck
1 ∩Ck ′

2 .
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Proof Throughout the proof recall that we assume a ≤ 1 ≤ b. We write α = a/b.

In Fermi coordinates relative to K1 we write p = E1(p ′, rp), q = E1(q ′, rq), and
with respect to K2 we write p = E2( p̃ ′, r̃p), q = E2(q̃ ′, r̃q). By our assumption on p, q
and construction of the special covering and neighbourhood of infinity we have

(5.5) da(p, q) ≤ dM(p, q) ≤ db(p, q),

where dλ is the distance in the hyperbolic comparison metric (5.1). By the distance

comparison principle (see page 1204), θ is comparable to dY1
(p ′, q ′), and θ̃ is com-

parable to dY2
( p̃ ′, q̃ ′). We are thus free to work with the angle θ and, upon obtaining

the final estimate, replace angles by a constant times distances along hypersurfaces.

The inequality (5.5) and the hyperbolic cosine law, equation (5.2), imply that

1

a
cosh−1(cosh (ar̃p) cosh(ar̃q) − sinh (ar̃p) sinh (ar̃q) cos θ̃)

≤
1

b
cosh−1(cosh (brp) cosh (brq) − sinh (brp) sinh (brq) cos θ).

We use the estimate 1 − θ2/2 ≤ cos(θ) ≤ 1 − θ2/8 for 0 ≤ θ ≤ π, and then the

angle-sum formulas for hyperbolic cosine imply:

(5.6)
1

a
cosh−1

(
cosh (a(r̃p − r̃q)) + sinh (ar̃p) sinh (ar̃q)

θ̃2

8

)

≤
1

b
cosh−1

(
cosh (b(rp − rq)) + sinh (brp) sinh (brq)

θ2

2

)
.

Set D := diamM(K1 ∪ K2). The triangle inequality implies that

(5.7) rp − D ≤ r̃p ≤ rp + D, rq − D ≤ r̃q ≤ rq + D.

Assume that rq ≥ rp. The proof now breaks into two cases: rq − rp ≥ log (2) and

0 ≤ rq − rp ≤ log(2).

Case 1: rq − rp ≥ log (2). The main idea in this case is that we have e−rq ≤ 1
2
e−rp ,

and therefore

(5.8) e−rp ≤ 2(e−rp − e−rq ).

The main inequality (5.6) above in conjunction with the estimate α cosh−1(z) ≤
cosh−1(zα), valid for z ≥ 1 and 0 ≤ α ≤ 1, imply

(5.9) cosh (a(r̃p − r̃q)) + sinh (ar̃p) sinh (ar̃q)(θ̃2/8)

≤
(
cosh (b(rp − rq)) + sinh (brp) sinh (brq)(θ2/2)

)α
.
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When z ≥ 1
2a

(1 − log(e − 2)) we have

(5.10) eaz−1 ≤ sinh(az) ≤ eaz.

By our choice of T in (5.3), rq ≥ rp ≥ 1
2a

(1 − log(e − 2)). Consequently,

cosh (a(r̃p − r̃q)) + sinh (ar̃p) sinh (ar̃q)
θ̃2

8

≥
ea(erp−erq) + ea(erq−erp)

2
+ e−2ea(erp+erq) θ̃

2

8

≥
ea(erp+erq)

8e2

(
e−2aerq + e−2aerp + θ̃2

)
.

(5.11)

Similarly with the right-hand side of inequality (5.9), we may use the upper bound

for the hyperbolic sine provided by (5.10) to obtain

(
cosh(b(rp − rq)) + sinh (brp) sinh (brq)

θ2

2

)α

≤ (eb(rp−rq) + eb(rq−rp) + eb(rp+rq)θ2)α

= ea(rp+rq)(2e−2brp + θ2)α.

(5.12)

Combining inequalities (5.9), (5.11), (5.12), dividing by ea(erp+erq)/(8e2), and using

(5.7) to remove tildes, gives

(5.13) e−2aerq + e−2aerp + θ̃2 ≤ 8e2aD+2(2e−2brp + θ2)α.

An easy computation shows that we always have the estimate

(5.14) e−2erq + e−2erp ≥ (e−erq − e−erp )2.

Recall that a ≤ 1, and so e−2az ≥ e−2z for z ≥ 0. Apply this and inequality (5.14) to
the left-hand side of (5.13) to obtain

(5.15) e−2aerq + e−2aerp + θ̃2 ≥ e−2erq + e−2erp + θ̃2 ≥ (e−erp − e−erq )2 + θ̃2.

For the right-hand side of (5.13) we use b ≥ 1 and the estimate (5.8) to see

(5.16) 8e2aD+2(2e−2brp + θ2)α ≤ 8e2aD+2(4(e−rp − e−rq )2 + θ2)α.

Combining inequalities (5.13), (5.15), and (5.16) we have

(e−erp − e−erq )2 + θ̃2 ≤ 8 · 4αe2aD+2((e−rp − e−rq )2 + θ2)α.

This now implies (5.4), and completes the proof of Case 1.
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Case 2: 0 ≤ rq − rp ≤ log (2). The main idea in this case is to use a power series
expansion for hyperbolic cosine as rq − rp is bounded. Note that if 0 ≤ rq − rp ≤
log (2), then

(5.17) 0 ≤ |r̃q − r̃p| ≤ log(2) + 2D.

Simple calculations imply that we may choose constants k1, . . . , k4 so that for
0 ≤ z ≤ log(2) + 2D,

1 + k1z2 ≤ cosh (z) ≤ 1 + k2z2,(5.18)

k3z ≤ 1 − e−z ≤ k4z.(5.19)

So these estimates hold when z = rq − rp or z = |r̃q − r̃p|.

We begin with inequality (5.9). We will first apply estimates (5.18) and the esti-
mates for hyperbolic sine from (5.10). We then apply the estimate (1 + x)α ≤ 1 + xα,

valid for x ≥ 0 and 0 ≤ α ≤ 1. This yields

1 + k1(a(r̃p − r̃q))2 +
1

8e2
ea(erp+erq)θ̃2 ≤ 1 +

(
k2(b(rp − rq))2 + eb(rp+rq)θ2

)α
.

We cancel the ones and divide by ea(erp+erq), absorbing this factor into the right-hand

side of the inequality, obtaining

(5.20) k1e−a(erp+erq)(a(r̃p − r̃q))2 +
1

8e2
θ̃2 ≤ e2aD

(
k2e−2brp (b(rp − rq))2 + θ2

)α
.

We consider the right-hand side of this inequality. A little algebraic manipulation,

use of estimate (5.19), and the fact that b ≥ 1 give

e2aD(k2e−2brp (b(rp − rq))2 + θ2)α

≤ e2aD
(

k2k−2
3 b2(e−rp (1 − e−(rq−rp)))2 + θ2

)α

≤ e2aD max{(k2k−2
3 b2)α, 1}((e−rp − e−rq ) + θ)2α.

(5.21)

We now consider the left-hand side of inequality (5.20). When r̃q > r̃p we find

k1e−a(erp+erq)(a(r̃p − r̃q))2 +
1

8e2
θ̃2

≥ a2k1k−2
4 e−2erq (1 − e−(erq−erp))2 +

1

8e2
θ̃2

≥ a2k1k−2
4 (eerp−erq (e−erp − e−erq ))2 +

1

8e2
θ̃2

≥ min
{

a2k1k−2
4 e−2(log(2)+2D),

1

8e2

}(
(e−erp − e−erq )2 + θ̃2

)
,

(5.22)
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where the last estimate uses inequality (5.17). We may now put estimates (5.21) and
(5.22) together with (5.20) to get

(5.23) min
{

a2k1k−2
4 e−2(log(2)+2D),

1

8e2

}(
(e−erp − e−erq )2 + θ̃2

)

≤ e2aD max{(k2k−2
3 b2)α, 1}

(
(e−rp − e−rq ) + θ

) 2α
.

Observe that for positive x, y and z, x2 + y2 ≤ z2 imply x + y ≤ 2z. Consequently

inequality (5.23) implies that for a constant C

e−erp − e−erq + θ̃ ≤ C
(

(e−rp − e−rq ) + θ
)α
.

An entirely similar computation holds for r̃p ≥ r̃q. This completes the proof of
Case 2.

We are now ready to finish the proof of Theorem 1.1, which we obtain immediately
from Theorems 3.1, 4.6, 5.1 and the following.

Theorem 5.6 Let M be a complete Riemannian manifold containing an essential sub-

set. Suppose for every essential subset K ⊂ M with reference covering {Wi} for Y = ∂K

that there exists an R > 0 such that for every r > R

sinh2(a(r − R))

a2
(g̊i)βν ≤ gβν(y, r) ≤

sinh2(b(r + R))

b2
(g̊i)βν ,

for all i, where (g̊i) is the round metric in normal coordinates (see page 1203). Then M∗

has a Ca/b structure independent of K.

Proof We must find an atlas of Ca/b compatible charts.

Recall that we have earlier defined the special neighbourhood of infinity

S = E1(Y1 × (T,∞)) ∩ E2(Y2 × (T,∞)),

relative to essential subsets K1 and K2. The complement K0 = M\S is a compact set,

and we choose an atlas C0 of normal coordinate balls covering K0 so that the collec-

tion of balls of half the radius still cover K0. Preceding Proposition 5.5, we defined a
covering C j , j = 1, 2. Every truncated cylinder Ck

j ∈ C j is a deleted neighbourhood

of points on the boundary of M(∞). Let C
k

j be the union of Ck
j and points of M(∞)

in the M∗-closure of Ck
j ; this is an open subset of M∗ containing an open subset of

M(∞). Set C j = {C
k

j : 1 ≤ k ≤ N j}. We now show that C = C0 ∪ C1 ∪ C2 is a Ca/b

compatible atlas for M∗.

Whenever a chart from C0 overlaps with a chart from any C j , j = 0, 1, 2, the tran-

sition function is smooth, and therefore Ca/b. Similarly, transition functions from

two charts in a single C j , j = 1, 2 are Ca/b functions.

We now consider the case that a chart C
k

1 ∈ C1 meets a chart C
k ′

2 ∈ C2. But this is

exactly the situation of Proposition 5.5. We have a Cα estimate of the form

dK2
(p, q) ≤ C(dK1

(p, q))α,
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for points p, q ∈ Ck
1 ∩Ck ′

2 .
Since dK j

(p, q) = |e−rp − e−rq |+ dY j
(p ′, q ′) is equivalent to the Euclidean distance

|(Êcoord)−1
j (p) − (Êcoord)−1

j (q)| on (Êcoord)−1
j (Ck

1 ∩ Ck ′

2 ), we have that the transition
function

ψ = ((Êcoord)k ′

2 )−1 ◦ (Êcoord)k
1

is a Cα map on ((Êcoord)k
1)−1(Ck

1 ∩Ck ′

2 ).

As in the proof of Theorem 4.6,ψ extends to a continuous mapψ on the closure of

((Êcoord)k
1)−1(Ck

1 ∩Ck ′

2 ), and by the result above extends to a Ca/b map on the closure
as well. Thus

ψ = ((Ecoord)k ′

2 )−1 ◦ (Ecoord)k
1

is a Ca/b map on ((Ecoord)k
1)−1(C

k

1 ∩C
k ′

2 ).

In summary, we have shown that given any essential subset K we may construct a
smooth atlas for M∗, and that any two such atlases are Ca/b compatible. These atlases

are contained in a maximal atlas, which is a Ca/b structure for M∗ independent of

essential subset.
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