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Abstract

We provide character-free proofs of some results on idempotents in p-adic group rings, centering
around Brauer's Second Main Theorem on Blocks.

1991 Mathematics subject classification (Amer. Math. Soc): 20 C 05, 20 C 11, 20 C 20, 16 S 34.

The main purpose of this paper is to provide character-free proofs of some
(known) results on central idempotents in p-adic group rings of finite groups.
The results we have in mind are all directly or indirectly related to Brauer's
Second Main Theorem on Blocks. Thus we also prove a character-free version
of the Second Main Theorem, using ideas of Puig [18, 19].

In the following, G will denote a complete discrete valuation ring with
algebraically closed residue field F of prime characteristic p, and a i ^ a will
denote the standard epimorphism G —> F.

Unless stated otherwise, the algebras we will consider are all associative with
identity element, and free of finite rank over their ring of coefficients (G or F).
For such an algebra A, we denote by JA its Jacobson radical, by ZA its center,
by U/4 its group of units and by [A, A] its Z/4-submodule consisting of all finite
sums of elements of the form [a, b] — ab — ba(a,be A).

For a finite group G, GG and FG denote the group algebras of G over G and
F, respectively. There is a useful map A : GG ->• G defined in the following
way: If a — YlgeG asS e @G w i t n oeg & G for g e G then X(a) = au It is
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well-known that k vanishes on [£?G, GG\.
We will have to use properties of G -algebras. We therefore recall that a

G-algebra over 6 is a pair consisting of an ^"-algebra A and a homomorphism
<p from G into the automorphism group Aut(A) of A. We write ga instead of
(<f>(g))(a) for g e G and a e A and define

A" :={ae A:ha = a forhe H],

for every subgroup H of G. If AT is a subgroup of H and b e AK then Hkb = *ft
for h e / / and & e £ . We therefore write hKb instead of hb. The transfer map
lxH

K : AK ^ A" is then defined by Tr£(Z>) := £*JC6H/K- **& for ft e 4* ; here
///A" denotes the set of cosets hK (h e H). We set A£ := Tr"(AK). Then ,4£
is an ideal in AH.

The group algebra ^ G will be considered as a G-algebra in such a way that
sa = gag~x for g e G and a € ^ G . In this case the map

«eG geCc(G)

restricts to a homomorphism BrG : (6G)Q ->• FCG(Q) which is called the
Brauer homomorphism with respect to Q, for any p-subgroup Q of G.

We will prove Brauer's Second Main Theorem on Blocks in the following
form.

THEOREM 1. Let G be a finite group, u a p-element in G, s a p-regular
element in CG(M) and e an idempotent in 'LOG. We denote by eu the unique
idempotent in Z{7CG(u) such that Br(u)(e) = Br(H)(eH). Then eus = euus
(mod [0G, 0G\).

We note that the existence and uniqueness of eu follow from lifting theorems
for idempotents.

In order to get from Theorem 1 the Second Main Theorem in its usual form
(see 5.4.1 in [16], for example) we just apply an irreducible character x to the
congruence above (using the fact that x vanishes on [£7G, @G~\).

The reader may wish to consult the references for other proofs of the Second
Main Theorem.

PROOF. We may assume that u ^ 1 and wish to show that {e — eu)su e
\6G, GG\ Since s is a linear combination of idempotents in 6{s) it suffices to
show that (e — eu)fu e \GG, 6G\ for any idempotent / in &CG(u). By the
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definition of eu, the idempotent (e — eu)f e (^G){u) is contained in the kernel
of Br(u). But it is well-known (and easy to see) that Ker(Br(u)) is the sum of
the two ideals (J&)(0G){u) and (^G)j"j (where v := u") of (0G)tH). Since
0 is the only idempotent contained in (St?)(0G){u) it therefore follows from
Rosenberg's lemma (see 5.1 in [13], for example) that (e — eu)f e (^G)j"j.
Hence, by Puig's version of Green's indecomposability theorem (see [18] or
Theorem 9 below), there is an idempotent j in {£?G){v) orthogonal to gj for
ge(u)\ (v) such that (e - eu)f = Trg(y). Thus

ju = ju - j(uj)u = j(ju) - (ju)j e [0G, 0G\

and

(e - eu)fu = Trj^yM) e Tr|"B|([^G, 0G] n «?G)<">) c [0G, 0G],

as we wanted to show.

We would like to add some related results on idempotents. We start with a
simple lemma due to Cliff [3]. Similar results can also be found in Oliver [17]
and Taylor [20]. The analogous fact in prime characteristic goes back to Brauer.
For a recent account, see Kiilshammer [12].

LEMMA 2. Let A be the free 0-algebra in generators X\,..., xk, and let m and
n be non-negative integers such that m < n. Then {x\ + • —\- xk)

p" = a + b + c
where a € pmA, b is a sum of p"~m+l-th powers of monomials in xu ..., xk,
and c € [A, A].

PROOF. We write (x{ + • • • + .**)''" as the sum of the kp" different terms
yu...,ypn with yx,..., » e [x{,..., xk}. The cyclic group Z = (z) of order
p" acts on the set of these terms in such a way thatz (ji y2 • • • yp*) = yi- • -y^yi-
It is obvious that terms in the same Z-orbit lie in the same coset modulo [A, A].
Hence, if B is a Z-orbit containing at least pm elements then J2beB b *s contained
in pm A + [A, A]. On the other hand, if B is a Z-orbit containing less than pm

elements then, for b € B, the stabilizer of b in Z has order at least p"~m+l. This
means that b is of the form b — (v i . . . yP"-i)p"""+\ and the result follows.

We wish to apply Lemma 2 to group algebras. Thus let G be a finite group,
and let A" be a conjugacy class of G. We call K p-regular if it consists of
p-regular elements, and p-singular otherwise. For a subset X of G, we set

*+ •= E,ex 8 € 0G.
The following result is due to Cliff [3].
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PROPOSITION 3. Let G be a finite group, and let e be an idempotent in GG.
We write e = X^eG €sS w^tn €g e @ for 8 € G. Then ^2g€L €g = Ofor every
p-singular conjugacy class L of G.

PROOF. Let L be a p-singular conjugacy class of G. It suffices to show that
J2geL €g e Pm@ f°r every positive integer m. We therefore fix a positive integer
m and choose a positive integer « > m such that gP"~m+' = 1 for every p-element
gzG.

Let A be the free ^"-algebra in \G\ generators xg (g e G). There is a unique
homomorphism of algebras (f> : A —>• GG satisfying (t>(xg) = egg for g G G.
Thus

(
geG / g€G

We write (Ylg^c xg)P" — a + b + c with a, b, c as in Lemma 2. Then e =
<f>(a) + 4>{b) + <f>(c) where 0(a) e pmGG, (f){b) is a linear combination of
p-regular elements in G, and <j>(c) G [^"G, ^ G ] . Hence

where X(</.(a)(L-1)+) e p"1^, H<j)(b)(L-l)+) = 0 since L is p-singular, and

since (/>(c)(L"')+ e [GG, GG]. Thus £ g e i . e« € pm*? as we wished to show.

An immediate consequence of Proposition 3 is the following result.

COROLLARY 4. Let G be a finite group, s a p-regular element in G and e an
idempotent in Z.GG. We write es = ^,g€G oigg with ag G G for g G G. Then
X! ag = Ofor every p-singular conjugacy class LofG.

PROOF. The p-regular element s G G is a linear combination of idempotents
in G(s), so es is a linear combination of idempotents in GG, and the result
follows from Proposition 3.

We recall that every element g G G can be written uniquely in the form
g = us where u is a p-element in G and s is a p-regular element in G such that
us = su. Then M is called the p-factor of g, and s is called the p-regular factor
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of g. Two elements in G are said to be contained in the same p-section of G if
their p-factors are conjugate in G.

The following result is known to be a consequence of the Second Main
Theorem (see [11], for example). We present a proof using the ideas above.

PROPOSITION 5. Let K be a conjugacy class ofG, and let e be an idempotent
in ZGG. Then K+e is a linear combination of elements contained in the same
p-section as K. In particular, e is a linear combination of p-regular elements
inG.

PROOF. We write K+e = Z]g6G
 agS w i t n oeg e 6 for g e G. Then ag =

X(K+eg~l) for g e G, so it suffices to show that X(K+eg~1) = 0 whenever g is
not contained in the same p-section as K. We fix such an element g and denote
by u the p-factor and by s the p-regular factor of g~\ so that g~x = us —
su. Moreover, we denote by eu the unique idempotent in ZGCG(u) such that
Br(u)(e) = Br{u)(eu). Then, by Theorem 1, eus = euus (mod [&G, GG]), so
K+eg-1 = K+eug~x (mod [GG, &G}), and therefore

k(K+eg-1) = \{K+eug-x) = X((K n CG(u))+eug-1)

since eug~x e @CG(u). We write eus = £AeCc(H) Phh with fih e G for h e
CG(w). Then, by Corollary 4, ^h<,Lfih = 0 for every p-singular conjugacy
class L of CG(M). But, since g and K are contained in different p-sections,
(K n CG(M))M is a union of p-singular conjugacy classes of CG(«). Thus we
have

A.((A: n cG(u))+eu8-
1) = J2 &-1 = °

he(K nCG(u))u

as we wanted to show.

Let « be a p-element in G, and let K be a conjugacy class of G contained in
the same /p-section of G as u. Then the elements in K with p-factor u form a
conjugacy class Ku of CG(w), and the map A" h+ Ku is a bijection between the
set of conjugacy classes of G contained in the same p-section of G as u and the
set of conjugacy classes of CG(«) contained in the same p-section of CG(«) as
u.

Let e be an idempotent in ZGG, and let eu be the unique idempotent in
ZGCG(u) such that Br(u)(e) = Br(u)(e«). We wish to compare K+e and K+eu.

The following result can be found in Iizuka [11].
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THEOREM 6. Let G be a finite group, u a p-element inG, K a conjugacy class
ofG contained in the p-section ofu in G, and Ku :— {g € K : g has p -factor u}.
Let e be an idempotent in LOG, and let eu be the unique idempotent in Z£?CG (u)
such that Br(u)(e) = Br{u)(eu). We write K+e — J2geGagS and K+eu =
£ftecc(«) P>>n with as' P* e &f°r g € G andh e CG(«). Then ag = 0 if g is
not contained in the p-section ofu, and aus = /3US for any p-regular element s
inCG(u).

PROOF. The first assertion follows from Proposition 5. Thus let j b e a p -
regular element in CG(M). ThenaUJ = k(K+eu~ls~l) and fius= X(K+euu~ls~l).
As in the proof of Proposition 5, we have

HK+eu^s'1) = X{K+euu-ls~l) = X((K D CG(u))+u-xeus-1).

If L is a conjugacy class of CG(M) contained in (K fl CG(«)) \ Ku then Lu~l is
a p-singular conjugacy class of CG(M), SO X(L+u~leus~l) — 0 by Corollary 4.
Thus

as we wanted to show.

The theorem implies that one can compute K+e from K+eu and vice versa.
As an application, we mention the following result taken from Broue [2].

PROPOSITION 7. Let G be a finite group, u a p-element in G and U the p-
section ofG containing u. Let B be a block of OG with block idempotent e and
defect group D. Ifu is not conjugate in G to an element in D then K+e = Ofor
every conjugacy class KofG contained in U.

PROOF. If u is not conjugate to an element in D then Br(u) (e) = 0. But then
eu = 0, in the notation of Theorem 6. Thus K+eu = 0 for every conjugacy class
K of G contained in U, and therefore K+e — 0 by Theorem 6.

The following result also appears in Brou6 [2].

PROPOSITION 8. Let G be a finite group, u a p-element in G and U the
p-section of G containing u. Moreover, let B be a block of GG with block
idempotent e and defect group D. Then the following statements are equivalent:

(1) K+e € JLGG for every conjugacy class KofG contained in U;
(2) u is not conjugate in G to an element in Z(D).
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PROOF. Suppose first that u e Z(D). By Brauer's First Main Theorem on
Blocks, BrD(e) is a block idempotent in FNG(D) with defect group D. Since
BrD (e)2 = BrD (e), Proposition 5 implies that there is a p-regular conjugacy class
S of NG(£>) with defect group D such that S+BrD(e) <£ JZFNG(D). We choose
s € S and note that S QCG(D). Moreover, we denote by L the conjugacy class
of NG(D) containing us - su, and by v : FNG(D) -+ F[NG(D)/D] the natural
epimorphism. It is easy to see that

v(L+) = |NG(D) n Cc{s) : NG(D) n CG(us)\v(S+) # 0.

Since the kernel of v is nilpotent this means that

L+ - |NG(D) n CG(s) : NG(D) n CG(us)\S+ € JZFNG(D),

so BrD(e)L+ £ JZFNG(D). If K denotes the conjugacy class of G containing
us then K has defect group D, and K C\ CG(D) = L. Thus

BrD(K+e) = BrD(K+)BrD(e) = L+BrD(e) £ JZFNG(D),

so K+e $ JZ&G.
Now suppose conversely that u is not conjugate to an element in Z(D), and

let K be a conjugacy class of G contained in U. If Q denotes a defect group of
Kthen

K+e € (GG)G
Q n (^G)g c ^

R<D

so K+e G (£ S < D (^G)£ + (J^)Z^G) n Z^Ge c JZ^G.

Appendix: Green's theorem a la Puig

The theorem we need is the following one.

THEOREM 9. Let P be a finite p-group, let A be a P-algebra, and let i be
an idempotent in A[. Then there is an idempotent j in A orthogonal to g j for
g € P \ {1} such that i = Tr[{j).

The theorem proved by Puig in [18] is more general, but this version suffices
for our purposes.

In the proof of Theorem 1, the theorem is applied with P = {u)/(v), A —
{V) and i = (e - eu)f.
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PROOF. Since iApi = (iAi)p we may replace A by iAi and therefore assume
that / = I4. We denote by MP(A) the ^-algebra consisting of all matrices
of degree |P | with coefficients in A. It will be convenient to index rows and
columns of elements in MP(A) by elements in P. Then MP(A) becomes a
P-algebra over 6 in such a way that {xm)yz = "("Jr '^- 'z) for x, y, z e P and
m € MP{A).

For a 6 A, we define 8{a) e MP(A) by 8(a)xy := a if x — y — 1, and
8{a)xy = 0 otherwise. Then 8 : A —> MP(A) is a (non-unitary) monomorphism
of algebras.

Fora e A, we define 8(a) := Trf (8(a)) e MP(A)P. Since

9{a)x,y = J2
zzP zeP

for a G A and x, y e P we have 9{a)Xiy — "a if x = y, and 6(a)x<y = 0
otherwise. Thus 6 : A -*• MP(A)P is a unitary homomorphism of algebras.

We write 1,4 = Trf (c) with c e A and define a(a) e M/.(A) for a e A by
«(«)^,> := (xc)a for JC, j e P. Then a : A —>• MP(A) is a homomorphism of
P-algebras since

du(.a)a(b))x.y =
ze/> zef

and

(xa(fl)),,z = x(a(a)x->y^z) = *((x~'yc)a) = (yc)(xa) = a(xa)y,2

for x, y, z e P and a € A. Moreover, a is injective since

= a

fora € A. Finally, a(A) = a(\)MP(A)a(l) since

(a(l)ma(l))xy =

form e M/>(A) andx, y e P.
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For x € P, we define y(x) e MP(A) by y(x)y<z = 1 if z = yjt, and
= 0 otherwise. Then

(y(u)y(v))Xjy - ^Ty(u)x,zy(v)2yy = y{v)xu<y = y(uv)x,y
Z€P

and
(uY(v))x,y = u(y(v)U'x,u-'y) = y(v)uix^y = y(v)x,y

for u,v,x,y e P. Since y(l) = 1, y : P -> \JMP(A)P is a homomorphism of
groups.

If m € MP(A)P then mx<y — (zm)xy — z(mz\x^-\y) foxx,y,z e P. Thus

u,z€P

for x , j € /», so m = EzepOfai^YW and
Moreover,

Ma)u.vY(x-\z =6(a)yXt2X =9{xa)y,z
U.VtP

for x,y,z & P and a e A, so y(x)0(a) = 0(Jta)y(ac) for a € A and x e P.
Suppose that J2x^p 9(ax)y(x) = 0 where ax € A for x e P. Then

0 -

for 3> e P, so M/>(A)/> = (&zeP9(A)y(z) is isomorphic to the skew group
algebra A P of P over A. The usual proof of Green's indecomposability theorem
(see [10] or the proposition below) shows that any primitive idempotent in A
stays primitive in AP. Let us therefore write \A = ex -i +er with pairwise
orthogonal primitive idempotents eit..., er in A. Then we have 1MP(A) =
6>(1) = 9(e\) + • • • + 9(er) with pairwise orthogonal primitive idempotents
9{ex),..., 9{er) inMP{A)p'. Since a ( l ) is an idempotent in MP(A)p there are a
subset / of { 1 , . . . , r} and a unit w in MP(A)P such that a( l ) = ""(£,€y 0(e,-))
(see 2.10 in [13], for example). Then j ' := w(J2i€j *(«,-)) is an idempotent in
MP(A) orthogonal to gj' for g e P \ {1} such that a ( l ) = Trf (;'); in particular,
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/ G a(l)MP(A)a(l) — a(A), so / = a(j) for an idempotent j in A satisfying
the required properties.

The seemingly technical calculations of the proof are by now standard tools
in ring theory (see Cohen and Montgomery [4], for example).

It remains to prove Green's indecomposability theorem in the following
version.

PROPOSITION 10. Let P be a finite p-group, A a P'-algebra over 6 and AP
the corresponding skew group algebra of P over A. Then every primitive
idempotent in A remains primitive in AP.

PROOF. Let / be a primitive idempotent in A. Then i + JA is a primitive
idempotent in A/JA. Since JA is a P-invariant ideal of A, it generates a nilpotent
ideal (JA)(AP) = (AP)(JA) of AP such that AP/(JA)(AP) is isomorphic to
(A/JA)P, the skew group algebra of P over the P-algebra A/JA. Since it
suffices to prove that i + JA is primitive in {A/JA)P, we may assume that
L 4 = 0 .

In this case A is a direct product of complete matrix algebras over F permuted
by P. If A is isomorphic to A! x A2 with P-algebras A\, A2 then AP is
isomorphic to A\ P x A2P. Thus we may assume that A = Bx x • • • x Bq with
complete matrix algebras B\,..., Bq over F transitively permuted by P. We
denote by Q the stabilizer of Bx in P and by gi,..., gq a set of represesentatives
for the cosets g Q in P. Then the map

Mat(fl, Q) —• AP,

is easily seen to be an isomorphism of algebras. In particular, any primitive
idempotent in B\ Q remains primitive in AP. Thus we may assume that A itself
is a complete matrix algebra over F.

For g e G, there is an element ug e UA such that sa — ugau~l for a e A,
by the Skolem-Noether theorem. Moreover, uguhu~^ e UZA = UFl^ for
g,h e P, and the map (g, h) H> uguhu~^ is a 2-cocycle of P with values in
\JZA = UFlA. Since P is a p-group we have H2(/>, UF) = 1, so we may
assume that uguh = ugh for g, h e P. But then the map

AgifFP—• AP, a®g\-^ au-]g.
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is an isomorphism of algebras; in particular, A P/J(A P) is isomorphic to A, and
the result follows.

The result is known to hold, more generally, for crossed products instead of
skew group algebras. Essentially the same proof works in this more general
situation.
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