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Abstract. We show that the bi-Lipschitz equivalence of analytic function germs ðC2; 0Þ !
ðC; 0Þ admits continuous moduli. More precisely, we propose an invariant of the bi-Lipschitz
equivalence of such germs that varies continuously in many analytic families ft: ðC

2; 0Þ !
ðC; 0Þ. For a single germ f the invariant of f is given in terms of the leading coefficients of
the asymptotic expansions of f along the branches of generic polar curve of f.
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Consider a one parameter family of germs ftðx; yÞ: ðC
2; 0Þ ! ðC; 0Þ, t 2 C, given

by

ftðx; yÞ ¼ f ðx; y; tÞ ¼ x3 � 3t2xy4 þ y6: ð0:1Þ

We shall show that if t; t0 are sufficiently generic then ft and ft0 are not bi-Lipschitz

equivalent function germs, that is there is no germ of bi-Lipschitz homeomorphism

H : ðC2; 0Þ ! ðC2; 0Þ such that ft 	H ¼ ft0 . This shows, in particular, that the bi-

Lipschitz classification of function germs admits continuous moduli.

To our best knowledge this fact was not observed before. Since the bi-Lipschitz

equivalence of complex analytic set germs does not admit moduli by [3] it is tempting

to think that the same is true for function germs. In [6] Risler and Trotman asked

explicitly whether the bi-Lipschitz equivalence of the zero sets f �11 ð0Þ; f �12 ð0Þ of com-

plex analytic function germs f1; f2 with isolated singularities implies the bi-Lipschitz

equivalence of f1 and f2. The above example shows that the answer is negative. We

were asked whether the moduli exist also by our colleagues working on blow-analytic

equivalence, S. Koike, T.-C. Kuo, and K. Kurdyka. The blow-analytic equivalence

itself does not admit moduli, see [1], and the space of real analytic arcs seems to be

the right object for study its properties. The action of a blow-analytic homeomor-

phism on this space is much easier to study if the homeomorphism does not change

the order of contact between analytic arcs, that is if it is bi-Lipschitz. Unfortunately,
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by the above example, the blow-analytic bi-Lipschitz equivalence seems to be too

strong for the equisingularity problem.

In order to distinguish bi-Lipschitz types of function germs of two complex vari-

ables we construct an invariant. The invariant for an arbitrary function germ of com-

plex two variables is defined in Section 4. Its construction is based on the observation

that the bi-Lipschitz homeomorphisms preserve (or rather do not move a lot) some

regions around the relative polar curves. Consider, for instance, the family ft of (0.1).

We show in Section 1 that ft cannot be trivialized by a Lipschitz vector field. For this

we compare such a vector field, if it exists, on two branches of the relative polar

curve @ft=@x ¼ 0. Then an elementary computation shows that such a vector field

cannot be Lipschitz and tangent to the levels of f at the same time. Alternatively

one can argue as follows. Though the flow of a Lipschitz vector field tangent to

the levels of f does not necessarily preserve polar curves it can be proven that it can-

not move them a lot. For instance, in the example (0.1), the image of @ft=@x ¼ 0 by

the flow of such Lipschitz vector field has to stay in Ue ¼ fj@ft=@xj4ej@ft=@yjg. The
polar curve G : @ft=@x ¼ 0 has two branches (called polar arcs) that are tangent to

the line x ¼ 0. The asymptotic expansions of f on these polar arcs are different.

The leading terms of these asymptotic expansions don’t change if we replace G by
Ue. Fix a point p on one arc and take the closest point p

0 on the other. As we show

f ð pÞ=f ð p0Þ tends to a precise value as p! 0. This value is a bi-Lipschitz invariant.

The example (0.1) is studied in details in Section 3.

Let f ðx; yÞ be an arbitrary function germ. We generalize the above idea and con-

struct in Section 4 a set of bi-Lipschitz invariants coming from each set of mutually

tangent polar arcs. In general a bi-Lipschitz homeomorphism does not come from

the integration of a Lipschitz vector field and we do not know whether such a homeo-

morphism preserves (or rather does not move a lot) the sets of the form Ue. There-

fore in order to prove the invariance of the introduced numbers we shall study

neighborhoods of polar curves maybe bigger than Ue. These neighborhoods, denoted

Yd, are introduced in Section 2 where we prove that they are preserved by bi-

Lipschitz homeomorphisms. Moreover, in Section 5 we show that the asymptotic

behavior of f on Yd is similar to that on the polar curves and hence will follow again

that the leading coefficients of the expansions corresponding to the polar curves give

a bi-Lipschitz invariant. Though the sets Yd play the crucial role in the proof of

invariance we do not need them in order to calculate the invariant itself. For this

it suffices to compute the leading coefficients of the expansion of f along the polar

arcs of @f=@x ¼ 0, with the only assumption that the x-axis is not tangent to the tan-

gent cone of f�1ð0Þ at the origin.

1. Trivializing Lipschitz Vector Fields

THEOREM 1.1. There is no Lipschitz vector field

vðx; y; tÞ ¼ @=@tþ v1ðx; y; tÞ@=@xþ v2ðx; y; tÞ@=@y;
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v1ð0; 0; tÞ  v2ð0; 0; tÞ  0, defined in a neighborhood of ð0; 0; t0Þ and tangent to the

levels of f ðx; y; tÞ ¼ x3 � 3t2xy4 þ y6.

Proof. Suppose that, contrary to our claim, such v exists. Then

@f=@v  0: ð1:1Þ

Let G denote the family of polar curves

G ¼ fðx; y; tÞj@f=@x ¼ 3ðx2 � t2y4Þ ¼ 0g:

G consists of two branches

x ¼ �ty2: ð1:2Þ

Develop (1.1) along each branch of G and substitute (1.2)

0 ¼ @f=@v ¼ @f=@tþ v2@f=@y ¼ �6txy4 þ ð�12t2xy3 þ 6y5Þv2

¼ �6t2y6 þ ð�12t3y5 þ 6y5Þv2:

Hence

v2ð�ty
2; y; tÞ ¼

�t2y

1� 2t3
ð1:3Þ

We compare v2 between two branches of G

v2ðty
2; y; tÞ � v2ð�ty

2; y; tÞ ¼
t2y

1� 2t3
�

�t2y

1þ 2t3
� y ð1:4Þ

at least near t supposed generic. On the other hand if v2 is Lipschitz with Lipschitz

constant L then

jv2ðty
2; y; tÞ � v2ð�ty

2; y; tÞj4 2Ljty2j; ð1:5Þ

which contradicts (1.4). &

One may try to explain in a more geometric way why the existence of such a vector

field is not possible. The flow of a Lipschitz vector field moves slowly the tangent

spaces to the levels of f as follows from [5]. This means, in particular, that the polar

curves G, though not necessarily preserved by the flow of v, would stay in

Ue :¼ fj@f=@xj < ej@f=@yjg, for e > 0 small. Suppose, for simplicity, that the flow
of v preserves G. Then it cannot preserve f. Indeed, on each branch of G
f ð�ty2; y; tÞ ¼ ð1� 2t3Þy6. If we compare the levels of f on these two branches, for

instance by projecting onto the y-axis, we see that they are transverse. Consequently,

the flow of v induces a significant movement of variable y on each branch of G. This
is the meaning of (1.3). The movements on different branches of G are not compa-
tible, they go in different directions which is algebraically expressed by (1.4). But this

is not possible for a Lipschitz vector field because of the high contact between the

branches of G, see (1.5).
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2. Neighborhoods of G Preserved by Bi-Lipschitz Homeomorphisms

Fix g ¼ ft and ~g ¼ ft0 . In order to show that g and ~g are not bi-Lipschitz equivalent

we would like to follow the geometric idea explained at the end of Section 1. The

main problem is that we do not know whether the image of polar curve

G ¼ fðx; yÞj@g=@x ¼ 0g by an arbitrary bi-Lipschitz homeomorphism H is contained

in fj@ ~g=@xj < ej@ ~g=@yjg. So our idea is to find maybe bigger neighborhoods of G
which are preserved by such H.

Fix a single germ g : ðC2; 0Þ ! ðC; 0Þ and a point p0 2 C2 close to the origin. Fix

another constant K sufficiently large which will be later related to the Lipschitz con-

stant of a bi-Lipschitz homeomorphism. Let c ¼ gð p0Þ. Let Bð p0; rÞ denote the open
ball centered at p0 and of radius r. Denote Xð p0; rÞ :¼ Bð p0; rÞ \ g�1ðcÞ. Suppose

that p; q 2 Xð p0; rÞ belong to the same connected component of Xð p0;KrÞ, as p0.
Then one can join p and q by a piecewise C1 curve in Xð p0;KrÞ. Let distp0;r;Kð p; qÞ
denote the infimum of lengths of such curves that is the intrinsic distance of p and

q in Xð p0;KrÞ. Define

jð p0;r;KÞ :¼ sup
distp0;r;Kð p; qÞ

j p� qj
; ð2:1Þ

where the supremum is taken over all pairs of points p; q of Xð p0; rÞ from the con-
nected component of Xð p0;KrÞ containing p0. Clearly if p0 is a nonsingular point of
g�1ðcÞ then jð p0; r;KÞ ! 1 as r ! 0 but j is not necessarily an increasing function
of r so we define

cð p0;r;KÞ :¼ sup
r0 4r

jð p0; r0;K Þ ð2:2Þ

Finally we define

Yðr;K;AÞ :¼ f pjcð p; r;K Þ5Ag: ð2:3Þ

Intuitively speaking Y ¼ Yðr;K;AÞ, for A large, is the set of points where the curva-
ture of levels g�1ðcÞ is very large. We shall show that such Y are preserved by bi-Lip-

schitz homeomorphisms.

LetH : ðC2; 0Þ ! ðC2; 0Þ be the germ of a bi-Lipschitz homeomorphism such thatH

sends the levels of ~g to the levels of g, where g; ~g : ðC2; 0Þ ! ðC; 0Þ are the germs of ana-

lytic functions. Fix L5 1, a common Lipschitz constant ofH and its inverseH�1. For

p0 2 C2 we denote by ~p0 ¼ Hð p0Þ and similarly we add the tilde to distinguish the cor-

responding objects in the domain and the target space of H, that is for instance

~Yðr;K;AÞ :¼ f ~pjcð ~p; r;K Þ5Ag; ð2:4Þ

will be a subset of the target space of H.

LEMMA 2.1. Suppose K5L2. Then

~YðL�1r;K;AL2Þ � HðYð r;K;AÞÞ � ~YðLr;K;AL�2Þ: ð2:5Þ
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Proof. Since H is bi-Lipschitz

~Xð ~p0;L
�1rÞ � HðXð p0; rÞÞ � ~Xð ~p0;LrÞ: ð2:6Þ

Hence, if K5L2,

~Xð ~p0;L
�1rÞ � HðXð p0; rÞÞ � ~Xð ~p0;L

�1KrÞ � HðXð p0;KrÞÞ: ð2:7Þ

If ~p0 and ~p 2 ~Xð ~p0;L
�1rÞ are in the same connected component of ~Xð ~p0;L

�1KrÞ
then p0 and p ¼ H�1ð ~pÞ are in the same connected component of HðXð p0;KrÞÞ. H
changes the distances at most by a constant L also for the intrinsic distances calcu-

lated along a subvariety. Hence (2.7) implies

cð p0;r;K Þ5L�2cð ~p0;L�1r;K Þ: ð2:8Þ

Similarly

L2cð ~p0;Lr;K Þ5cð p0; r;K Þ: ð2:9Þ

The last two formulae give the statement. &

A similar argument shows the following.

LEMMA 2.2. Let d > 0 and denote Yðd;K;M;AÞ :¼ f pjcð p;Mj pj1þd;K Þ5Ag. If

K5L2 then ~Yðd;K;ML�2�d;AL2Þ � HðYðd;K;M;AÞÞ � ~Yðd;K;ML2þd;AL�2Þ:

3. Computation on Example

THEOREM 3.1. Let ft and ft0 be two analytic function germs given by ð0:1Þ. Suppose

t; t0,1� 2t3, and 1� 2t03 are nonzero. If there is the germ of a bi-Lipschitz homeo-

morphism H : ðC2; 0Þ ! ðC2; 0Þ such that ft 	H ¼ ft0 then t
3 ¼ �t03.

Proof. Fix gðx; yÞ ¼ x3 � 3t2xy4 þ y6 such that t 6¼ 0 and 1� 2t3 6¼ 0. Let

U ¼ fðx; yÞjj@g=@xj < j@g=@yjg

LEMMA 3.2. Suppose ðx; yÞ 2 U. Then

x ¼ �ty2 þOð y3Þ; ð3:1Þ

gðx; yÞ ¼ ð1� 2t3Þy6 þOðy8Þ: ð3:2Þ

Proof. We use

@g=@x ¼ 3ðx2 � t2y4Þ; @g=@y ¼ 6y3ð y2 � 2t2xÞ:

Consider the following change of variables x ¼ sy2. Then

@g=@x ¼ 3y4ðs2 � t2Þ; ð3:3Þ

@g=@y ¼ 6y5ð1� 2t2sÞ: ð3:4Þ

This implies that s ¼ �tþOð yÞ on U, that is the first formula of the statement. The

second formula is a direct consequence of the first one. &
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LEMMA 3.3. Let d > 0;C > 0. Then on the set

f p ¼ ðx; yÞ j 9p0 ¼ ðx0; y0Þ 2 U; gð pÞ ¼ gð p0Þ; jy� y0j4Cjy0j
1þdg

we have

x ¼ Oð y2Þ; ð3:5Þ

gðx; yÞ ¼ ð1� 2t3Þy6 þOð y6þd0 Þ; ð3:6Þ

where d0 ¼ minfd; 2g.
Proof. Since d > 0, y ’ y0. Thus (3.6) follows from (3.2) for ðx0; y0Þ.

Write x ¼ sy2. Then

y6ðs3 � 3t2sþ 1Þ ¼ gðx; yÞ ¼ ð1� 2t3Þy6 þOðy6þd0 Þ

and, hence, s is bounded. This gives (3.5). &

COROLLARY 3.4. LetY ¼ Yðd;K;M;AÞ :¼ f p jcð p;Mj pj1þd;K Þ5Ag, whered > 0;

M > 0 and A;K are sufficiently large constants. Then formulae ð3:5Þ and ð3:6Þ hold

for all ðx; yÞ 2 Y.

Proof. Fix p0 and suppose Xð p0;KMj p0j
1þdÞ does not intersect U. Then the

projection Xc ¼ f �1ðcÞ ! C, ðx; yÞ ! y, is submersive and Xc near each point of

Xð p0;KMj p0j
1þdÞ is the graph of a function x ¼ xð yÞ with the derivative bounded by

1. Therefore, if we suppose K and A big enough (K;A >
ffiffiffi
2

p
suffice), then p0 =2Y (see

the proof of Lemma 5.6 below for a more detailed argument). Consequently, if

p0 ¼ ðx0; y0Þ 2 Y, then there is a point p ¼ ðx; yÞ 2 U such that

j p� p0j4KMj p0j
1þd: ð3:7Þ

Then, the corollary follows from Lemma 3.3. &

PROPOSITION 3.5. Let Y ¼ Yðd;K;M;AÞ, where d > 0;M > 0; and A;K are

sufficiently large constants. Suppose that p1; p2 2 Y and there is a d1 > 0 such that

j p1 � p2j4 j p1j
1þd1 . Then, for d2 < minfd; d1; 2g and in a sufficiently small neigh-

borhood of the origin���� gð p1Þgð p2Þ
� a

����4 j p1j
d2 ; ð3:8Þ

where a is one of the following values: 1, ð1þ 2t3Þ=ð1� 2t3Þ, ð1� 2t3Þ=ð1þ 2t3Þ.

Proof. Let pi ¼ ðxi; yiÞ, i ¼ 1; 2. Then by Corollary 3:4

gð piÞ ¼ ð1� 2t3Þy6i þOð y
6þd0
i Þ; ð3:9Þ

and

y1 � y2 ¼ Oðj p1j
1þd1 Þ ¼ Oð y1þd1

1 Þ: ð3:10Þ

and, hence, the result. &
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LEMMA 3.6. If K and A are sufficiently large and 1 > d > 0 then Y ¼ Yðd;K;M;AÞ

is nonempty and contains the polar curve G. Moreover, in this case all the limits of

gð p1Þ=gð p2Þ given by Proposition 3:5 can be obtained by taking p1 and p2 along the

branches of G.
Proof. Fix K and d, as above.
Consider the projection pc : Xc ¼ g�1ðcÞ ! C, pcðx; yÞ ¼ y. pc is a triple covering

branched at the points of G \ Xc, that is the points of coordinates

x ¼ �ty2; y ¼ ð1� 2t3Þ�1=6c1=6: ð3:11Þ

The distances between different points of ramification or, equivalently, between their

projections onto y-axis, are of size comparable to jyj.

Fix a point p0 ¼ ðx0; y0Þ of ramification of pc. Let V ¼ fy; jy� y0j < ejy0jg, e small.
Then, if p0 is sufficiently close to the origin, p�1c ðVÞ contains Xð p0;KMj p0j

1þdÞ. On

the other hand suppose that p ¼ ðx; yÞ 2 g�1ðcÞ satisfies

jy� y0j4 jy0j
1þd; ð3:12Þ

Then, by Lemma 3.3, x ¼ Oð y2Þ and, hence,

j p� p0j4 2jy0j
1þd ð3:13Þ

Denote Vd ¼ fy; jy� y0j < jy0j
1þdg. By (3.13), p�1c ðVdÞ � Xð p0;KMj p0j

1þdÞ. Since

pc is a branched triple covering, p�1c ðVdÞ consists of two connected components,

one which contains the p0 and the other which projects diffeomorphically onto Vd.

In what follows we shall restrict ourselves to the connected component containing

p0. We shall denote by ~pc the restriction of pc to this component.
Fix y 2 Vd such that jy� y0j ¼

1
2 jy0j

1þd and denote the two points of ~p�1c ð yÞ by

p1 ¼ ðx1; yÞ and p2 ¼ ðx2; yÞ. Then p1, p2 are in ~p�1c ðVdÞ which is connected. Note that

the projection ~pc of any curve joining p1 and p2 in ~p�1c ðVdÞ passes around y0. Hence

the distance of p1 and p2 calculated along g
�1ðcÞ satisfies

distp0;Cj p0j1þd;Kð p1; p2Þ5 jy0j
1þd: ð3:14Þ

By Lemma 3.3, x1 and x2 are Oðjy0j
2Þ and, consequently,

j p1 � p2j ¼ Oðjy0j
2Þ ¼ Oðj p0j

2Þ: ð3:15Þ

Thus

cð p0;Mj p0j
1þd;K Þ ! 1 ð3:16Þ

as p0 ! 0, that is G is contained, as the germ at the origin, in Yðd;K;M;AÞ as

claimed.

The last claim of the lemma can be checked directly by considering the limits along

the two branches of G. &
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To complete the proof of Theorem 3.1 we note that Lemma 2.2, Proposition 3.5,

and Lemma 3.6 give that the following sets are equal

1þ 2t3

1� 2t3
;
1� 2t3

1þ 2t3

� �
¼

1þ 2t03

1� 2t03
;
1� 2t03

1þ 2t03

( )
:

This implies t3 ¼ �t03 as claimed. &

4. Invariants of Bi-Lipschitz Equivalence

In this section we construct invariants of bi-Lipschitz equivalence of analytic func-

tion germs ðC2; 0Þ ! ðC; 0Þ. Our construction generalizes the one presented in the

previous section.

Let f ðx; yÞ : ðC2; 0Þ ! ðC; 0Þ be a germ of analytic function with Taylor expansion:

f ðx; yÞ ¼ Hkðx; yÞ þHkþ1ðx; yÞ þ � � � : ð4:1Þ

We shall assume f ðx; yÞ is mini-regular in x of order k in the sense that Hkð1; 0Þ 6¼ 0.

We shall also assume, for simplicity, that f has no multiple roots.

By an analytic arc we mean a fractional (convergent) power a series of the form

l : x ¼ lð yÞ :¼ c1y
n1=N þ c2y

n2=N þ � � � ; ci 2 C; ð4:2Þ

where N4 n1 < n2 < � � � are positive integers having no common divisor, such that

lðtNÞ has positive radius of convergence. We can identify l with the analytic arc
l : x ¼ c1t

n1 þ c2t
n2 þ � � � ; y ¼ tN, jtj small, which is not tangent to the x-axis (since

n1=N5 1).

Given two analytic arcs x ¼ lið yÞ; i ¼ 1; 2, by the order of contact of l1 and l2 we
mean ordðl1; l2Þ ¼ ord0ðl1ð yÞ � l2ð yÞÞ.
A polar arc x ¼ gð yÞ is a branch of the polar curve G: @f=@x ¼ 0. Since f is mini-

regular in x, x ¼ gð yÞ is not tangent to the x-axis and it is an arc in our sense. Let g be
a polar arc given by a fractional power series as in (4.2) and let y is an Nth root of
unity. Then we should consider gðyyÞ as a polar arc different from g if y 6¼ 1.

We divide the polar arcs into two classes: those that are tangent to the tangent

cone C0ðXÞ ¼ fHk ¼ 0g to X ¼ f�1ð0Þ at the origin, and those that are not. We shall

call the polar arcs of the first type tangential. The nontangential polar arcs can be

also described as the moving ones since their tangent at 0 moves when we change

the system of coordinates, see the next section for details.

EXAMPLE 4.1. Consider f ðx; yÞ ¼ yðx2 � y3Þ ¼ x2y� y4. ( f is not mini-regular

with respect neither to the x-axis nor to the y-axis but the computation in a special

system of coordinates is easier) The generic polar curve of f

0 ¼ @f=@xþ a@f=@y ¼ 2xyþ aðx2 � 4y3Þ

¼ ðx� 2ay2 þ � � �Þð2yþ axþ 2a2y2 þ � � �Þ
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has two components: one tangential tangent to the line x ¼ 0 and one tangent to the

line 2yþ ax ¼ 0 that moves as a moves.

Let g be a polar arc. We associate to g two numbers: h0 ¼ h0ðgÞ 2 Qþ and

c0 ¼ c0ðgÞ 2 C� given by the expansion

f ðgð yÞ; yÞ ¼ c0y
h0 þ � � � ; c0 6¼ 0: ð4:3Þ

Note that g is tangential if and only if h0ðgÞ > k.

Fix a tangent line l to X at 0, that is l � C0ðXÞ. Let Gð l Þ denote the set of all polar
arcs tangent to l at 0. Gðl Þ is nonempty if and only if

l � SingðC0ðXÞÞ :¼ f@Hk=@x ¼ @Hk=@y ¼ 0g:

Define IðlÞ as the set of formal expressions IðlÞ ¼ fc0ðgÞyh0ðgÞjg 2 GðlÞg=C�, divided the

action of C�, where c 2 C� acts by multiplication on y:

fc01y
h01 ; . . . ; c0ky

h0kg � fc01c
h01yh01 ; . . . ; c0kc

h0kyh0kg:

DEFINITION 4.2. Let f ðx; yÞ be an analytic function germ. By the invariant Invð f Þ

of f we mean the set of all IðlÞ, where l runs over all lines in SingðC0ðXÞÞ.

THEOREM 4.3. Let f1; f2 be two analytic functions germs ðC2; 0Þ ! ðC; 0Þ mini-

regular in x. If f1 and f2 are bi-Lipschitz equivalent then Invð f1Þ ¼ Invð f2Þ.

Remark 4:4: ðiÞ Theorem 4:3 implies that InvðfÞ is independent of the choice of

coordinates. This, of course, can be checked directly, for instance, by the methods of

the next section.

(ii) Let ft be the function of example of Section 3. Then there are two polar arcs

g�ð yÞ ¼ �ty2. They are both tangent to the y-axis. Thus InvðftÞ ¼ fð1� 2t3Þy3g=C�.

Proof of Theorem 4.3. Consider the sets

Yd ¼ Yðd;K;M;AÞ :¼ f pjcð p;Mj pj1þd;K Þ5Ag;

where K;A are large constants and d > 0 is sufficiently small. In what follows we

suppress the constants to avoid an awkward notation. The sets Yd satisfy two impor-

tant properties. Firstly they are preserved by bi-Lipschitz homeomorphism, see

Lemma 2.2. Secondly the asymptotic behavior of f on Yd gives exactly the invariant

InvðfÞ thanks to the following proposition which will be proved in the next section.

PROPOSITION 4.5. Let ~G be the union of tangential polar arcs. Suppose d > 0 and

sufficiently small. Then ðiÞ ~G � Yd: ðiiÞ There is a constant B > 0, which depends on the
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constants in the definition of Yd, such that for each p0 2 Yd there is p 2 ~G such that

f ð pÞ ¼ f ð p0Þ and

j p� p0j4Bj p0j
1þd: ð4:4Þ

We shall show how Proposition 4.5 implies Theorem 4.3. First we explain how to

recover InvðfÞ from the asymptotic behavior of f on Yd. By Proposition 4.5 the tan-

gent cone to Yd at the origin equals exactly SingðC0ðXÞÞ that is to say, as germ at the

origin, Yd is included in a ‘horn’ neighborhood of SingðC0ðXÞÞ that is in a set of the

form f p 2 C2; distð p; SingðC0ðX ÞÞÞ4 j pj1þxg for a x > 0. Indeed, clearly the union ~G
of tangential arcs is included in such a ‘horn’ neighborhood for an exponent x. Tak-
ing xmaybe even smaller, in particular smaller than d, we may assure, by Proposition
4.5, that the ‘horn’ neighborhood contains Yd. For l � SingðC0ðXÞÞ denote by Ydðl Þ

the part of Yd tangent to l that is Y \ f p 2 C2;distð p; SingðC0ðXÞÞÞ4 j pj1þxg. For

p0 ¼ ðx0; y0Þ 2 Ydðl Þ and C > 0 we denote

Vð p0Þ ¼ f f ð pÞjp 2 Yd and j p� p0j4Cj p0j
1þdg: ð4:5Þ

LEMMA 4.6. There is Z > 0 such that Vð p0Þ �
S

g2Gðl Þftjjt� c0ðgÞy
h0ðgÞ
0 j4

jy0j
h0ðgÞþZg.

Proof. Let p 2 Yd and let j p� p0j4Bj p0j
1þd. By Proposition 4.5 we may sup-

pose that p0 and p belong to Gðl Þ without changing the values of f on them. Then the
lemma follows. &

Let f1; f2 be two analytic functions germs such that f1 ¼ f2 	H, where H is a bi-

lipschitz homeomorphism. By Lemma 2.2, HðYd;f1Þ � Yd;f2 (the constants in defini-

tion of Yd change). Fix l1 � SingðC0ð f
�1
1 ð0ÞÞÞ and a polar arc g tangent to l1. The

image HðgÞ is in Yd; f2 and, hence, in one of Yd;f2ðl2Þ, where l2 � SingðC0ð f
�1
2 ð0ÞÞÞ.

The line l2 does not depend on the choice of g with tangent line l1 since all such polar
arcs g are mutually tangent and H is Lipschitz. Finally, by Proposition 4.5,

HðYd;f1 ðl1ÞÞ � Yd;f2ðl2Þ. Let p1 2 Yd;f1 ðl1Þ and let p2 ¼ ðx2; y2Þ ¼ Hð p1Þ. By the above,

Vð p1Þ � VðHð p1ÞÞ ð4:6Þ

(again, maybe for a different constant C in the definition (4.5)). Denote by

GiðliÞ the union of polar arcs in Yd; fiðliÞ, for i ¼ 1; 2 respectively. By Lemma 4.6

and (4.6) Vð p1Þ �
S

g02G2ðl2Þftjjt� c0ðg0Þy
h0ðg0Þ
2 j4 jy2j

h0ðg0ÞþZg. Thus for each polar arc

x1 ¼ gð y1Þ in G1ðl1Þ, f1ðgð y1Þ; y1Þ 2 Vð p1Þ and

f1ðgð y1Þ; y1Þ ¼ c0ðgÞy
h0ðgÞ
1 þ oð y

h0ðgÞþZ
1 Þ 2

[
g02G2ðl2Þ

ftjjt� c0ðg0Þy
h0ðg0Þ
2 j4 jy2j

h0ðg0ÞþZg:

Recall that jyij � j pij since the normal cones are away of the x-axis and

j p1j � jHð p1Þj ¼ j p2j since H is bi-Lipschitz. Hence, jy1=y2j is bounded and so is

jy2=y1j. As a consequence for each g in G1ðl1Þ there is a g0 2 G2ðl2Þ such that
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jc0ðgÞy
h0ðgÞ
1 � c0ðg0Þy

h0ðg0Þ
2 j4 jy2j

h0ðg0ÞþZ:

In particular h0ðgÞ ¼ h0ð g0Þ. Given two polar curves g; ~g 2 G1ðl1Þ and the correspond-
ing g0; ~g0 2 G2ðl2Þ. Then Hðgð y1Þ; y1Þ ¼ ðx2; y2Þ and Hð~gð y1Þ; y1Þ ¼ ð ~x2; ~y2Þ satisfy

y2 � ~y2 ¼ oð y2Þ: Indeed, it follows from the tangency of g and ~g since H is Lipschitz.
This shows that

c0ð~gÞy
h0ð~gÞ
1 ¼ c0ð~g0Þ ~y

h0ð~gÞ
2 þ oð ~y

h0ð~gÞ
2 Þ ¼ c0ð~gÞð y2=y1Þ

h0ð~gÞy
h0ð~gÞ
1 þ oðy

h0ð~gÞ
1 Þ:

Considering all polar curves in 2 G1ðl1Þ and taking the limit as y2 ! 0 this gives

fc0ðgÞyh0ðgÞjg 2 G1ðl1Þg=C
�
� fc0ðg0Þyh0ðg

0Þjg0 2 G2ðl2Þg=C
�

where y2=y1 plays the role of a constant of C
�. By symmetry we obtain the opposite

inclusion. Therefore IðG1ðl1ÞÞ ¼ IðG2ðl2ÞÞ and Invðf1Þ ¼ Invðf2Þ, as required. &

Remark 4:7: Let ftðxÞ ¼ f ðx; tÞ be an analytic family of analytic function germs

ðCn; 0Þ ! ðC; 0Þ with parameter t 2 C. Denote

grad x ft ¼
X
i

@ft
@xi

@

@xi
:

If ft is equimultiple and the tangent cone to Xt ¼ f�1t ð0Þ has isolated singularity at the

origin for all t, then ft is bi-Lipschitz trivial. Indeed, consider the Kuo vector field

~vðx; tÞ ¼ @=@t�
@f=@t

jgrad x ftj
2
grad x ft

that trivializes f. On may show that the assumption on the tangent cone implies

jgrad x ftj � jxjk�1; where k denotes the multiplicity of f at the origin. Therefore

the partial derivatives of~v are bounded and hence it follows easily that it is Lipschitz.

5. Cuspidal Neighborhoods of Polar Curves

In this section we give a proof of Proposition 4.5. The proof will be based on a

detailed analysis of neighborhoods of polar curve G : @f=@x ¼ 0. Our main method

is the Newton diagram associated to each polar arc. First we recall briefly its con-

struction. For the details the reader may consult [2].

Let f ðx; yÞ: ðC2; 0Þ ! ðC; 0Þ be a germ of analytic function with Taylor expansion

(4.1) mini-regular in x. Fix an analytic arc l as (4.2). Write

FðX;YÞ :¼ f ðXþ lðYÞ;YÞ :¼
X

cijX
iY j=N: ð5:1Þ

For each cij 6¼ 0, let us plot a dot at ði; j=NÞ, called a Newton dot. The set of Newton

dots is called the Newton diagram of f relative to l. By the Newton polygon of f rela-

tive to l we mean the Newton polygon of F in the usual sense that is the union of
compact faces of the boundary of the convex hull of Newton diagram.

EXISTENCE OF MODULI FOR BI-LIPSCHITZ EQUIVALENCE 227

https://doi.org/10.1023/A:1022726806349 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022726806349


For instance, the Newton polygon of f ðx; yÞ ¼ x2 � y3 þ y4, relative to

l : x ¼ y3=2, is the following

The exponents of the development f ðlð yÞ; yÞ ¼ Fð0;YÞ correspond to the Newton

dots on the line X ¼ 0. In particular, ord f ðlð yÞ; yÞ ¼ h0, where ð0; h0Þ the lowest

Newton dot on X ¼ 0. Thus the arc l is a root of f iff there is no Newton dots on
X ¼ 0.

Suppose that l is not a root of f. Let ð0; h0Þ; ðm; hmÞ be the vertices of the highest
Newton edge E as illustrated below.

Then x ¼ xðlÞ : ðh0 � hmÞ=m will be called the Newton exponent associated to l. It
satisfies x5 1 as follows from the assumptions on l and f. Any arc ~l such that
~lð yÞ � lð yÞ ¼ oð yxÞ; has the same associated Newton polygon with exactly the same
Newton coefficients cij of (5.1) corresponding to the dots ði; j=NÞ on the polygon. If
~lð yÞ � lð yÞ ¼ Oð yxÞ, then the coefficients corresponding to the dots on the last edge
E may change. This may be calculated as follows. Collect the terms of f ðXþ lðYÞ;YÞ
corresponding to E:

FEðX;YÞ :¼
X

cijX
iY j=N; ði; j=NÞ 2 E:

FE is weighted homogeneous of weights ðx; 1Þ. Consider the associated polynomial of
one complex variable PEðzÞ :¼ FEðz; 1Þ: PE is of degree m. Note also that PEð0Þ gives
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the leading coefficient of f ðlð yÞ; yÞ ¼ PEð0Þy
h0 þ � � � : Suppose now that

~lð yÞ ¼ lð yÞ þ ayx þ � � � : Then the corresponding polynomial for ~l equals PEðzþ aÞ.

The Newton diagram of @f=@x is obtained from the Newton diagram of f by a shift

by one unit to the left. All Newton dots of f on X ¼ 0 disappear.

Let x ¼ gð yÞ be a polar arc. Then g is an analytic arc in the sense described above
and we may consider the Newton polygon associated to g. Note that an arc is a polar
arc iff there is no Newton dot on the line X ¼ 1 on the Newton diagram of f relative

to this arc. In particular, the corresponding polynomial PE satisfies P
0
Eð0Þ ¼ 0. Hence

we have the following.

PROPOSITION 5.1. Let lð yÞ be an analytic arc and let x be the associated exponent.
All polar arcs included in the cusp fjx� lð yÞj4MjyxÞjg are of the form x ¼ gð yÞ ¼
lð yÞ þ cyx þ oð yxÞ; where c is a root of P0

E. The function f along such polar arc equals

f ðgð yÞ; yÞ ¼ PEðcÞy
h0 þ oð yh0 Þ:

Conversely, for any root c of P0
E there is a polar arc g of the form gð yÞ ¼ lð yÞþ

cyx þ � � � : This can be proven using Newton’s algorithm, see [2] for details.

Fix a polar arc g. Denote x ¼ xðgÞ and similarly h0 ¼ h0ðgÞ. The exponent h0 is
finite provided g is not a (multiple) root of f what we assume.

LEMMA 5.2. xðgÞ > 1 if and only if g is tangential.
Proof. Recall that g is tangential if and only if it is tangent to C0ðXÞ which is

equivalent to h0ðgÞ > k. This is equivalent to the slope x of the last edge being greater
than 1. &

We consider the following family of (cuspidal) neighborhoods of g: if x > 1

Uðg; ZÞ ¼ fðx; yÞjjx� gð yÞj < jyjxþZg;

where Z > 0, and for x ¼ 1,

U1ðg; aÞ ¼ fðx; yÞjjx� gð yÞj < ajyjg;

where a > 0. For an e > 0 denote Ue ¼ fj@f=@xj < ej@f=@yjg:

THEOREM 5.3. There are constants Z;C > 0 and a positive integer s such that for

sufficiently small e > 0 Ue �
S
Uðg; ZÞ [

S
U1ðg;Ce1=sÞ where the first union is taken

over all tangential polar arcs and the second one over the non-tangential ones.

In particular the asymptotic behavior of f on Ue is given by

f ðx; yÞ ¼ PEðgÞð0Þy
h0ðgÞ þ oð yh0ðgÞÞ;

on Uðg; ZÞ for g tangential;

j f ðx; yÞ � PEðgÞð0Þy
kj4C0e1þ1=sjyjk

on U1ðg;Ce1=sÞ for g nontangential.
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Remark 5:4: In [4] T. Mostowski considered the families of generic absolute polar

curves on complex analytic surface germs. In this case a phenomenon similar to the

considered above happens. That is the homogeneous part of the surface, i.e. the

tangent cone at the origin, gives rise to the families of polar curves with moving

tangent at the origin when the projection (defining the polar curve) varies. On the

other hand, the singular locus of the tangent cone gives rise to the families of polar

curves with the tangent line fixed. The latter families appear in the construction of

the Lipschitz stratification to the surface, see [4]. The technique of [4] can be certainly

used to show Theorem 5.3 for ‘generic’ polar curves. In this paper we want to work

with a more precise notion of ‘genericity’. That is the only assumption on our system

of coordinates we make is that the x-axis is not tangent to f ¼ 0 at the origin. We find

the Newton polygon method particularly useful to handle this case.

Proof of Theorem 5:3: Let x ¼ lð yÞ be an analytic arc and consider the Newton
diagram relative to l.
First we consider the following special but important case. We suppose that l is

not a root of f, that the highest Newton edge E of f is at least of length 2, i.e.

m5 2, and that x ¼ xðlÞ > 1. We suppose as well that ord 0lð yÞ > 1. Recall that

@f=@xðlð yÞ; yÞ ¼ P0
Eð0Þy

h0�x þ � � � ð5:2Þ

Differentiating the identity

f ðlð yÞ; yÞ ¼ PEð0Þy
h0 þ oð yh0Þ; ð5:3Þ

PEð0Þ 6¼ 0, we obtain

PEð0Þh0y
h0�1 þ oð yh0�1Þ

¼ l0ð yÞ@f=@xþ @f=@y ¼ l0ð yÞðP0
Eð0Þy

h0�x þ oð yh0�xÞÞ þ @f=@y: ð5:4Þ

This allows us to compute @f=@y along l. If x ¼ lð yÞ is included in Ue then @f=@y

dominates l0ð yÞ@f=@x and hence @f=@y � yh0�1. This means that P0
Eð0Þ ¼ 0 otherwise

@f=@x � P0
Eð0Þy

h0�x � @f=@y. Hence, there is a polar arc g such that the order of con-
tact of l and g is bigger than x. Moreover, x ¼ xðgÞ.
We have a similar picture if we allow ord 0lð yÞ ¼ 1 that is lð yÞ ¼ b0yþ � � � ; b0 6¼ 0.

If P0
Eð0Þ 6¼ 0 then, by (5.4),

b0@f=@xðlð yÞ; yÞ ’ �@f=@yðlð yÞ; yÞ � yh0�x:

Thus the above cannot happen if l is included in Ue for e < jb0j
�1.

If m ¼ 1 or l is a root of f then we may use the straighten Newton polygon of f, see
[2]. It is defined as follows
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Let x, resp. PE, denote the associated exponent, resp. the highest edge polynomial,
of the straighten polygon. Then there is a Newton dot ð1; h1Þ on PE, otherwise l were
multiple root of f which, as we have assumed, cannot happen. This means that

P0
Eð0Þ 6¼ 0. Then the same argument as above shows that l is not in Ue for

e < jb0j
�1, or not in any Ue if b0 ¼ 0.

Finally we consider the case xðlÞ ¼ 1. Then h0 ¼ k and this is the homogeneous

partHk of fwhich is in the play. Then lð yÞ ¼ b0yþ oð yÞ; b0 2 C; that is the associated

polynomial equals

PEðzÞ ¼ Hkðzþ b0; 1Þ: ð5:5Þ

By the assumption x ¼ 1 we have that PE cannot have a multiple root at 0. By (5.4)

we may write

@f=@yðlð yÞ; yÞ ¼ ðkPEð0Þ � b0P
0
Eð0ÞÞy

k�1 þ oð yk�1Þ:

Recall that @f=@xðlð yÞ; yÞ ¼ P0
Eð0Þy

k�1 þ oð yk�1Þ. Thus, if l is contained Ue then

jP0
Eð0Þj4ejkPEð0Þ � b0P

0
Eð0Þj ð5:6Þ

or equivalently in terms of PðzÞ ¼ Hkðz; 1Þ

jP0ðb0Þj4ejkPðb0Þ � b0P
0ðb0Þj ð5:7Þ

Since P is of degree k, the left hand side of (5.7) is of magnitude bk�10 for b0 large and

the right hand side is bounded by Cbk�10 . Hence (5.7) is impossible for e > 0 small
and jb0j large. Consequently, we may assume that jb0j is bounded. (5.7) implies also

ð1� jb0jeÞjP0ðb0Þj4ejkPðb0Þj that gives, for e > 0 sufficiently small,

jP0ðb0Þj4 2ekjPðb0Þj: ð5:8Þ

Note that P and P0 cannot both vanish at b0, otherwise 0 would be a multiple root of

PE. Thus we may suppose that b0 is close to a root of P
0, say z0, that is to say that b0

is in a neighborhood of z0 on which P
0ðzÞ � ðz� z0Þ

s; s5 1; and hence (5.8) gives

jb0 � z0j4 1=2Ce1=s for a constant C sufficiently large. By Newton algorithm there

is a polar arc g such that gð yÞ ¼ z0yþ � � � that is l 2 U1ðg;Ce1=sÞ.
Note that we checked the statement of the first part of the theorem on any arc l.

Thus this part follows by the curve selection lemma and the Lojasiewicz Inequality

(the existence of exponent Z). Similarly follows the second part since it holds on any
analytic arc. &

EXISTENCE OF MODULI FOR BI-LIPSCHITZ EQUIVALENCE 231

https://doi.org/10.1023/A:1022726806349 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022726806349


Fix e > 0 small satisfying the statement of Theorem 5.3. For each line

l � SingðC0ðXÞÞ define UeðlÞ ¼
S

g2Gðl ÞUe \Uðg; ZÞ: Then Ue is a disjoint union of

such Ueðl Þ and a part whose tangent cone is away of C0ðXÞ.

COROLLARY 5.5. Let g be a tangential polar arc. There is d > 0 such that for each

p 2 Uðg; ZÞ there is p0 2 g such that f ð pÞ ¼ f ð p0Þ and

j p� p0j4 j pj1þd: ð5:9Þ

Proof. Let p ¼ ðx0; y0Þ, jx0 � gð y0Þj < jy0j
xþZ. Then by Theorem 5.3 there is an

exponent a > 0 such that

j f ðx0; y0Þ � f ðgð y0Þ; y0Þj ¼ oð y
h0ðgÞþa
0 Þ;

f ðgð y0Þ; y0Þ ¼ c0ðgÞy
h0ðgÞ
0 þ oð y

h0ðgÞþa
0 Þ:

Therefore for jy� y0j4 jy0j
aþ1

f ðx0; y0Þ � f ðgð yÞ; yÞ ¼ Cð y� y0Þy
h0ðgÞ�1
0 þ oð y

h0ðgÞþa
0 Þ:

By Rouché’s theorem, there is y0, jy0 � y0j4 jy0j
aþ1 such that f ðgð y0Þ; y0Þ ¼ f ðx0; y0Þ:

Set p0 ¼ ðx0; y0Þ ¼ ðgð y0Þ; y0Þ. Then jx0 � x0j4C0ðjy0j
xþZ þ jy0j

aþ1Þ and we may take

0 < d < minfxþ Z� 1; ag. &

LEMMA 5.6. Given e; d > 0 and the constants K;M;A of the definition Yd. We

suppose that A and K are sufficiently large ðthat is A5AðeÞ, K5KðeÞ where AðeÞ;KðeÞ
depend only on eÞ. Then there exists a constant C, depending on K;M; e, such that for
every p0 2 Yd there is p 2 Ue such that f ð pÞ ¼ f ð p0Þ and j p� p0j < Cj p0j

dþ1.

Proof. Suppose this is not the case; that is any point p satisfying f ð pÞ ¼ f ð p0Þ and

j p� p0j < Cj p0j
dþ1 is not in Ue, the constant C to be specified later.

Denote Xc ¼ f�1ðcÞ, where c ¼ f ð p0Þ, and consider the projection pc : Xc!C onto

the y-axis. At p0 and at any point of Xc which is not in Ue, pc is submersive and Xc is

the graph of a function x ¼ xð yÞ with bounded derivative (by a constantD depending

only on e). Denote, as before, by Xð p0; rÞ the intersection of Xc with the ball Bð p0; rÞ
and consider VN ¼ fyjjy� y0j < Njy0j

dþ1g. There is a constant N ¼ NðC; eÞ such that
p�1c ðVNÞ \ Xð p0;Cj p0j

dþ1Þ is the union of graphs of analytic functions defined on VN

and with derivative bounded by D and such that and pc restricted to p�1c ðVNÞ\

Xð p0;Cj p0j
dþ1Þ is a finite covering over VN. We denote this restriction by p0c.

If C0 ¼ C0ðe;M; dÞ is sufficiently large then for N0 ¼ NðC0; eÞ, Xð p0;Mj p0j
1þdjÞ �

p0c
�1
ðVN0 Þ and if K was sufficiently large then p0c

�1
ðVN0 Þ � Xð p0;KMj p0j

1þdjÞ: Finally

we choose C such that for N ¼ NðC; eÞ

Xð p0;Mj p0j
1þdjÞ � p0c

�1
ðVN0 Þ � Xð p0;KMj p0j

1þdjÞ � p0c
�1
ðVNÞ:
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This allows us to show that if p 2 Xð p0;Mj p0j
1þdjÞ is in the connected component of

Xð p0;KMj p0j
1þdjÞ containing p0 then it is in the same connected component of

p0�1c ðVN0 Þ as p0. Thus to conclude we note that on this connected component the dis-

tance along Xc is comparable to the euclidean one (again by a constant depending

on e). This is not possible if A were chosen sufficiently big. This ends the proof

of lemma. &

LEMMA 5.7. Let x ¼ gð yÞ be a tangential polar arc. Then for any d > 0 sufficiently

small and any set of constants K5 1;C > 0;A > 0, g is contained in Yd.

Proof. Let x ¼ xðgÞ and let PE be the polynomial of one complex variable z
associated to the last edge E of the Newton polygon relative to g. Fix any
0 < d < x� 1, a constant N > 0, and another constant e0 > 0. We require e0 to be
small so that PEðzÞ � PEð0Þ has no other roots in jzj4 3e0 but z ¼ 0.
Let p0 ¼ ðx0; y0Þ; x0 ¼ gð y0Þ. We suppose p0 sufficiently close to the origin, how

close we shall determine later. Let Xc ¼ f�1ðcÞ where c ¼ f ð p0Þ. Let X
0 denote the

connected component of ~X ¼ fðx; yÞ 2 Xcjjy� y0j4Njy0j
1þdg that contains p0. We

show that X 0 � fjx� gð yÞj4e0jyjxg.
For this we consider a continuous function s : X0!C given by sðx; yÞ ¼

ðx� gð yÞÞ=yx. Let p ¼ ðx; yÞ 2 X 0 be such that fjx� gð yÞj4 2e0jyjxg and write

x ¼ gð yÞ þ syx; jsj4 2e0: Then

f ðx; yÞ ¼ PEðsÞy
h0 þ oð yh0 Þ; ð5:10Þ

h0 ¼ h0ðgÞ. On the other hand,

f ðx; yÞ ¼ f ðx0; y0Þ ¼ PEð0Þy
h0
0 þ oð yh00 Þ ¼ PEð0Þy

h0 þ oð yh0 Þ:

Hence

PEðsÞ � PEð0Þ ¼ oð1Þ ð5:11Þ

that is to say, it can be arbitrarily small if we have chosen y0 sufficiently close to 0.

Thus, s is close to a root of PE � PEð0Þ. But, by assumption on e0, this root has to be
0. Thus, we have shown that if jsj4 2e0 then it is as close to 0 as we wish (if p0 is close
to the origin) that is, for instance, jsj4e0. Thus a continuous function s defined on
connected X0 does not take values in e0 < jsj4 2e0. This shows X 0 �

fjx� gð yÞj4e0jyjxg.
Consider

p0c : X
0!VN ¼ fyjjy� y0j < Njy0j

1þdg:

p0c is a finite covering branched at the points of polar arcs of the form

x ¼ gð yÞ þ oð yxÞ. Since p0 is a branching point this covering is at least of degree 2.
Fix y1 such that jy1 � y0j ¼ ðN=2Þjy0j

1þd and p1 ¼ ðx1; y1Þ; p2 ¼ ðx2; y1Þ two distinct

points in ðp0cÞ
�1
ð y1Þ. Then
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distð p1; p2Þ ¼ jx1 � x2j4 2jy1j
x 4 3jy0j

x:

On the other hand the projection by pc of any curve joining p1 and p2 in Xc is at least

of length Njy0j
dþ1 that is much longer than jy0j

x. This shows the lemma. &

LEMMA 5.8. For any d > 0 and A;K sufficiently large the tangent cone to Yd equals

the singular part of C0ðXÞ.

Proof. Fix d > 0 and write YdðA;K Þ to emphasize the dependence of Yd on A and

K. By Lemma 5.6 the tangent cone to Yd is contained in the tangent cone to Ue. In

particular, by Theorem 5.3, the x-axis, and its conical neighborhood, is not tangent

to Yd. Note that here we just use the fact that the x-axis is not in C0ðXÞ, that is f is

mini-regular in x. Of course the same argument works for any line l which is not in

C0ðXÞ, that is for any l there is Aðl Þ and a conical neighborhood of l which is not

tangent to YdðA;K Þ for A;K sufficiently large. This does not suffice to conclude since

the size of A and K may depend on l and the complement of the projectivized cone

PC0ðXÞ in P1 is not compact.

But, again by Theorem 5.3, it suffices to show that U1ðg;Ce1=sÞ, for each nontan-
gential polar arc g, is not tangent to Yd. And for e small enough the projectivised tan-
gent cone to U1ðg;Ce1=sÞ, that is closed, is away of PC0ðXÞ. Thus by the above
argument Yd is tangent to the union of Uðg; ZÞ over tangential polar arcs g. And
the tangent cone to this union is the singular part of C0ðXÞ. &

Proof of Proposition 4:5: Fix e given by Theorem 5.3. Choose d > 0 satisfying

Corollary 5.5 and Lemma 5.7, any constant C > 0, and A, K sufficiently large so that

the statements of Lemmas 5.6, 5.7, and 5.8 hold.

The first part (i) of Proposition 4.5 follows directly from Lemma 5.7. For the sec-

ond part we use Ue as an intermediary set. Firstly, a point p satisfying the statement

of the proposition exists in Ue by Lemma 5.6. Divide Ue as in Theorem 5.3. Then, the

point p in Ue close to Yd cannot be in U1ðg;Ce1=sÞ for g non-tangential by Lemma 5.8.
Hence, it is in p 2 Uðg; ZÞ, for g tangential. Finally, we may find such a p in ~G by
Corollary 5.5. This ends the proof. &
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