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Abstract

A new class of functions with a unique identification minor is introduced: functions determined by content
and singletons. Relationships between this class and other known classes of functions with a unique
identification minor are investigated. Some properties of functions determined by content and singletons
are established, especially concerning invariance groups and similarity.
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1. Introduction

This paper reports recent developments in the theory of functions of several arguments,
especially in the topic of minors of functions. A function f : An → B is said to be
a minor of g : Am → B if f can be obtained from g by introduction or deletion of
inessential arguments, identification of arguments, and permutation of arguments. The
formation of minors is a way of deriving new functions from given ones that has
great significance in universal algebra. Examples of work on minors of functions
include the papers of Couceiro and Foldes [4], Couceiro, Schölzel, and the current
author [5], Ekin, Foldes, Hammer, and Hellerstein [8], Pippenger [18], Willard [19],
and Zverovich [20].

An important special case of minors are the so-called identification minors. The
identification minors of a function f : An → B are the (n − 1)-ary functions that are
obtained from f by identifying a single pair of arguments. A function is said to have a
unique identification minor if all its identification minors are equal to each other, up to
permutation of arguments. This is an intriguing property of functions that is not quite
well understood, and this paper concerns the following open problem.

Problem 1.1. Characterize the functions with a unique identification minor.
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This problem was previously posed, although using a somewhat different
formalism, in the 2010 paper by Bouaziz, Couceiro, and Pouzet [3, Problem 2(ii)].
It is well known that the 2-set-transitive functions have a unique identification minor
(for a proof of this fact, see [13, Proposition 4.3]; this fact is also implicit in the work
of Bouaziz et al. [3]). It was recently shown by the current author that the functions
determined by the order of first occurrence also have this property [15, Corollary 5].

In this paper we describe a previously unknown class of functions that have a
unique identification minor: functions determined by content and singletons. These
are functions f : An → B whose value at a ∈ An depends only on the content of a and
the order in which the singletons of a appear. The content of a tuple a is the multiset
of elements occurring in a, and an element a ∈ A is called a singleton of a if it occurs
exactly once in a.

We investigate the relationships between the known classes of functions with a
unique identification minor, and we study some invariance properties of functions
determined by content and singletons. However, a definitive answer to Problem 1.1
eludes us; it is not known to us whether there exist further examples of functions with
a unique identification minor.

This paper is organized as follows. In Section 2 we introduce the necessary
terminology and notation. In Section 3 we define functions determined by content and
singletons and we show that they have a unique identification minor. We verify that
this class does indeed provide new examples of functions with a unique identification
minor; it is not included in the previously known classes. In Section 4 we explain
how functions determined by content and singletons arise as functions with a unique
identification minor satisfying a simple additional condition. We do the same for
functions determined by the order of first occurrence. In Section 5 we study invariance
groups of functions determined by content and singletons. In Section 6 we find distinct
functions determined by content and singletons that can be obtained from each other
by permutation of arguments. Finally, in Section 7, we make some concluding remarks
and indicate a few open problems.

2. Preliminaries

2.1. General notation. The set of nonnegative integers is denoted by N, and N+ :=
N \ {0}. For n ∈ N+, the set {1, . . . , n} is denoted by [n]. The power set of a set A is
denoted by P(A). The set of all two-element subsets of [n] is denoted by

(
n
2

)
. The

symmetric group on [n] is denoted by Sn, and its members are sometimes called n-
permutations.

As usual, we denote by An the set of all n-tuples over a set A, and we let
A∗ :=

⋃
n≥0 An. We will refer to the elements of A∗ interchangeably as tuples or strings,

and we will often make use of the monoid structure of A∗ and concatenate strings. The
empty string is denoted by ε. We denote tuples (or strings) with bold letters and their
components with corresponding italic letters, such as a = (a1, . . . , an) = a1 . . . an. The
length of a string a is denoted by |a|. We say that an element a ∈ A occurs in a string
a = (a1, . . . , an) ∈ An if ai = a for some i ∈ [n].
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We denote by An
, the set of all n-tuples on A with no repeated entries, that is,

An
, = {(a1, . . . , an) ∈ An | ai = a j =⇒ i = j}. Note that An

, = ∅ whenever n > |A|. Let
A] :=

⋃
n≥0 An

,, that is, A] is the set of all strings over A with no repeated symbols.
Furthermore, let An

= := An \ An
,.

Let a = (a1, . . . , an) ∈ An and let τ : [m]→ [n]. Since the n-tuple a is formally a map
[n]→ A, we may compose it with τ, and the resulting composite map a ◦ τ : [m]→ A
is the m-tuple (aτ(1), . . . , aτ(m)). In order to simplify notation, we will abbreviate a ◦ τ
as aτ. The map τ induces a map τ : An → Am by the rule τ(a) = aτ for all a ∈ An.

2.2. Functions and minors. Let A and B be arbitrary nonempty sets. A function
(of several arguments) from A to B is a mapping f : An → B for some positive integer
n called the arity of f . The set of all functions of several arguments from A to B
is denoted by FAB. For any set C ⊆ FAB, the n-ary part of C is the set of the n-ary
members of C and it is denoted by C(n). We also define C(≥k) :=

⋃
n≥k C

(n).
Let f : An→ B and g : Am→ B. We say that f is a minor of g, and we write f ≤ g, if

there exists a map τ : [m]→ [n] such that f = g ◦ τ, that is, f (a) = g(aτ) for all a ∈ An.
We say that f and g are equivalent, and we write f ≡ g, if f ≤ g and g ≤ f . The
minor relation ≤ is a quasiorder and ≡ is an equivalence relation on FAB. The induced
partial order on FAB/≡ will also be denoted by ≤. We will often consider the following
refinement of equivalence: we say that f and g are similar, and we write f ' g, if f
and g have the same arity (n = m) and f ≡ g. It is easy to verify that f ' g if and only
if n = m and there exists a bijection τ : [n]→ [n] such that f = g ◦ τ.

Of particular importance are the minors obtained by identifying a single pair of
arguments. Assume that n ≥ 2, and let f : An→ B. For each I ∈

(
n
2

)
, define the function

fI : An−1 → B as fI = f ◦ δI , where δI : [n]→ [n − 1] is given by the rule

δI(i) =


i if i < max I,
min I if i = max I,
i − 1 if i > max I.

More explicitly, if I = {i, j} with i < j, then

fI(a1, . . . , an−1) = f (a1, . . . a j−1, ai, a j, . . . , an−1).

Note that ai appears twice on the right-hand side of the above equality: both at the ith
and at the jth positions. The functions fI (I ∈

(
n
2

)
) are referred to as the identification

minors of f .

2.3. Invariance groups. A function f : An → B is invariant under a permutation
σ ∈ Sn if f = f ◦ σ. The set of all permutations under which f is invariant constitutes
a permutation group, and it is called the invariance group of f and denoted by Inv f .
A function is totally symmetric, if its invariance group is the full symmetric group
Sn. A function is 2-set-transitive, if its invariance group is 2-set-transitive. Recall
that a permutation group G ≤ Sn is 2-set-transitive, if it acts transitively on the two-
element subsets of [n], that is, for all I, J ∈

(
n
2

)
, there exists σ ∈ G such that σ(I) = J.
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Note that the full symmetric group Sn is 2-set-transitive; hence totally symmetric
functions are 2-set-transitive. The invariance groups of functions have received much
attention from researchers; see, for example, the papers by Grech and Kisielewicz [9],
Horváth, Makay, Pöschel, and Waldhauser [10], and Kisielewicz [11].

The notion of invariance extends immediately to partial functions. We say that
a partial function f : S → B, S ⊆ An, is invariant under σ ∈ Sn if, for every a ∈ S ,
we have that aσ ∈ S and f (a) = f (aσ). In this paper we will often consider partial
functions whose domain is An

= (or, of course, An), but other domains are also possible.

2.4. Functions determined by φ. We will classify functions by their decomposa-
bility through certain mappings. Let φ : A∗→ X for some set X. We say that a function
f : An → B is determined by φ if there exists a map f ∗ : X→ B such that f = f ∗ ◦ φ|An .
This definition extends immediately to partial functions: a partial function f : S → B,
S ⊆ An, is determined by φ if f = f ∗ ◦ φ|S for some f ∗ : X → B.

In this paper the mapping φ used in the expression ‘determined by φ’ will be one
of the following four maps: supp, ofo, ms, cs. The names of these mappings are
abbreviations for ‘support’, ‘order of first occurrence’, ‘multiset’, and ‘content and
singletons’, respectively. The first two mappings are defined below, and the last two
will be defined in Section 3.

Following the definition given by Berman and Kisielewicz [1], the mapping
supp : A∗ → P(A) sends every tuple to the set of its entries (its support), that is,
supp(a1, . . . , an) = {a1, . . . , an}.

As defined in [15], the map ofo : A∗ → A] is given by the following rule: ofo
maps each tuple a to the tuple obtained from a by deleting all repeated occurrences
of symbols, retaining only the first occurrence of each symbol; in other words, ofo(a)
lists the symbols occurring in a in order of first occurrence (hence the acronym ofo).
We also say that a function determined by ofo is determined by the order of first
occurrence. The mapping ofo has the following simple but very fundamental property:
ofo(a) = ofo(aδI) for every a ∈ An−1 and for every I ∈

(
n
2

)
.

2.5. Multisets. A multiset over a set A is an ordered pair M = (A, χM), where
χM : A→ N is a map called a multiplicity function. The value χM(a) is referred
to as the multiplicity of a in M. The support set of a multiset M, denoted by
set(M), is the set of those elements that have nonzero multiplicity in M, that is,
set(M) := {a ∈ A | χM(a) > 0}. A multiset is finite if its support set is finite. If M is
finite, then the sum

∑
a∈A χM(a) is a well-defined integer that is denoted by |M| and

called the cardinality of M. The set of all finite multisets over A is denoted byM(A).
In this paper, we will consider only finite multisets and we will refer to them simply
as multisets.

We may describe a finite multiset as a list enclosed in angle brackets in which
the number of occurrences of each element equals its multiplicity (the order does not
matter). For example, 〈1, 1, 1, 2, 3, 3〉 is the multiset (A, χM) satisfying χM(1) = 3,
χM(2) = 1, χM(3) = 2, and χM(a) = 0 for all a ∈ A \ {1, 2, 3}. We will use the shorthand
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am for m occurrences of a. Thus, we can describe the above multiset equivalently as
〈13, 2, 32〉.

The join of multisets M1 and M2 over A is the multiset M1 ·∪M2 given by the
multiplicity function χM1 ·∪M2 (a) = χM1 (a) + χM2 (a) for all a ∈ A.

3. Functions determined by content and singletons

A function f : An → B is said to have a unique identification minor, if fI ' fJ for
all I, J ∈

(
n
2

)
. This condition is equivalent to the following: there exist a function

h : An−1 → B and a family ( ρI)I∈(n
2) of permutations ρI ∈ S n−1 such that fI = h ◦ ρI for

all I ∈
(

n
2

)
. Note that if f ' g and f has a unique identification minor, then g also has a

unique identification minor.
As mentioned in the introduction, it is known that the 2-set-transitive functions and

the functions determined by the order of first occurrence have a unique identification
minor (see [3], [13, Proposition 4.3], [15, Corollary 5]). In this section, we will
describe another class of functions with a unique identification minor that was not,
to the best of the author’s knowledge, previously known.

Let a = (a1, . . . , an) ∈ An. We refer to the multiset 〈a1, . . . , an〉 of entries of a as the
content of a. Let ms: A∗ →M(A) be the map (a1, . . . , an) 7→ 〈a1, . . . , an〉. An element
a ∈ A is called a singleton of a, if a occurs exactly once in a. Define the mapping
sng: A∗ → A] by the following rule: sng(a) is the tuple that lists the singletons of a in
the order of their occurrence in a.

Remark 3.1. A function is determined by ms if and only if it is totally symmetric.

Let

Z(A) := {(M, a) ∈ M(A) × A] | ∀a ∈ A (a occurs in a ⇐⇒ χM(a) = 1)},

and for each n, ` ∈ N, let

Z(n)(A) := {(M, a) ∈ Z(A) | |M| = n},

Z
(n)
`

(A) := {(M, a) ∈ Z(A) | |M| = n and |a| = `}.

Note that if |A| = k, thenZ(n)
`

(A) , ∅ if and only if ` ∈ Z(k, n), where

Z(k, n) :=

{0, 1, . . . , k − 1} if k < n,
{0, 1, . . . , n} \ {n − 1} if k ≥ n.

Define the mapping cs: A∗→Z(A) by the rule cs(a) := (ms(a), sng(a)). (The name
of the function cs is an acronym for ‘content and singletons’.) Note that cs is surjective
ontoZ(A), and the range of the restriction cs|An isZ(n)(A). We also say that a function
determined by cs is determined by content and singletons.
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Example 3.2. In order to illustrate the mappings ms, sng and cs, let A be the set of
lower-case letters of the English alphabet. Below are shown the images under cs of
some strings over A:

cs(mathematician) = (〈a3, c, e, h, i2,m2, n, t2〉, hecn);

cs(circumlocution) = (〈c3, i2, l,m, o2, n, r, t, u2〉, rmltn);
cs(ambidextrously) = (〈a, b, d, e, i, l,m, o, r, s, t, u, x, y〉, ambidextrously);

cs(unprosperousness) = (〈e2, n2, o2, p2, r2, s4, u2〉, ε).

In what follows, we will use the mappings csn−1
i : An−1 → Z(A), for n ≥ 2 and

i ∈ [n − 1], defined by the rule

csn−1
i (a1, . . . , an−1) := (ms(a1, . . . , an−1) ·∪〈ai〉, sng(a1, . . . , ai−1, ai+1, . . . , an−1)),

for all (a1, . . . , an−1) ∈ An−1.

Lemma 3.3. Let f : An → B, f = f ∗ : cs|An for some f ∗ : Z(A)→ B. Then for every
I = {i, j} ∈

(
n
2

)
with i < j, we have that fI = f ∗ ◦ csn−1

i .

Proof. Straightforward calculations show that

fI(a) = f (aδI) = f ∗ ◦ cs(aδI) = f ∗ ◦ (ms(aδI), sng(aδI))
= f ∗ ◦ (ms(a) ·∪〈ai〉, sng(a1, . . . , ai−1, ai+1, . . . , an−1))

= f ∗ ◦ csn−1
i (a),

for all a = (a1, . . . , an−1) ∈ An−1. �

Lemma 3.4. Any function determined by cs has a unique identification minor.

Proof. Assume that f = f ∗ ◦ cs|An for some f ∗ : Z(A)→ B. Let I = {i, j} ∈
(

n
2

)
with

i < j, and let K := {n − 1, n}. Let ξi ∈ S n−1 be the cycle (i i + 1 · · · n − 1). Clearly, for
every a = (a1, . . . , ai−1) ∈ An−1,

csn−1
i (a1, . . . , an−1) = csn−1

n−1(a1, . . . , ai−1, ai+1, . . . , an−1, ai),

that is, csn−1
i (a) = csn−1

n−1(aξi). Consequently, by Lemma 3.3, for all a ∈ An−1,

fI(a) = f ∗ ◦ csn−1
i (a) = f ∗ ◦ csn−1

n−1(aξi) = fK(aξi).

This means that fI ' fK . Since the choice of I ∈
(

n
2

)
was arbitrary, the symmetry and

transitivity of ' imply that fI ' fJ for all I, J ∈
(

n
2

)
. �

Before proceeding any further, let us verify that we have actually discovered
something new. Does the class of functions determined by cs provide examples of
functions that are not already subsumed by the previously known classes of functions
with a unique identification minor (namely, 2-set-transitive functions and functions
determined by ofo)? This question is answered in the following two lemmas.
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Lemma 3.5. Assume that |A| = 2 and f : An → B is determined by cs. Then n ≤ 2 or f
is totally symmetric.

Proof. Assume that A = {0, 1}, n ≥ 3, and f = f ∗ ◦ cs|An for some f ∗ : Z(n)(A)→ B. It
is easy to see that the rangeZ(n)(A) of cs|An equals

{(〈0n〉, ε), (〈1n〉, ε), (〈0n−1, 1〉, 1), (〈0, 1n−1〉, 0)} ∪ {(〈0`, 1n−`〉, ε) | 2 ≤ ` ≤ n − 2}.

It is clear that if M ∈ M(A) and u, v ∈ A] are such that (M, u), (M, v) ∈ Z(n)(A),
then u = v. Therefore each couple (M, u) ∈ Z(n)(A) is uniquely specified by its first
component M alone, while the second component u is irrelevant. Therefore, f (a)
depends only on ms(a), that is, f is determined by ms. By Remark 3.1, f is totally
symmetric. �

The totally symmetric functions are 2-set-transitive, and it is obvious that all unary
and binary functions have a unique identification minor. Thus, functions determined
by cs did not really bring anything new when |A| = 2. The situation is completely
different when |A| ≥ 3.

Lemma 3.6. Assume that A and B are sets with |A| = k ≥ 3 and |B| ≥ 2. Then, for every
n ≥ k + 1, there exists a function f : An→ B that is determined by cs but it is not similar
to any function determined by ofo, nor is it 2-set-transitive.

Proof. Assume, without loss of generality, that A = {1, . . . , k} and 0, 1 ∈ B. Let
f ∗ : Z(n)(A)→ B be the function that maps the pair (〈1n−k+1, 2, 3, . . . , k〉, 23 . . . k) to
1 and everything else to 0. Define the function f : An → B as f = f ∗ ◦ cs|An . Then f
is determined by cs by definition. Note that f −1(1) comprises precisely those n-tuples
that have n − k + 1 occurrences of 1 and exactly one occurrence of every other element
of A and in which the entries distinct from 1 appear in increasing order.

Suppose, to the contrary, that f is similar to a function determined by ofo, that is,
f = f ′ ◦ ofo|An ◦ σ for some f ′ : A] → B and σ ∈ Sn. Let u = 1 . . . 123 . . . k, where the
element 1 is repeated n − k + 1 times. It is clear that there exists a tuple v ∈ An such
that v has at least two occurrences of 2 and ofo(uσ) = ofo(vσ) (take, for example,
the tuple (w2 . . . 2)σ−1, where w = ofo(uσ)). Since f = f ′ ◦ ofo|An ◦ σ, the equality
f (u) = f ′(ofo(uσ)) = f ′(ofo(vσ)) = f (v) holds. On the other hand, since cs(u) =

(〈1n−k+1, 2, 3, . . . , k〉, 23 . . . k) , cs(v), we have f (u) = f ∗(cs(u)) = 1 , 0 = f ∗(cs(v)) =

f (v). We have reached a contradiction.
We claim that the invariance group of f is trivial, and hence f is not 2-set-transitive.

Let σ ∈ Inv f . Suppose, to the contrary, that σ , id. Then there exist i, j ∈ [n] such
that i < j and σ( j) < σ(i). It is easy to see that f −1(1) contains a tuple u such that
uσ( j) = p and uσ(i) = q for some p and q distinct from 1. In fact, we have p < q. But
then the relative order of the entries p and q is reversed in uσ, so f (uσ) = 0 , 1 = f (u),
a contradiction. �

Proposition 3.7 [15, Proposition 7]. Assume that n > |A| + 1, and let f : An → B. Then
the following conditions are equivalent.
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(i) f is totally symmetric and determined by ofo.
(ii) f is 2-set-transitive and determined by ofo.
(iii) f is determined by ofo and, for all I, J ∈

(
n
2

)
, there exists a bijection

πIJ : [n − 1]→ [n − 1] such that πIJ(min J) = min I and f (aδI) = f (aπIJδJ) for
all a ∈ An−1.

(iv) f is determined by supp.

Proposition 3.8. Let f : An → B. Then f is similar to a function determined by ofo
and similar to a function determined by cs if and only if f |An

=
is determined by supp.

Proof. Assume first that f |An
=

is determined by supp, that is, there exists f † : P(A)→ B
such that f |An

=
= f † ◦ supp|An

=
. Let f ∗ : A] → B be any function satisfying

f ∗(b) =

 f †(supp(b)) if |b| < n,
f (b) if |b| = n,

b ∈ A].

(Note that |b| = |supp(b)| for every b ∈ A]. Note also that the second branch of the
defining condition of f ∗ is irrelevant if n > |A|.) Let a ∈ An. If a ∈ An

=, then |supp(a)| < n
and, since supp(ofo(a)) = supp(a),

f ∗(ofo(a)) = f †(supp(ofo(a))) = f †(supp(a)) = f (a).

If a ∈ An
,, then ofo(a) = a and we have f ∗(ofo(a)) = f (a) also in this case. Thus, f is

determined by ofo.
In order to show that f is also determined by cs, let f ′ : Z(n)(A)→ B be any function

satisfying

f ′(M,b) =

 f †(set(M)) if |b| < n,
f (b) if |b| = n.

Let a ∈ An. If a ∈ An
=, then |sng(a)| < n and

f ′(cs(a)) = f ′(ms(a), sng(a)) = f †(set(ms(a))) = f †(supp(a)) = f (a).

If a ∈ An
,, then sng(a) = a, so |sng(a)| = n and

f ′(cs(a)) = f ′(ms(a), a) = f (a).

We have shown that f is determined by both ofo and cs. Since f ' f , we arrive at the
desired conclusion.

Assume then that f is similar to a function determined by ofo and similar to
a function determined by cs. We may assume, without loss of generality, that
f = f ∗ ◦ ofo|An = f ′ ◦ cs|An ◦ π for some f ∗ : A] → B, f ′ : Z(n)(A)→ B, π ∈ Sn.

Since A1
= = ∅ and A2

= = {(a, a) | a ∈ A}, it is obvious that f |An
=

is determined by supp
when 1 ≤ n ≤ 2. Consider then the case when n = 3. Since f = f ∗ ◦ ofo|An , we have
that for all a, b ∈ A with a , b,

f (a, a, b) = f (a, b, a) = f (a, b, b) = f ∗(ab),
f (b, a, a) = f (b, a, b) = f (b, b, a) = f ∗(ba).
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Since f = f ′ ◦ cs|An ◦ π, we have that for all a, b ∈ A with a , b,

f (a, a, b) = f (a, b, a) = f (b, a, a) = f ′(〈a2, b〉, b),
f (b, b, a) = f (b, a, b) = f (a, b, b) = f ′(〈a, b2〉, a).

Consequently,

f (a, a, b) = f (a, b, a) = f (a, b, b) = f (b, a, a) = f (b, a, b) = f (b, b, a),

and we conclude that f |An
=

= f † ◦ supp|An
=
, where f † : P(A)→ B is any map satisfying

f †({a}) = f (a, a, a) and f †({a, b}) = f (a, a, b) for all a, b ∈ A with a , b.
Finally, assume that n ≥ 4. Let

U := {a ∈ An | |supp(a)| ≤ n − 2},
V := {a ∈ An | |supp(a)| = n − 1}.

We will show that both f |U and f |V are determined by supp, that is, there exist
maps f †, f ‡ : P(A)→ B such that f |U = f † ◦ supp|U and f |V = f ‡ ◦ supp|V . From
this it will follow that f |An

=
is determined by supp, because f |An

=
= f [ ◦ supp|An

=
, where

f [ : P(A)→ B is defined as

f [(S ) =

 f †(S ) if |S | ≤ n − 2,
f ‡(S ) otherwise.

We show first that f |U is determined by supp. Let α, β ∈ A, α , β, and let u ∈ An−4 be
a string with no occurrence of β. It is easy to see that cs(σ(ααuββ)) = cs(σ(βαuαβ)) =

cs(σ(αβuαβ)), for any permutation σ ∈ Sn. In particular, since f = f ′ ◦ cs|An ◦ π, this
implies that f (ααuββ) = f (βαuαβ) = f (αβuαβ). Note also that there exists a string v ∈
A] with no occurrence of α nor β such that ofo(ααuββ) = αvβ, ofo(βαuαβ) = βαv and
ofo(αβuαβ) = αβv. Since f = f ∗ ◦ ofo|An , we must have f ∗(αvβ) = f ∗(βαv) = f ∗(αβv).
Now αvβ, βαv, αβv ∈ Am

, for some m ≤ n − 2. Since the choice of α, β and u was
arbitrary, we conclude that f ∗|Am

,
is invariant under the permutations σ = (1 2 . . . m)

and τ = (1 2). Since {σ, τ} generates the full symmetric group Sm, this implies that
f ∗|Am

,
is totally symmetric whenever m ≤ n − 2, that is, f ∗(b) = f ∗(bρ) for any b ∈ Am

,

and any permutation ρ ∈ Sm. In other words, f ∗|Am
,
(b) depends only on supp(b).

Consequently, there exists a mapping f † : P(A)→ B that satisfies f †(supp(b)) = f ∗(b)
for every b ∈ A] with |b| ≤ n − 2. Since supp(a) = supp(ofo(a)),

f †(supp(a)) = f †(supp(ofo(a))) = f ∗(ofo(a)) = f (a)

for all a ∈ An with |supp(a)| ≤ n − 2, that is, f |U is determined by supp.
It remains to show that f |V is determined by supp. Let p,q, r, x, y, z ∈ [n] be elements

satisfying p < q < r, x < y < z and {π(p), π(q), π(r)} = {x, y, z}. Let a, b, c ∈ An be
tuples such that L := supp(a) = supp(b) = supp(c), |L| = n − 1, ai = bi whenever i , z,
b j = c j whenever j , y, and α := ax = az = bx = cx = cy and β := ay = by = bz = cz.
Clearly ofo(a) = ofo(b) = ofo(c). Since f = f ∗ ◦ ofo|An , we have f (a) = f (b) = f (c).

https://doi.org/10.1017/S1446788718000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000162


76 E. Lehtonen [10]

Table 1.

Case sng(π(a)) sng(π(b)) sng(π(c))

π(p) < π(q) < π(r) u1u2βu3u4 u1αu2u3u4 u1u2u3βu4
π(p) < π(r) < π(q) u1u2u3βu4 u1αu2u3u4 u1u2βu3u4
π(q) < π(p) < π(r) u1βu2u3u4 u1u2αu3u4 u1u2u3βu4
π(q) < π(r) < π(p) u1βu2u3u4 u1u2u3αu4 u1u2βu3u4
π(r) < π(p) < π(q) u1u2u3βu4 u1u2αu3u4 u1βu2u3u4
π(r) < π(q) < π(p) u1u2βu3u4 u1u2u3αu4 u1βu2u3u4

Consequently, since f = f ′ ◦ cs|An ◦ π, the mapping f ′ must take the same value at
points cs(π(a)), cs(π(b)) and cs(π(c)).

Since a and b differ only at the zth component, π(a) and π(b) differ only at the
π−1(z)th component, and π−1(z) ∈ {p,q, r}. Similarly, since b and c differ only at the yth
component, π(b) and π(c) differ only at the π−1(y)th component, and π−1(y) ∈ {p, q, r}.
Therefore, there exist strings u1,u2,u3,u4 ∈ A∗ such that |u1| = p − 1, |u2| = q − p − 1,
|u3| = r − q − 1, |u4| = n − r and

π(a) = u1aπ(p)u2aπ(q)u3aπ(r)u4,

π(b) = u1bπ(p)u2bπ(q)u3bπ(r)u4,

π(c) = u1cπ(p)u2cπ(q)u3cπ(r)u4.

Moreover,

{(aπ(p), bπ(p), cπ(p)), (aπ(q), bπ(q), cπ(q)), (aπ(r), bπ(r), cπ(r))} = {(α, α, α), (β, β, α), (α, α, β)},

αβu1u2u3u4 ∈ A], and supp(αβu1u2u3u4) = L. Let M := ms(u1u2u3u4). Then ms(a) =

ms(π(a)) = ms(c) = ms(π(c)) = 〈α, α, β〉 ·∪ M and ms(b) = ms(π(b)) = 〈α, β, β〉 ·∪ M.
Concerning sng(π(a)), sng(π(b)), and sng(π(c)), we have different possibilities,
depending on the relative order of π(p), π(q), and π(r), as shown in Table 1.

Let us now consider some specific values of p, q, r. If we choose p = 1, q = 2,
r = 3, then u1 = u2 = u3 = ε, so, regardless of the relative order of π(1), π(2), and π(3),
the equality f ′(cs(π(a))) = f ′(cs(π(b))) implies

f ′(〈α, α, β〉 ·∪M, βu4) = f ′(〈α, β, β〉 ·∪M, αu4). (3.1)

Now choose p = 1, q = n − 1, r = n. Then u1 = u3 = u4 = ε, and, depending on
the relative order of π(1), π(2), and π(3), the equalities f ′(cs(π(a))) = f ′(cs(π(b))) =

f ′(cs(π(c))) imply either

f ′(〈α, α, β〉 ·∪M,u2β) = f ′(〈α, β, β〉 ·∪M, αu2) (3.2)

or
f ′(〈α, α, β〉 ·∪M, βu2) = f ′(〈α, β, β〉 ·∪M,u2α). (3.3)

Since the choice of the tuples a, b, c was arbitrary, it follows from identities (3.1)–
(3.3) that the equalities

f ′(〈α, α, β〉 ·∪ms(v), βv) = f ′(〈α, β, β〉 ·∪ms(v), αv), (3.4)
f ′(〈α, α, β〉 ·∪ms(v), βv) = f ′(〈α, β, β〉 ·∪ms(v), vα) (3.5)

hold for any α, β ∈ A and any v ∈ An−3 satisfying αβv ∈ An−1
, .
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The sets An−1
, and cs(V) := {cs(a) | a ∈ V} are in one-to-one correspondence via the

map h : An−1
, → cs(V) given by

(a1, a2, . . . , an−1) 7→ cs(a1, a1, a2, . . . , an−1)
= (〈a1, a1, a2, . . . , an−1〉, a2a3 . . . an−1).

Equalities (3.4) and (3.5) thus express the fact that f ′(h(τ(a))) = f ′(h(a)) and
f ′(h(σ(a))) = f ′(h(a)) for all a ∈ V , where σ = (1 2 . . . n − 1), τ = (1 2). Since
{σ, τ} generates the full symmetric group S n−1, this implies that f ′ ◦ h : An−1

, → B is
totally symmetric. It is easy to see that if w,w′ ∈ V satisfy supp(w) = supp(w′), then
h−1(cs(w)) = π(h−1(cs(w))) for some π ∈ S n−1. Consequently,

f (w) = f ′(cs(w)) = f ′(h(h−1(cs(w)))) = f ′(h(π(h−1(cs(w′)))))
= f ′(h(h−1(cs(w′)))) = f ′(cs(w′)) = f (w′),

where the fourth equality holds by the total symmetry of f ′ ◦ h. This means that f |V (w)
only depends on supp(w), that is, f |V is determined by supp, as claimed. �

Proposition 3.9. Let f : An→ B. Then f is determined by cs and f |An
=

is 2-set-transitive
if and only if f |An

=
is totally symmetric.

Proof. Assume that f = f ∗ ◦ cs|An and f |An
=

is 2-set-transitive. Let M = (A, χM) be a
multiset over A with |M| = n and assume that M has an element b of multiplicity at
least 2. Let T = {a1, . . . , a`} be the set of elements whose multiplicity in M is equal to
1, and fix a string u ∈ An−`−2 such that ms(a1 . . . a`bbu) = M.

Let i ∈ [` − 1]. Since f |An
=

is 2-set-transitive, there exists a permutation σ ∈ Inv f |An
=

such that {σ(1), σ(2)} = {i, i + 2}. Consider first the case that σ(1) = i and σ(2) = i + 2.
Let v ∈ An−2 be the unique string satisfying (a1 . . . ai−1aiai+1bai+2 . . . a`bu)σ = aibv.
Then

f ∗(M, a1 . . . a`) = f (a1 . . . ai−1aiai+1bai+2 . . . a`bu) = f (aibv) = f (baiv)
= f (a1 . . . ai−1bai+1aiai+2 . . . a`bu) = f ∗(M, a1 . . . ai−1ai+1aiai+2 . . . a`).

In the above, the first and last equalities hold because f = f ∗ ◦ cs|An , the second and the
fourth equalities hold because σ ∈ Inv f |An

=
, and the third equality holds because f is

determined by cs and clearly cs(aibv) = cs(baiv) since b occurs at least twice in aibv.
A similar argument shows that f ∗(M, a1 . . . a`) = f ∗(M, a1 . . . ai−1ai+1aiai+2 . . . a`) also
in the case when σ(1) = i + 2 and σ(2) = i.

Since the full symmetric group S` is generated by the adjacent transpositions
(i i + 1), 1 ≤ i ≤ ` − 1, it follows that f ∗(M, a1 . . . a`) = f ∗(M, aπ(1) . . . aπ(`)) for any
permutation π ∈ S`. In other words, f ∗ does not depend on its second argument when
it is restricted to the set of pairs (M, u) ∈ Z(n)(A) where M is a multiset containing an
element of multiplicity at least 2. We conclude that f |An

=
is totally symmetric.

For the converse implication, assume that f |An
=

is totally symmetric. Then obviously
f |An

=
is 2-set-transitive. Furthermore, it is easy to see that f = f ∗ ◦ cs|An , where

f ∗ : Z(A)→ B is defined as f ∗(M, a) = f (ab) where b ∈ A∗ is any string such that
ms(ab) = M. The mapping f ∗ is well defined, because the total symmetry of f |An

=

implies that f (ab) does not depend on the particular choice of b. �
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Figure 1. Inclusions between classes of n-ary functions with a unique identification minor, for n ≥ |A| + 2
and |A| ≥ 3.

Let us introduce some notation for classes of functions having a unique
identification minor:

• UNI := { f ∈ FAB | f has a unique identification minor};
• OFO := { f ∈ FAB | f ' g for some g that is determined by ofo};
• CS := { f ∈ FAB | f ' g for some g that is determined by cs};
• 2ST := { f ∈ FAB | f is 2-set-transitive};
• SYMM := { f ∈ FAB | f is totally symmetric};
• SUPP := { f ∈ FAB | f is determined by supp}.

The relationships between these classes can be summarized as follows; see also
Figure 1.

Corollary 3.10. Assume that |A| = k and |B| ≥ 2.

(i) If k = 2, then CS(n) = SYMM(n) for every n ≥ 3.
(ii) CS(n) * OFO(n) ∪ 2ST(n) for every n ≥ k + 1.
(iii) OFO(n) * CS(n) and 2ST(n) * CS(n) for every n ≥ k + 1.
(iv) OFO(n) ∩ CS(n) = SUPP(n) for every n ≥ k + 1.
(v) 2ST(n) ∩ CS(n) = SYMM(n) for every n ≥ k + 1.
(vi) 2ST(n) ∩ OFO(n) = SUPP(n) for every n ≥ k + 2.

Proof. Statement (i) follows from Lemma 3.5, (ii) from Lemma 3.6, (iii) from
Propositions 3.8 and 3.9, and (vi) from Proposition 3.7. If n > |A|, then An

= = An, and
Propositions 3.8 and 3.9 reduce to statements (iv) and (v), respectively. �
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4. How do content and singletons and order of first occurrence arise from
unique identification minors?

The classes OFO and CS may seem to have arisen just by accident as sporadic
examples of functions with a unique identification minor. We would like to understand
better why these examples exist. For this reason, we go back to the definition of a
function with a unique identification minor and try to see how the classes OFO and
CS arise therefrom by imposing some simple additional conditions.

Recall that a function f : An → B has a unique identification minor if and only if
there exist a function h : An−1 → B and a family ( ρI)I∈(n

2) of permutations ρI ∈ S n−1

such that fI = h ◦ ρI for every I ∈
(

n
2

)
. We will see that f belongs to one of the classes

OFO or CS if and only if the family ( ρI)I∈(n
2) of permutations satisfies certain simple

conditions.
Let a,b ∈ An. We write a ∼ b if there exist u ∈ An−1 and I, J ∈

(
n
2

)
such that a = uδI

and b = uδJ . The relation ∼ is clearly reflexive and symmetric. Denote by ∼∗ the
transitive closure of ∼.

Lemma 4.1. For all a,b ∈ An, we have that a ∼∗ b if and only if ofo(a) = ofo(b).

Proof. Let us first prove necessity. If a ∼ b, then a = uδI and b = uδJ for some
u ∈ An−1 and I, J ∈

(
n
2

)
. Then ofo(a) = ofo(uδI) = ofo(u) = ofo(uδJ) = ofo(b). From

this, it immediately follows that if a ∼∗ b, then ofo(a) = ofo(b).
For sufficiency, observe first that for any a, b ∈ A, x, y, z ∈ A∗ with |x| = p, |y| = q,

(axbyz)δ{p+2,p+q+3} = axbybz, (axy)δ{1,p+2} = axay,
(axbyz)δ{1,2} = aaxbyz, (axy)δ{1,2} = aaxy.

Therefore axbybz ∼ aaxbyz and axay ∼ aaxy. Applying these relations repeatedly, we
see that for any w ∈ An,

w ∼∗ a . . . a︸︷︷︸
`

ofo(w),

where ` = n − |ofo(w)| and a is the first letter of ofo(w). Consequently, if a, b ∈ An

satisfy ofo(a) = ofo(b) and the first letter of ofo(a) is a, then

a ∼∗ a . . . a ofo(a) = a . . . a ofo(b) ∼∗ b,

so a ∼∗ b. �

In the following proposition, the family ( ρI)I∈(n
2) can be thought of as comprising

only identity permutations.

Proposition 4.2. Let f : An → B. Then f is determined by the order of first occurrence
if and only if there exists a function h : An−1 → B such that fI = h for all I ∈

(
n
2

)
.

Proof. Necessity is proved in [15, Proposition 4]: if f = f ∗ ◦ ofo|An , then fI = f ∗ ◦
ofo|An−1 for all I ∈

(
n
2

)
.
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For sufficiency, assume that fI = h for all I ∈
(

n
2

)
. We need to show that f (a) = f (b)

whenever ofo(a) = ofo(b). Let a,b ∈ An and assume that ofo(a) = ofo(b). Then a ∼∗ b
by Lemma 4.1, so there exist tuples c0, . . . , cr such that a = c0 ∼ c1 ∼ · · · ∼ cr−1 ∼ cr =

b. Then for each i ∈ [r] there exist ui ∈ An−1 and Ii, Ji ∈
(

n
2

)
such that ci−1 = uiδIi and

ci = uiδJi . Since

f (ci−1) = f (uiδIi ) = fIi (u
i) = h(ui) = fJi (u

i) = f (uiδJi ) = f (ci),

it follows that f (a) = f (c0) = f (c1) = · · · = f (cr) = f (b). �

Let a, b ∈ An. We write a ∼2 b if there exist x, y, z, x′, y′, z′ ∈ A∗, α ∈ A such that
a = xαyαz, b = x′αy′αz′, and xyz = x′y′z′. The relation ∼2 is clearly reflexive and
symmetric. Denote by ∼∗2 the transitive closure of ∼2.

Lemma 4.3. For all a,b ∈ An, we have that a ∼∗2 b if and only if cs(a) = cs(b).

Proof. If a ∼2 b, then clearly ms(a) = ms(b) and sng(a) = sng(b), that is, cs(a) = cs(b).
It follows that cs(a) = cs(b) whenever a ∼∗2 b.

For the converse implication, let us introduce some notation. Assume that A is
equipped with a fixed linear order ≤. For a tuple u ∈ An, denote by upre the longest
prefix of u that contains only singletons of u, and denote by usuf the longest suffix of u
that is a nondecreasing (with respect to ≤) sequence of letters that occur at least twice
in u. Note that upre and usuf may be empty.

Let u ∈ An. Unless u = upreusuf , we have u = upreαwusuf , where α is a letter
occurring at least twice in u and w ∈ A∗. If w = w1αw2 for some strings w1 and
w2, then let u′, u′′ be strings such that usuf = u′u′′ and u′ααu′′ is a nondecreasing
sequence, and let v = uprew1w2u′ααu′′. Otherwise usuf = u′αu′′ for some strings
u′ and u′′; in this case, let v = uprewu′ααu′′. In either case, we have u ∼2 v and,
moreover, |upre| ≤ |vpre| and |usuf | < |vsuf |.

Thus, starting from an arbitrary tuple u ∈ An, we can construct a finite sequence
c0, c1, . . . , cr such that u = c0 ∼2 c1 ∼2 · · · ∼2 cr−1 ∼2 cr = u†u‡, where u† = sng(u) and
u‡ comprises those letters that occur in u at least twice, sorted in nondecreasing order.
Thus u ∼∗2 u†u‡.

Now, if a,b ∈ An are tuples such that cs(a) = cs(b) and a†, a‡, b†, b‡ are as explained
in the previous paragraph, then clearly a† = b† and a‡ = b‡. Then a ∼∗2 a†a‡ and
b ∼∗2 b†b‡. Since a†a‡ = b†b‡ and ∼∗2 is a symmetric and transitive relation, we have
a ∼∗2 b. �

Proposition 4.4. Let f : An → B. Then f is determined by cs if and only if there exists
a function h : An−1 → B such that for every I = {i, j} ∈

(
n
2

)
(i < j) we have fI = h ◦ ζi,

where ζi = (i i + 1 · · · n − 1).

Proof. Necessity is established in the proof of Lemma 3.4. For sufficiency, assume
that f satisfies the given condition.

https://doi.org/10.1017/S1446788718000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000162


[15] Unique identification minors 81

We claim first that a ∼2 b implies f (a) = f (b). Assume that a ∼2 b. Then a = xαyαz
and b = x′αy′αz′ with xyz = x′y′z′. Let I = {i, j}, J = {p, q}, where i = |x| + 1,
j = |xy| + 2, p = |x′|, q = |x′y′|. Then

f (a) = f (xαyαz) = fI(xαyz) = h((xαyz)ζi) = h(xyzα)
= h(x′y′z′α) = h((x′αy′z′)ζp) = fJ(x′αy′z′) = f (x′αy′αz′) = f (b).

Now let a, b ∈ An, and assume that cs(a) = cs(b). Then a ∼∗2 b by Lemma 4.3, so
there exist tuples c0, . . . , cr such that a = c0 ∼2 c1 ∼2 · · · ∼2 cr−1 ∼2 cr = b. As we have
shown above, for each i ∈ [r] we have f (ci−1) = f (ci), so it follows that f (a) = f (b). �

5. Invariance groups of functions determined by content and singletons

We now focus on the symmetries of functions determined by cs. It is most natural
to pose the following question.

Question 5.1. For n ∈ N, which subgroups of the full symmetric group Sn are
invariance groups of n-ary functions determined by cs?

In order to approach this problem, we will make use of the notion of permutation
pattern, which we will now briefly recall (for further information, see, for example,
Bóna [2] and Kitaev [12]). Any permutation π ∈ Sn corresponds to a string π1π2 . . . πn,
where πi = π(i) for all i ∈ [n]. For any string u of distinct integers, the reduction or
reduced form of u, denoted by red(u), is the permutation obtained from u by replacing
its ith smallest entry with i, for 1 ≤ i ≤ |u|. A permutation τ ∈ S` is a pattern (or an
`-pattern) of a permutation π ∈ Sn, or π involves τ, denoted τ ≤ π, if there exists a
substring u = πi1πi2 . . . πi` of π (i1 < i2 < · · · < i`) such that red(u) = τ.

Lehtonen and Pöschel [17] formalized the notion of permutation pattern by making
use of order-isomorphisms and functional composition as follows. For any S ⊆ [n]
with |S | = `, let hS : [`]→ S be the order-isomorphism ([`],≤)→ (S ,≤), where the
two sets [`] and S are equipped with the restriction of the natural order of natural
numbers to the respective subsets of N. For π ∈ Sn, we define πS : [`]→ [`] as πS =

h−1
π(S ) ◦ π|S ◦ hS . Being a composition of bijective maps, πS is clearly a permutation on

[`]. Then the `-patterns of π are precisely the permutations of the form πS for some
S ⊆ [n] with |S | = `.

For π ∈ Sn and ` ≤ n, denote by Pat(`) π the set of all `-patterns of π, that is,
Pat(`) π := {τ ∈ S` | τ ≤ π} = {πS | S ⊆ [n], |S | = `}. For arbitrary subsets S ⊆ S` and
T ⊆ Sn, let

Pat(`) T :=
⋃
π∈T

Pat(`) π,

Comp(n) S := {π ∈ Sn | Pat(`) π ⊆ S }.

As shown by Lehtonen and Pöschel [17], the maps Comp(n) and Pat(`) constitute a
monotone Galois connection between S` and Sn. Furthermore, the operator Comp(n)

behaves well with respect to composition of permutations.
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Lemma 5.2 (Lehtonen and Pöschel [17, Lemma 2.6]). Let π, τ ∈ Sn, let ` ∈ [n], and let
S ⊆ [n]. Then the following statements hold.

(i) (π ◦ τ)S = πτ(S ) ◦ τS .
(ii) Pat(`) π ◦ τ ⊆ (Pat(`) π) ◦ (Pat(`) τ).

This fact establishes the basis for a perhaps surprising connection between
permutation patterns and permutation groups.

Proposition 5.3 (Lehtonen and Pöschel [17, Proposition 3.1]). If G is a subgroup of
S`, then Comp(n) G is a subgroup of Sn.

For a ∈ An, let

Sng(a) := {i ∈ [n] | ∀ j ∈ [n] : ai = a j =⇒ i = j}.

In other words, the singletons of a are at the positions indexed by the elements of
Sng(a). By making use of the order-isomorphism hS : [|S |]→ S with S = Sng(a), we
can write sng(a) := ahSng(a).

Lemma 5.4. For a ∈ An and σ ∈ Sn, we have that sng(aσ) = sng(a)σS , where S =

σ−1(Sng(a)).

Proof. Observe first that

Sng(aσ) = {i ∈ [n] | ∀ j ∈ [n] : aσ(i) = aσ( j) =⇒ σ(i) = σ( j)}

= σ−1({i ∈ [n] | ∀ j ∈ [n] : ai = a j =⇒ i = j}) = σ−1(Sng(a)).

Then we can write

sng(aσ) = a ◦ σ ◦ hSng(aσ) = a ◦ hSng(a) ◦ h−1
Sng(a) ◦ σ ◦ hSng(aσ)

= a ◦ hSng(a) ◦ h−1
σ(σ−1(Sng(a))) ◦ σ ◦ hσ−1(Sng(a)) = sng(a)σσ−1(Sng(a)),

which gives the desired result. �

Example 5.5. Consider the tuples a = 12234555, b = 12324526 and the permutation
σ = 54238617. Then aσ = 43225515, bσ = 42236512, Sng(a) = {1, 4, 5}, Sng(b) =

{1, 3, 5, 6, 8}. Let S := σ−1(Sng(a)) = {1, 2, 7} and T := σ−1(Sng(b)) = {1, 4, 5, 6, 7}.
Then σS = red(541) = 321 and σT = red(53861) = 32541. Consequently,

sng(a) = 134, sng(aσ) = 431, 431 = 134σS ,

sng(b) = 13456, sng(bσ) = 43651, 43651 = 13456σT .

Let f = f ∗ ◦ cs|An , let σ ∈ Sn and let f σ := f ◦ σ = f ∗ ◦ cs|An ◦ σ, that is,
f σ(a1, . . . , an) = f ∗(cs(aσ(1), . . . , aσ(n))). Obviously ms(aσ) = ms(a), and by
Lemma 5.4 we have sng(aσ) = sng(a)σS , where S = Sng(a). Therefore, if cs(a) =

(M,u), then cs(aσ) = (M,uσS ).
For ` ∈ Z(k, n) with k = |A|, we denote by f ∗` the restriction of f ∗ to the setZ(n)

`
(A).

We say thatσ ∈ S` is an invariant of f ∗` if f ∗` (M,a) = f ∗` (M,aσ) for all (M,a) ∈ Z(n)
`

(A).
Denote by Inv f ∗` the set of all invariants of f ∗` . It is clear that Inv f ∗` is a permutation
group, a subgroup of S`.
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Remark 5.6. It is easy to see that for any subgroup H of S`, there exists a map
f ∗` : Z(n)

`
(A)→ B such that Inv f ∗` = H. Assuming without loss of generality that

A = [k] and {0, 1} ⊆ B, we can take, for example,

f ∗` (M, a) =

1 if a = (1 . . . `)π for some π ∈ H,
0 otherwise.

It is easy to verify that indeed Inv f ∗` = H.

Lemma 5.7. Assume that |A| = k. Let f = f ∗ ◦ cs|An , g = g∗ ◦ cs|An for some
f ∗, g∗ : Z(n)(A)→ B, and let σ ∈ Sn. Then the following statements hold.

(i) g = f ◦ σ if and only if for every ` ∈ Z(k, n) and for every τ ∈ Pat(`) σ, g∗`(M, a) =

f ∗` (M, aτ) for all (M, a) ∈ Z(n)
`

(A).
(ii) σ ∈ Inv f if and only if Pat(`) σ ⊆ Inv f ∗` for every ` ∈ Z(k, n).
(iii) Inv f =

⋂
`∈Z(k,n) Comp(n) Inv f ∗` .

Proof. (i) Assume first that g = f ◦σ. Let ` ∈ Z(k,n) and τ ∈ Pat(`)σ. Then there exists
S ⊆ [n] with |S | = ` such that τ = σS . Assume that (M, a) ∈ Z(n)

`
(A), and let b ∈ An be

a tuple such that ms(b) = M, sng(b) = a, and Sng(b) = σ(S ). Then σ−1(Sng(b)) = S ,
and sng(bσ) = aσS holds by Lemma 5.4. Consequently,

g∗`(M, a) = g∗(ms(b), sng(b)) = g(b)
= f (bσ) = f ∗(ms(bσ), sng(bσ)) = f ∗` (M, aσS ) = f ∗` (M, aτ).

Assume then that for every ` ∈ Z(k, n) and for every τ ∈ Pat(`) σ, the equality
g∗`(M, a) = f ∗` (M, aτ) holds for all (M, a) ∈ Z(n)

`
(A). Let b ∈ An, and let M := ms(b),

a := sng(b), ` := |a|, S := σ−1(Sng(b)). Since σS ∈ Pat(`) σ and since aσS = sng(bσ)
holds by Lemma 5.4,

g(b) = g∗(ms(b), sng(b)) = g∗`(M, a) = f ∗` (M, aσS ) = f ∗(ms(bσ), sng(bσ)) = f (bσ).

We conclude that g = f ◦ σ.
(ii) Immediate consequence of part (i) with f = g.
(iii) By part (ii), the condition σ ∈ Inv f is equivalent to the condition that for all

` ∈ Z(k, n), Pat(`) σ ⊆ Inv f ∗` . By the definition of Comp(n), this in turn is equivalent
to the condition that for all ` ∈ Z(k, n), σ ∈ Comp(n) Inv f ∗` . This is equivalent to
σ ∈

⋂
`∈Z(k,n) Comp(n) Inv f ∗` . �

Lemma 5.7(iii) provides an answer to Question 5.1.

Theorem 5.8. Assume that A and B are sets with |A| = k ≥ 2 and |B| ≥ 2. Let G ≤ Sn.
Then there exists a function f : An → B determined by cs with Inv f = G if and
only if there exists a family (G`)`∈Z(k,n) of permutation groups G` ≤ S` such that
G =

⋂
`∈Z(k,n) Comp(n) G`.
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Proof. By Remark 5.6, for any ` ∈ Z(k,n), every subgroup of S` is a possible invariance
group of a function f ∗` : Z(n)

`
(A)→ B. The claim then follows immediately from

Lemma 5.7(iii). �

In order to provide a more explicit answer to Question 5.1, we would need to know
which permutation groups are of the form Comp(n) G for some permutation group
G ≤ S`, ` ∈ Z(k, n). Such groups were investigated by the current author in [16, 17],
and we provide a coarse summary of the relevant results from [16] here.

We will use the following notation for certain permutations in Sn:

• the identity permutation ιn = 12 . . . n;
• the descending permutation δn = n(n − 1) . . . 1;
• the natural cycle ζn = (1 2 · · · n) = 23 . . . n1.

The following subgroups of the symmetric group Sn will appear in the statement of the
results:

• the trivial group {ιn};
• the group 〈δn〉 = {ιn, δn} generated by the descending permutation δn;
• the natural cyclic group Zn := 〈ζn〉;
• the natural dihedral group Dn := 〈ζn, δn〉;
• for a, b ∈ N with a + b ≤ n, the group S a,b

n of permutations that map the set
{1, . . . , a} onto itself and map the set {n − b + 1, . . . , n} onto itself and fix all
remaining points.

Proposition 5.9 [16]. Let G be a subgroup of S`.

(i) If G is neither an intransitive group nor an imprimitive group with ζ` < G, then,
for every n ≥ ` + 2, Comp(n) G is one of the following groups: Sn, Dn, Zn, 〈δn〉,
{ιn}. Moreover, for each one of the subgroups H of Sn listed above, there exists a
subgroup G of S` such that Comp(n) G = H.

(ii) Assume that G is an intransitive group or an imprimitive group with ζ` < G. Let
a and b be the largest numbers α and β, respectively, such that S α,β

`
≤ G. Then

there exists a number m such that Comp(n) G equals either S a,b
n or 〈S a,b

n , δn〉 for
all n ≥ ` + m. The smallest such number m satisfies m ≤ ` − 1 in the case where
G is intransitive, and m ≤ p, where p is the largest proper divisor of n, in the
case where G is imprimitive and ζ` < G.

Proof. This theorem combines the main results of [16]: (i) Theorems 4.3, 4.5, 4.6,
4.16 in [16], (ii) Theorems 4.12 and 4.15 in [16]. �

Corollary 5.10. Assume that A and B are sets with |A| = k ≥ 2, |B| ≥ 2 and n ≥ 2k − 3.
Let f : An → B be a function determined by cs. Then Inv f is one of the following
groups:

Sn,Dn,Zn, 〈δn〉, {ιn}, S a,b
n , 〈S c,c

n , δn〉 (5.1)
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where a, b, c ∈ N+ with a + b ≤ k − 1 and 2c ≤ k − 1. Moreover, for each one of the
subgroups H of Sn listed above, there exists a function f : An → B determined by cs
with Inv f = H.

Proof. By Theorem 5.8, Inv f =
⋂
`∈Z(k,n) Comp(n) G` for some permutation groups

G` ≤ S`, ` ∈ Z(k, n). By Proposition 5.9, each one of the groups Comp(n) Inv f ∗` is
among the groups listed in (5.1). The set (5.1) is closed under intersections, so we
conclude that Inv f is a group in (5.1).

Conversely, assume that H is a group listed in (5.1). Then there exist `′ ∈ Z(k, n)
and a subgroup G`′ of S `′ such that Comp(n) G`′ = H. For each ` ∈ Z(k, n) \ {`′}, let
G` := S`; then Comp(n) G` = Sn. It then follows from Theorem 5.8 that there is a
function f determined by cs with Inv f = H. �

Further information about permutation groups of the form Comp(n) G can be found
in [16, 17].

6. Distinct but similar functions determined by content and singletons

It might be possible that two distinct functions determined by cs are similar. We
now investigate the conditions under which this happens.

Question 6.1. Do there exist distinct functions f ∗, g∗ : Z(n)(A)→ B such that f ∗ ◦
cs|An ' g∗ ◦ cs|An ? Provide necessary and sufficient conditions for functions f ∗ and
g∗ to have this property.

The following simple group-theoretical result will prove useful for approaching
this problem. Let (G; ·) be a group. For an arbitrary nonempty subset S of G, let
∆S := S −1S = {x−1y | x, y ∈ S }.

Lemma 6.2. Let G be a group, and let S be a nonempty subset of G. Then the following
statements hold.

(i) 〈∆S 〉 is a subgroup of 〈S 〉.
(ii) The following conditions are equivalent:

(a) 〈∆S 〉 = 〈S 〉;
(b) 〈∆S 〉 ∩ S , ∅;
(c) S ⊆ 〈∆S 〉.

Proof. (i) By definition, every element of ∆S belongs to the subgroup generated by S .
Hence ∆S ⊆ 〈S 〉, from which it follows that 〈∆S 〉 ⊆ 〈S 〉.

(ii) (a) =⇒ (b): If 〈∆S 〉 = 〈S 〉, then obviously 〈∆S 〉 ∩ S = 〈S 〉 ∩ S = S , ∅.
(b) =⇒ (c): Assume that 〈∆S 〉 ∩ S , ∅. Then there exists a ∈ 〈∆S 〉 ∩ S . Let b ∈ S .

Since a ∈ 〈∆S 〉 and a−1b ∈ S −1S = ∆S , we have b = aa−1b ∈ 〈∆S 〉. Hence S ⊆ 〈∆S 〉.
(c) =⇒ (a): If S ⊆ 〈∆S 〉, then clearly 〈S 〉 ⊆ 〈∆S 〉. The converse inclusion

〈∆S 〉 ⊆ 〈S 〉 holds by part (i). �
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Lemma 6.3. Assume that |A| = k. Let f = f ∗ ◦ cs|An , g = g∗ ◦ cs|An for some
f ∗, g∗ : Z(n)(A)→ B, and let σ ∈ Sn. Then the following statements hold.

(i) If ` ∈ Z(k, n) and π, τ ∈ S` are permutations satisfying g∗`(M, a) = f ∗` (M, aπ) and
g∗`(M, a) = f ∗` (M, aτ) for all (M, a) ∈ Z(n)

`
(A), then π−1τ ∈ Inv f ∗` .

(ii) If g = f ◦ σ, then 〈∆ Pat(`) σ〉 ⊆ Inv f ∗` for every ` ∈ Z(k, n).
(iii) If g = f ◦ σ and Pat(`) σ ⊆ 〈∆ Pat(`) σ〉 for every ` ∈ Z(k, n), then f = g.

Proof. (i) For any (M, a) ∈ Z(n)
`

(A),

f ∗` (M, a) = f ∗` (M, aπ−1π) = g∗`(M, aπ−1) = f ∗` (M, aπ−1τ),

that is, π−1τ ∈ Inv f ∗` .
(ii) By Lemma 5.7(i), for every π, τ ∈ Pat(`) σ we have that f ∗` (M, aπ) = g∗`(M, a) =

f ∗` (M, aτ) for all (M, a) ∈ Z(n)
`

(A). By part (i), π−1τ ∈ Inv f ∗` . Therefore, every
permutation in ∆ Pat(`) σ is an invariant of f ∗` and hence 〈∆ Pat(`) σ〉 ⊆ Inv f ∗` .

(iii) By our assumptions and part (ii), Pat(`) σ ⊆ 〈∆ Pat(`) σ〉 ⊆ Inv f ∗` for every
` ∈ Z(k, n). Then σ ∈ Inv f by Lemma 5.7(ii). Consequently, g = f ◦ σ = f . �

Proposition 6.4. Let n, k ∈ N, let σ ∈ Sn, and let A, B be sets with |A| = k, |B| ≥ 2. Then
there exist functions f = f ∗ ◦ cs|An and g = g∗ ◦ cs|An such that f = g ◦ σ and f , g if
and only if 〈∆ Pat(`) σ〉 ∩ Pat(`) σ = ∅ for some ` ∈ Z(k, n).

Proof. Assume first that 〈∆ Pat(`) σ〉 ∩ Pat(`)σ , ∅ for every ` ∈ Z(k,n). Then Pat(`)σ ⊆
〈∆ Pat(`) σ〉 for all ` ∈ Z(k, n) by Lemma 6.2(ii). Lemma 6.3(iii) then implies that if
f = f ∗ ◦ cs|An and g = g∗ ◦ cs|An satisfy g = f ◦ σ, then f = g.

Assume then that ` ∈ Z(k, n) and 〈∆ Pat(`) σ〉 ∩ Pat(`) σ = ∅. Define the functions
f ∗, g∗ : Z(n)(A)→ B as follows. Fix a permutation ρ ∈ Pat(`) σ, and let

f ∗(M, a) =

1 if a = (1 . . . `)π for some π ∈ 〈∆ Pat(`) σ〉,
0 otherwise,

g∗(M, a) =

1 if a = (1 . . . `)πρ−1 for some π ∈ 〈∆ Pat(`) σ〉,
0 otherwise.

Let f := f ∗ ◦ cs|An and g := g∗ ◦ cs|An . In order to show that g = f ◦ σ, it suffices to
verify that f ∗, g∗ and σ satisfy the conditions of Lemma 5.7(i). Observe first that for
every m ∈ Z(k, n) with m , `, the equalities g∗m(M, a) = 0 = f ∗m(M, aπ) obviously hold
for every (M, a) ∈ Z(n)

m (A) and for every permutation π ∈ Sm.
Then let (M,a) ∈ Z(n)

`
(A). If supp a , {1, . . . , `}, then g∗`(M,a) = 0 = f ∗` (M,aπ) holds

clearly for every permutation π ∈ S`. We may thus assume that supp a = {1, . . . , `}, that
is, a = (1 . . . `)α for some α ∈ S`.

If g∗`(M, a) = 1, then a = (1 . . . `)πρ−1 for some π ∈ 〈∆ Pat(`) σ〉. Then for every
τ ∈ Pat(`) σ, we have πρ−1τ ∈ 〈∆ Pat(`) σ〉, so f ∗` (M, aτ) = 1.

If g∗`(M, a) = 0, then a = (1 . . . `)α for some α ∈ S` such that α , πρ−1 for all
π ∈ 〈∆ Pat(`) σ〉, that is, αρ < 〈∆ Pat(`) σ〉. Let τ ∈ Pat(`) σ, and suppose, to the contrary,

https://doi.org/10.1017/S1446788718000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000162


[21] Unique identification minors 87

that ατ ∈ 〈∆ Pat(`) σ〉. Since τ−1ρ ∈ ∆ Pat(`) σ, we get αρ = αττ−1ρ ∈ 〈∆ Pat(`) σ〉, a
contradiction. Therefore, for every τ ∈ Pat(`) σ, we have that ατ < 〈∆ Pat(`) σ〉, and
hence f ∗` (M, aτ) = 0. Thus the conditions of Lemma 5.7(i) are satisfied, and we
conclude that g = f ◦ σ.

It remains to show that f , g. In order to see this, let b ∈ An be any tuple satisfying
sng(b) = (1, 2, . . . , `). Such a tuple b exists; for example, take b := (1, 2, . . . , `, ` + 1,
` + 1, . . . , ` + 1) if ` < n (and hence ` ≤ n − 2 and ` < k) or take b := (1, 2, . . . , `)
if ` = n. Then f (b) = f ∗(ms(b), 1 . . . `) = 1, because 1 . . . ` = (1 . . . `) id and id ∈
〈∆ Pat(`) σ〉. On the other hand, since Pat(`) σ ∩ 〈∆ Pat(`) σ〉 = ∅ and ρ ∈ Pat(`) σ, there
is no permutation π ∈ 〈∆ Pat(`) σ〉 such that πρ−1 = id; hence g(b) = g∗(ms(b), 1 . . . `)
= 0. �

In view of Proposition 6.4, the condition 〈∆ Pat(`) σ〉 ∩ Pat(`) σ , ∅ (or, equivalently,
Pat(`) σ ⊆ 〈∆ Pat(`) σ〉, or, equivalently, 〈∆ Pat(`) σ〉 = 〈Pat(`) σ〉, according to
Lemma 6.2(ii)) seems relevant for approaching Question 6.1. Let σ ∈ Sn and ` ∈
[n]. We say that σ is `-equalizing if 〈∆ Pat(`) σ〉 ∩ Pat(`) σ , ∅; otherwise σ is `-
differentiating. We say that σ is equalizing if it is `-equalizing for every ` ∈ [n], and
we say that σ is differentiating if it is `-differentiating for some ` ∈ [n].

Let π ∈ Sn and τ ∈ Sm. The direct sum π ⊕ τ and the skew sum π 	 τ of π and τ are
the permutations in S n+m consisting of shifted copies of π and τ:

(π ⊕ τ)(i) =

π(i) if 1 ≤ i ≤ n,
n + τ(i − n) if n + 1 ≤ i ≤ n + m,

(π 	 τ)(i) =

m + π(i) if 1 ≤ i ≤ n,
τ(i − n) if n + 1 ≤ i ≤ n + m.

For m ∈ N+, we denote the ascending m-permutation 12 . . .m and the descending
m-permutation m(m − 1) . . . 1 by ιm and δm, respectively. For notational convenience,
we agree that δ0 ⊕ δm = δm ⊕ δ0 = δm and ι0 	 ιm = ιm 	 ι0 = ιm.

Remark 6.5. It is easy to find examples of `-equalizing n-permutations. For example,
every n-permutation containing the pattern ι` is `-equalizing, because ι` ∈ ∆ Pat(`) σ
for every permutation σ ∈ Sn.

Proposition 6.6. Let `, n ∈ N+ with ` ≤ n. Then the following statements hold.

(i) For every n ≥ 1, every n-permutation is 1-equalizing.
(ii) For every n ≥ 2, the only 2-differentiating n-permutation is δn.
(iii) For 3 ≤ ` ≤ n − 1, the following n-permutations are `-differentiating:

• δm ⊕ δn−m, for 0 ≤ m ≤ n − 1;
• π 	 δn−` 	 τ, for every π ∈ S p, τ ∈ S q with p, q ≥ 1 and p + q = `.

(iv) The only n-equalizing n-permutation is ιn.
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Proof. (i) Trivial.
(ii) Let σ ∈ Sn. If σ = n(n − 1) . . . 1, then Pat(2) σ = {21} and ∆ Pat(2) σ = {12};

hence 〈Pat(2) σ〉 = S 2 and 〈∆ Pat(2) σ〉 = {12}. If σ = 12 . . . n, then Pat(2) σ = {12} and
∆ Pat(2) σ = {12}; hence 〈Pat(2) σ〉 = 〈∆ Pat(2) σ〉 = {12}. In all other cases, Pat(2) σ =

{12, 21} and ∆ Pat(2) σ = {12, 21}; hence 〈Pat(2) σ〉 = 〈∆ Pat(2) σ〉 = S 2.
(iii) Assume first that σ = δm ⊕ δn−m for some m ∈ {0, . . . , n − 1}. It is easy to see

that Pat(`) σ ⊆ {δp ⊕ δ`−p | 0 ≤ p ≤ ` − 1}. Hence ∆ Pat(`) σ ⊆ {ιp 	 ι`−p | 0 ≤ p ≤ ` − 1}.
The set {ιp 	 ι`−p | 0 ≤ p ≤ ` − 1} = 〈(1 2 · · · `)〉 constitutes a subgroup of S` that is
clearly disjoint from Pat(`) σ. Thus 〈∆ Pat(`) σ〉 ∩ Pat(`) σ = ∅, so Lemma 6.2 implies
that σ is `-differentiating.

Assume then that σ = π 	 δn−` 	 τ for some π ∈ S p, τ ∈ S q. It is easy to see that
Pat(`) σ ⊆ S p 	 S q := {ρ 	 γ | ρ ∈ S p, γ ∈ S q}. Consequently, ∆ Pat(`) σ ⊆ S p ⊕ S q :=
{ρ ⊕ γ | ρ ∈ S p, γ ∈ S q}. The set S p ⊕ S q constitutes a subgroup of S` that is disjoint
from S p 	 S q. In order to see this, observe that for any φ ∈ S p ⊕ S q, we have
φ−1(1) ∈ {1, . . . , p}, while for any φ ∈ S p 	 S q, we have that φ−1(1) ∈ {p + 1, . . . , `}.
Therefore 〈∆ Pat(`) σ〉 ∩ Pat(`) σ = ∅, so Lemma 6.2 implies that σ is `-differentiating.

(iv) Trivial. �

Remark 6.7. Note that the descending permutation δn is `-differentiating for every `
with 2 ≤ ` ≤ n.

Remark 6.8. Proposition 6.6 gives only a sufficient condition for `-differentiating
permutations in the case where 3 ≤ ` ≤ n − 1. It remains an open problem to determine
necessary and sufficient conditions in this case.

The reverse of a tuple a = (a1, . . . , an) is arev := (an, . . . , a1). In other words,
arev = aδn. The reverse of a function f : An → B is the function f rev : An → B given
by the rule f rev(a) = f (arev) for all a ∈ An. In other words, f rev = f ◦ δn. Obviously
f = f rev if and only if δn ∈ Inv f .

It is noteworthy that the reverse of any function determined by cs is also determined
by cs. For it is easy to verify that if f = f ∗ ◦ cs|An for some f ∗ : Z(n)(A)→ B, then
f rev = f ′ ◦ cs|An , where f ′ : Z(n)(A)→ B is given by the rule f ′(M, a) = f ∗(M, arev)
for all (M, a) ∈ Z(n)(A). This can also be seen from Lemma 5.7(i) by noting that
arev = aδ` and Pat(`) δn = {δ`} for every ` ∈ [n]. Thus we obtain the following partial
answer to Question 6.1: if f = f ∗ ◦ cs|An and δn < Inv f , then f ' f rev, f , f rev, and
f rev = f ′ ◦ cs|An . This suggests that there are a lot of functions determined by cs that
are similar to another distinct function determined by cs.

7. Concluding remarks and open problems

The work reported in this paper suggests several directions for further research. We
would like to indicate a few open problems.

Corollary 5.10 specifies the possible invariance groups of functions determined by
cs when the arity n is sufficiently large in relation to the cardinality k of the domain,
namely n ≥ 2k − 3. Question 5.1 remains open when n < 2k − 3. A conclusive answer
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would require a more refined analysis of the groups of the form Comp(n) G, where G is
an intransitive or imprimitive group. The results of the paper [16] only provide upper
and lower bounds in these cases.

Problem 7.1. Let A and B be sets with |A| = k ≥ 2 and |B| ≥ 2. What are the possible
invariance groups of functions f : An → B determined by cs when n < 2k − 3?

Lemma 6.2 suggests the following group-theoretical problem, which may be of
interest independently of our current application (Proposition 6.4), although the author
suspects this may be a very difficult problem in full generality.

Problem 7.2. Let G be a group. Which subsets S of G satisfy 〈∆S 〉 = 〈S 〉?

Proposition 6.6 gives only a sufficient condition for the `-differentiating
permutations in the case where ` ≥ 3. The author has made some computer
experiments that suggest that the condition might also be necessary when 3 ≤ ` ≤ n − 2.
In the case where 3 ≤ ` = n − 1, there seem to exist many other `-differentiating
permutations than the ones listed in Proposition 6.6, but an explicit characterization
eludes us.

Problem 7.3. For 1 ≤ ` ≤ n, characterize the permutations σ ∈ Sn that satisfy the
condition 〈∆ Pat(`) σ〉 ∩ Pat(`) σ = ∅.

In [13], the current author posed the following question: is every function (of
sufficiently large arity) uniquely determined, up to permutation of arguments, by its
identification minors? In precise terms, the deck of a function f : An → B, denoted
by deck f , is the multiset 〈 fI/' | I ∈

(
n
2

)
〉 of its identification minors, considered up

to similarity (permutation of arguments). We say that a function g : An → B is a
reconstruction of f if deck f = deck g. We say that f is reconstructible if f ' g for
every reconstruction g of f . A class C ⊆ FAB is reconstructible is all its members
are reconstructible, and C is weakly reconstructible if for all f , g ∈ C, the condition
deck f = deck g implies f ' g. Several results, both positive and negative, on this
reconstruction problem were established in [6, 7, 14].

In continuation of this line of research, it is natural to ask whether and to what
extent the functions determined by content and singletons are reconstructible from
identification minors.

Problem 7.4. Is every function (of sufficiently large arity) determined by cs
reconstructible? Is the class of functions determined by cs weakly reconstructible?

Of course, Problem 1.1, the main question that this paper addresses, remains open,
and we would like to repeat it here.

Problem 7.5. Characterize the functions with a unique identification minor.
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