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Abstract

Spectral features introduced by instrumental chromaticity of radio interferometers have the potential to negatively impact
the ability to perform Epoch of Reionisation and Cosmic Dawn (EoR/CD) science. We describe instrument calibration
choices that influence the spectral characteristics of the science data, and assess their impact on EoR/CD statistical and
tomographic experiments. Principally, we consider the intrinsic spectral response of the antennas, embedded within a
complete frequency-dependent primary beam response, and instrument sampling. The analysis is applied to the proposed
SKA1-Low EoR/CD experiments. We provide tolerances on the smoothness of the SKA station primary beam bandpass,
to meet the scientific goals of statistical and tomographic (imaging) of EoR/CD programs. Two calibration strategies are
tested: (1) fitting of each fine channel independently, and (2) fitting of an nth-order polynomial for each ∼1 MHz coarse
channel with (n+1)th-order residuals (n = 2, 3, 4). Strategy (1) leads to uncorrelated power in the 2D power spectrum
proportional to the thermal noise power, thereby reducing the overall sensitivity. Strategy (2) leads to correlated residuals
from the fitting, and residual signal power with (n+1)th-order curvature. For the residual power to be less than the thermal
noise, the fractional amplitude of a fourth-order term in the bandpass across a single coarse channel must be <2.5%
(50 MHz), <0.5% (150 MHz), <0.8% (200 MHz). The tomographic experiment places constraints on phase residuals
in the bandpass. We find that the root-mean-square variability over all stations of the change in phase across any fine
channel (4.578 kHz) should not exceed 0.2 degrees.
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1 INTRODUCTION

Detection of the signal from the Epoch of Reionisation (EoR),
and estimation of the spatial properties of neutral hydrogen
from the early Universe, are challenging experiments, re-
quiring high fidelity data with known statistical properties
(Koopmans et al. 2015; Parsons et al. 2010; van Haarlem
et al. 2013; Bowman et al. 2013). For these, instrumen-
tal effects that bias the signal can have a large impact on
the success of the experiment, and interpretation of results.
Statistical experiments, such as measurement of the spatial
power spectrum of neutral hydrogen (H i) brightness temper-
ature fluctuations, implicitly rely on datasets that have been
observed with a spectrally smooth instrument, in order to as-
sociate spectral structure with intrinsic spatial fluctuations.
Similarly, H i tomography (imaging as a function of fine
spectral channel) aims to detect and measure weak spectral
lines from H i clouds, thereby requiring smooth instrumental

spectral characteristics in order to not bias the signal. Further,
phase residuals in the calibration of stations reduces imaging
dynamic range, destroying the detectability of weak signals
(Perley 1999).

Low-frequency aperture array interferometers, such as
the Square Kilometre Array (SKA-Low), use the electronic
combination of individual element antennas in an ‘aper-
ture array’, to form a single beam on the sky. This set of
beam-formed elements forms a single station. These sta-
tions are then used as the primary aperture with which
to form cross-correlations for interferometric visibilities.
The advantages of aperture array telescopes include flexi-
ble and dynamic allocation of elements to a station, flexi-
ble, and dynamic assignment of weights to alter the beam
shape (apodisation), and durability due to the lack of mov-
ing parts. Such trade-offs are being studied for the SKA
(Grainge 2014; Mort et al. 2016). The disadvantages include
direction-dependent primary beam shapes, strong off-zenith
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2 Trott and Wayth

instrumental polarisation, and mutual coupling between ele-
ments (Sutinjo et al. 2015).

Calibration of radio interferometers is crucial to obtaining
science-quality data. For precision quantitative experiments,
accurate and precise calibration is required for reliable results
to be achieved and claimed. Calibration is the process by
which the electronic gain amplitude and phase is set for each
receiving element, such that the sky position and source flux
density of any sky source is correct. Calibration of interfer-
ometric arrays implies measurement and setting of the com-
plex gain parameters for each station, as constructed from the
gains of each element. Direction-independent, but frequency-
dependent bandpass and phase calibration is required for
each station that will form an interferometric baseline. The
calibration process for a low-frequency interferometer typ-
ically involves simultaneously solving for station direction-
independent and -dependent complex-valued gains (possi-
bly including ionospheric effects) using a sky model and
primary beam model (Mitchell et al. 2008; Yatawatta et al.
2008; Kazemi, Yatawatta, & Zaroubi 2013; Tasse et al. 2013).
Principally, each antenna will have a bandpass that must be
calibrated. The simplest model is to treat each frequency
channel as being independent, but other approaches can be
used if characteristics of the bandpass shape are known. In
general, we are separating the direction-independent band-
pass fitting from the direction-dependent beam fitting, but
these may be combined to exploit the expected characteris-
tics of the instrument (e.g., Yatawatta 2015, where a smooth
polynomial is used to regularise the bandpass solution in
a full direction-dependent calibration). In these more ad-
vanced approaches, instrument responses that fail the under-
lying smoothness tests (e.g., rapid changes in the bandpass
shape) will still leave residual bandpass structure, and yield
potential biases in the final calibrated data. Here, we try to
take a general approach to fitting of the bandpass, under the
assumption of a smooth response in frequency.

Understanding the instrument spectral response is espe-
cially important for EoR and Cosmic Dawn (CD) experi-
ments (Trott et al. 2016; Offringa et al. 2016; Barry et al.
2016). Probing an emission line over cosmological volume
is achieved by detecting and measuring the line as a function
of redshift, and hence as a function of frequency. For statis-
tical experiments where the spatial structure of H i is probed
by a Fourier-like transform along frequency (obtaining in-
formation about the characteristic size scale of neutral and
ionised regions), unmodelled instrumental spectral structure
that is localised in frequency space contaminates the entire
signal space after Fourier transform, thereby biasing results.
Likewise, for imaging experiments, which aim to directly
detect and map individual ionised bubbles, spectral structure
can mimic these structures. Further, residual phase in the data
smears the signal from other sources in the field, reducing
the contrast (dynamic range) between the background and
the bubble of interest.

In addition to the imprecision of gain calibration parame-
ters due to limited information, there is the potential for inac-

curate calibration if an input sky model, or input instrument
model is incomplete or incorrect. The latter is determined
by the bandpass shape of the station antennas and electron-
ics, and may be element- and time-dependent. Early testing
of the SKA low-frequency aperture array element dipoles
(SKALA) show strong spectral features (de Lera Acedo et al.
2015). These features have the potential to leave residual sig-
nal in the data if calibration is not carefully performed. In this
work, we describe two common calibration methods, and ex-
plore the effects of imprecise and inaccurate calibration for
SKA-Low for the planned EoR experiments.

2 EXPERIMENTS AND THEIR SCIENCE
REQUIREMENTS

The EoR/CD program includes three major experiments:

1. Power spectrum: The underlying data for the power
spectrum estimation will be visibilities, which have
been averaged to ∼100 kHz and 5 s. Simplistically,
these visibilities are gridded and integrated, and then
squared and normalised by volume to form a power
spectrum (units: K2 Mpc3). Tolerances for spectral
gradients in the post-calibration bandpass will be
computed on this basis, using the station calibration
timescale to define the information available for cali-
bration.

2. Tomography: The imaging data consist of visibilities
averaged to ∼100 kHz and integrated.

3. 21-cm Forest: The data will be high spectral resolution
image cubes, with fine spectral channels (∼4 kHz).

Table 1 lists the relevant parameters of the data and experi-
ments, as used in this analysis.

The current SKA Level 1 requirement for station complex
gain calibration is 600 s1. This timescale will be used to
determine the temporal tolerance of the bandpass stability.
The spectral resolution allows 65 536 fine channels across
the 300-MHz bandwidth2, yielding 4.578-kHz channels.

3 APPROACH

We use the array baseline design3, incorporating 94 super-
stations of six logical ∼33-m stations arranged in a floral
configuration. This configuration provides a large amount of
sensitivity to angular modes on the sky corresponding to the
∼33 m intra-superstation baseline, and twice this length.

1SKA System Requirement SYS_REQ-2635
2SKA System Requirement SYS_REQ-2148
3Described in Document SKA-SCI-LOW-001 (SKA1-LOW Configuration)
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Spectral Calibration of Interferometers for EoR 3

Table 1. Spectral and temporal parameters of EoR/CD experiments, as described in Koopmans et al.
(2015). 1Averaging to match an integer number of fine channels.

Experiment �ν �t Product Total time �2
T (k = 0.03 Mpc−1)

Power spectrum (54 MHz) 109.8 kHz1 5 s Visibilities 1 000 h 0.2 mK2

Power spectrum (84 MHz) 109.8 kHz1 5 s Visibilities 1 000 h 0.02 mK2

Power spectrum (143 MHz) 109.8 kHz1 5 s Visibilities 1 000 h 0.005 mK2

Experiment �ν �t Product Total time �T
Tomography (>50 MHz) 100 kHz 1 000 h Image cube 1 000 h 1 mK
Experiment �ν �t Product Total time �S
21-cm absorption (>50 MHz) 4.5 kHz 1 000 h Image cube 1 000 h 0.2 mJy

3.1 Power spectrum

We compute the thermal noise uncertainty for the experi-
ments described in Table 1, for the 2D (cylindrical) power
spectrum. The uv-plane resolution is defined by the field
of view (FOV) of the telescope at a given frequency. We
choose an experiment bandwidth of 10 MHz around three
central frequencies: 50 MHz (z ∼ 25), 150 MHz (z ∼ 8.5),
and 200 MHz (z ∼ 6.1). This thermal noise estimate pro-
vides the reference level, below which, spectral features may
be tolerated.

We compare the thermal noise and bias tolerance to the
signal in the power spectrum due to calibration errors and
residuals, using a statistical model of the point source popu-
lation. The following approach is taken:

1. Compute the signal available from the sky to per-
form calibration, using a statistical model of unresolved
point sources, as observed by an interferometer with a
frequency-dependent primary beam. This model serves
two purposes: (a) as a reference signal of the power
in the sky, and its statistical signature in power spec-
trum parameter space; (b) as the source population to
which calibration is applied (i.e., the sky model), and
from which residual signal stems after application of
an incorrect calibration model.

2. Compute the precision with which calibration is
achievable with an ideal estimator for two calibration
schemes, based on the statistical sky model, and prop-
agate uncertainties into the power spectrum.

3. Compute the residual signal (accuracy) from the sky
model due to unfitted spectral structure in the calibra-
tion process, and propagate into the power spectrum.

3.2 Tomography

We compute the loss in dynamic range in an image cube due
to residual phase gradients across the fine frequency chan-
nels. We compute the residual gradient in phase that may be
tolerated such that an intrinsic 1 mK brightness temperature
fluctuation in a 100-kHz spectral channel is detectable.

4 POWER SPECTRUM

4.1 Signal due to calibration uncertainties and
residual spectral structure

One possible calibration approach for EoR will be composed
of a set of steps to model and remove sky signal, potentially
including a direct subtraction of sources through a Global
Sky Model (GSM). This step occurs after calibration of each
station’s bandpass, and assumes accurate and precise cali-
bration. There are two sources of residual spectral signal due
to calibration: (1) In the case of bandpass calibration un-
certainties, residual noise-like sky signal will remain in the
data from fitting of the bandpass calibration parameters using
the information available in the sky; (2) residual sky signal
power and structure will remain from any spectral curvature
terms that are not accounted for in the calibration model.
Subtraction of the GSM will leave these residuals in the data
due to incomplete and imprecise calibration of the complex
station gain parameters.

The model and approach used for bandpass calibration
will affect the calibration precision and the residual signal.
Conceptually, there is a trade-off between precision and com-
plexity of the model. For example, a polynomial fitted in
amplitude and phase to each coarse channel of order N will
yield a handful of parameters with precision dependent on
the information available in the data obtained over the cal-
ibration timescale, and leave residual signal with spectral
curvature of order >N. The parameter estimates are also
likely to be correlated in frequency, thereby correlating the
fine frequency channels. Conversely, each fine channel can be
independently fitted, using a single amplitude and phase es-
timate. This would yield uncorrelated uncertainties between
fine channels, but requires the fitting of more parameters,
thereby reducing signal to noise.

In this work, we explore both precision and accuracy. We
compute the signal introduced by imprecise bandpass calibra-
tion, leading to additional noise in the data. We then consider
gain amplitude and phase residuals, whereby the calibration
model is incorrect, and spectral structure remains. The former
introduces additional signal due to noise-like fluctuations in
the visibilities. The latter introduces the additional signal into
the power spectrum due to residual signal from the sources
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4 Trott and Wayth

in the sky. In all cases described, we are computing signal
power that is additive to thermal noise and sky power in the
power spectrum space.

We take two common calibration approaches—low-order
polynomial fitting and individual fine-channel fitting—and
compute the precision with which these parameters can be es-
timated and their correlations using the Cramer–Rao Bound
(Kay 1993). The parameters of importance are the complex-
valued gains for each station (or, equivalently the amplitude
and phase) over a solution interval in frequency. The un-
certainties on these parameters, which may be correlated,
are propagated back into the bandpass solution, and through
to the power spectrum, to yield the calibration uncertainty
power. Remaining spectral curvature is then propagated into
the power spectrum to yield the residual spectral power.
The former sets the noise floor for the calibration method,
while the latter informs the spectral gradient tolerance for the
bandpass solution by determining how much additional bias
signal is introduced into the experiment.

In all cases, we are considering real sky signal that remains
in the data, and yields signal in the power spectrum that is
additive to the thermal noise power. We also do not specify an
actual procedure for performing the calibration. Rather, the
approach is valid for any general unbiased estimator, hence
represents the best possible result that can be obtained using
the proposed models.

4.2 Formalism

We use a statistical model of the instrument, which allows
us to propagate spectral signal into the power spectrum pa-
rameter space. This model includes all instrumental spectral
features, including a frequency-dependent primary beam, and
instrumental layout (configuration). The covariance between
frequency channels ν and ν ′, at angular wavenumber u is
given generically by Trott et al. (2016):

CFG(ν, ν ′; u)

= ρ(ν; ν ′; u)

∫ ∞

0
B(l; ν)B(l; ν ′)J0

(
2π(ul)(ν − ν ′)

)
ldl Jy2.

(1)

Here, B(l, m; ν) describes the frequency-dependent pri-
mary beam response to the sky at radial position l = |l|,
ρ contains the frequency correlations at spatial wavemode
u, and the Bessel function performs the Fourier Transform
to wavenumber space at mode u (∝ k⊥). This expression is
appropriate for a circularly-symmetric primary beam, and al-
lows the propagation of any spectral function into the power
spectrum. It is then propagated into the 2D power spectrum
parameter space according to a Fourier transform:

〈Pk(k⊥, η)〉 = F†CFGF , (2)

with relevant cosmological co-ordinate conversions at a given
frequency (redshift) to convert the line-of-sight wavenumber,

η (Hz−1), to k‖ (Mpc−1), and the angular wavenumber u to
k⊥.

4.2.1 Reference signal power from the sky

To estimate the power due to astrophysical sources in the
sky, we use a statistical model for extragalactic point sources,
based on a parametric source counts function and a Poisson
random position distribution across the sky. The model used,
and the framework for it, are described in Trott et al. (2016)
and Trott & Tingay (2015). The number of sources of a
given flux density in a unit area of sky is Poisson-distributed
(P()):

N(S, S + dS)dS dl ∼ P(〈N〉), (3)

where 〈N〉 is the expected number, given parametrically by

〈N(S, S + dS)〉(ν) = dN

dS
(ν) dS dl (4)

= α

(
ν

ν0

)γ (SJy

S0

)−β

dS dl. (5)

We use values of α = 4100 Jy−1sr−1, β = 1.59 and γ =
−0.8 at 150 MHz, in line with recent measurements (In-
tema et al. 2011; Gervasi et al. 2008). This Poisson statistical
model is propagated into the power spectrum, using a full
frequency–frequency covariance to describe the spectral cor-
relations, and instrument sampling to produce the ‘wedge’
effect of foreground contamination.

The frequency–frequency covariance at angular wavenum-
ber u = |x|c/ν0, for a Gaussian-shaped primary beam of a
station of diameter D is given by (Trott et al. 2016)

CFG(ν, ν ′) = α

3 − β

( ν

ν ′

)−γ S3−β
max

S−β

0

πc2ε2

D2

1

ν2 + ν ′2

exp

(−u2c2 f (ν)2ε2

4(ν2 + ν ′2)D2

)
, (6)

where ε = 0.42 converts an Airy disk to a Gaussian charac-
teristic width, and f (ν) = (ν − ν ′)/ν0. This model describes
the covariance for a full extragalactic point source popu-
lation within the FOV of an SKA1-Low station. Equation
(6), propagated according to equation (2), then contains the
expected signal in the 2D parameter space due to sources
within the FOV, for a perfectly calibrated instrument. For the
SKA, we consider a 12-MHz bandwidth for each experiment
(16 coarse channels), and an FOV associated with a 35-m
station at each frequency. This yields a power spectrum pa-
rameter space (at 150 MHz) of k‖ = [0.01, 1.60]h Mpc−1,
k⊥ = [0.02, 2.07]h Mpc−1.

The top-left panels of Figure 1–3 display the power due
to unresolved point sources for the experiments described
in Table 1 and a 2D, cylindrically averaged parameter space
(k⊥, k‖). All unresolved sources with a flux density below 5 Jy
remain in the data. This is to ensure the model is statistically
consistent (i.e., brighter sources are rare and not accurately
characterised by this statistical model). The unresolved point
source model describes the total sky power as observed by
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Spectral Calibration of Interferometers for EoR 5

Figure 1. 50 MHz: (Top-left) Reference unresolved point source model, propagated into the power spectrum; (top-centre) the calibration uncertainty power
for a third-order polynomial fit; (top-right) residual unresolved point source power in the most pessimistic calibration model (scaled to the tolerance level);
(bottom-left) the residual unresolved point source power due to residual fourth-order curvature (most optimistic model); (bottom-centre) the uncertainty
power due to calibration of each fine channel independently; (bottom-right) thermal noise power.

the instrument, with a frequency-dependent primary beam.
At its core is a frequency–frequency covariance matrix that
describes all the frequency correlations of signal in the data.
It is this covariance matrix that can be used to approximate
spectral bandpass features, and their effects in the EoR power
spectrum. The full reference point source model described
above provides the complete signal due to sources in the sky
without any signal subtraction.

4.3 Calibration uncertainty

Both calibration schemes (polynomial and fine-channel fit-
ting) are expected to have temporally uncorrelated uncer-
tainties between calibration cycles, yielding a factor of
Tobs/Tcal = 1 000 h/600 s = 6 000 reduction in calibration
uncertainty power over the full experiment. It is often implic-
itly assumed that individual stations will have uncorrelated
errors, yielding a stochastic reduction by a factor equivalent
to the uv-sampling over the 4-h nightly track (we term this the
‘optimistic’ case). These are taken into account in the mod-
elling. In particular, the estimation of parameters for each sta-
tion uses visibilities for the whole array, yielding a factor of
(Nant − 1)/2 improvement in power. In the case where short
baselines are omitted from the calibration (to avoid large-
scale structure biasing the procedure), fewer baselines are
available and the improvement will be reduced. For SKA1-

Low, there are many short baselines in the core, and within
each of the superstations. Of the 158 000 baselines, >4 000
are shorter than 50 wavelengths at 150 MHz, effectively re-
ducing the improvement from measurements from a factor
of (Nant − 1)/2 � 280 to ∼270. This has, therefore, only a
minor impact.

4.3.1 Polynomial fitting

One approach to bandpass calibration assumes that the band-
pass may be fitted with a low-order polynomial function. This
has the advantage of estimating only a handful of parameters
over the bandwidth. In this work, we take a reasonable ap-
proach of fitting for each coarse channel independently, but
using three contiguous coarse channels to perform the fit. The
real and imaginary components are fitted as separate polyno-
mials. We assume that a nth-order polynomial (n = 2, 3, 4)
is fitted over these three coarse channels independently to
each of the real and imaginary components of the visibilities,
with Nfine = 168 fine channels of νfine = 4.578 kHz within
a coarse band (�νcoarse = 769.043 kHz). Each fit therefore
uses 3 × 168 = 504 datapoints, with 600 s of data and the full
sky power, and there are two fits (the information for which
is contained in twice as many datapoints when counting the
real and imaginary components of the complex visibilities).
Figure 4 shows this calibration scheme. For the third-order
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6 Trott and Wayth

Figure 2. 150 MHz: (Top-left) Reference unresolved point source model, propagated into the power spectrum; (top-centre) the calibration uncertainty power
for a third-order polynomial fit; (top-right) residual unresolved point source power in the most pessimistic calibration model (scaled to the tolerance level);
(bottom-left) the residual unresolved point source power due to residual fourth-order curvature (most optimistic model); (bottom-centre) the uncertainty
power due to calibration of each fine channel independently; (bottom-right) thermal noise power.

polynomial, we fit four parameters, A, B,C, D, such that

Sr,i(ν) = A(ν − ν0)
3 + B(ν − ν0)

2 + C(ν − ν0) + D, (7)

where r, i index real and imaginary, and ν0 is defined as the
centre of the coarse channel. The Fisher Information Matrix
and the subsequent propagation of the correlated errors back
into the signal, are independent of the actual values of A, B,C,

and D (due to the fact that they are linear), thereby making this
a general third-order model. The second- and fourth-order fits
have one fewer or one more parameter. The amplitude, A, of
the calibration solution is given, as usual, by

A(ν) =
√

Sr(ν)2 + Si(ν)2, (8)

and the phase, �, by

�(ν) = atan

(
Si

Sr

)
. (9)

4.3.2 Fine-channel fitting

An alternative calibration method is to estimate the ampli-
tude of each fine frequency channel independently. This has
the advantage of removing any residual correlation between
channels, but, requiring estimation of 168 parameters over a
single coarse channel, requires sufficient information to be

available on the calibration timescale (i.e., sufficient signal to
noise in 600 s to obtain a precise estimate). The consequent
calibration precision will be lower for more parameters, but
spectral correlations will be removed, and no residual cur-
vature will remain, except within a fine channel.

4.4 Residual spectral power—amplitude residuals

The fitting of a low-order polynomial (order n) over three
coarse channels leaves residual spectral signal of, at least,
order n + 1 in each coarse channel. This residual signal is
correlated across fine frequency channels, and hence gen-
erates residual power, with structure in the power spectrum
parameter space. It is also subject to Runge’s Effect, which
occurs when fitting polynomials to regularly discretized data
(see Section 4.6).

For each coarse channel for each of the real and imaginary
components, we assume there remains a residual signal with
unity mean (relative bandpass):

Sr,i,res(ν) = Smn

(
ν − νc − ξr,i

�νcoarse

)n+1

, (10)

where νc and �νcoarse are the frequency offset and coarse
channel bandwidth, respectively, and Smn is a normalisation
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Spectral Calibration of Interferometers for EoR 7

Figure 3. 200 MHz: (Top-left) Reference unresolved point source model, propagated into the power spectrum; (top-centre) the calibration uncertainty power
for a third-order polynomial fit; (top-right) residual unresolved point source power in the most pessimistic calibration model (scaled to the tolerance level);
(bottom-left) the residual unresolved point source power due to residual fourth-order curvature (most optimistic model); (bottom-centre) the uncertainty
power due to calibration of each fine channel independently; (bottom-right) thermal noise power.

that sets the relative bandpass amplitude across the channel
to equal unity. The offset ξr,i translates the real and imagi-
nary component residuals with respect to each other, and is
a feature of a dipole antenna where the real and imaginary
components are frequency dependent. The mismatch occurs
when combining voltages from antennas with slightly differ-
ent characteristics (e.g., due to wind load or temperature),
such that a sharp feature arises where there is a rapid change
in the voltage response. This form allows a spectral feature
in the bandpass amplitude at νc, with an associated phase
gradient with characteristic width |ξr − ξi| (see Section 4.5).
The residual signal, equation (10), is used to define the intra-
channel correlation matrix, ρ(ν, ν ′) (channels within each
coarse channel are correlated, while inter-channel correla-
tions are zero). This matrix is used, along with the sky point
source signal model according to equation (1), to define the
power in the 2D power spectrum due to the fractional residual
signal in the bandpass.

We consider an optimistic and a pessimistic model to de-
scribe the temporal and inter-station correlation of residual
spectral curvature:

• Optimistic model: The most optimistic model for the
residual signal is when each station’s bandpass shape
is different, and varies on timescales smaller than the

calibration timescale. This leads to uncorrelated errors
between stations and over time, yielding a stochastic
signal that reduces with time.

• Pessimistic model: The pessimistic model assumes
that the station bandpass spectral shapes are the same
across all stations (as described by the model dipole
bandpass), and vary slowly in time. This model as-
sumes complete correlation of residual errors between
all stations and over a full 4-h nightly track, thereby
increasing the residual signal power by a factor of
(Nant × ttrack/tcalibration) compared with the optimistic
scenario.

In order to set the tolerance level, δ, for the n + 1-order
polynomial residual, we scale the pessimistic model residual
power until the amplitude of the thermal noise exceeds the
residual across the full range of angular wavenumbers, k⊥.
This defines the maximum fractional bandpass error over a
coarse channel.

4.5 Residual spectral power—phase residuals

Fitting of a nth-order polynomial to the real and imaginary
components of the complex gain leaves at least (n+1)th-order
residuals in both the components. For the third-order fit, the
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8 Trott and Wayth

Figure 4. Schematic figure showing a smooth fit over three contiguous
coarse channels, where the fit is performed on a fine-channel basis. The
fitting parameters derived from these three coarse channels are used to
calibrate the central channel only. Each vertical bar denotes a single fine
channel, and the red lines denote coarse channel band edges.

mismatch between the real and imaginary components yields
a residual phase, according to

φ(ν) = atan
Ai

Ar

(ν − νi − ξ/2)4

(ν − νr + ξ/2)4
, (11)

where, ξ = ξr − ξi, and in the simplest case of equal ampli-
tudes and turning points (Ar = Ai, νi = νr), has the form:

φ(ν) = atan
(ν − νi − ξ/2)4

(ν − νi + ξ/2)4
. (12)

Here, ξ is the frequency mismatch between the real and
imaginary components. This form encapsulates the features
of a dipole antenna where there is a frequency-dependent
change in the real and imaginary components of the voltage
response. Such features are observed in early testing of the
SKALA antenna (de Lera Acedo et al. 2015).

Figure 5 (left) shows four representative phase plots as a
function of frequency using equation (12), where the mis-
match in frequency is equivalent to a single fine channel
(ξ = 4.578 kHz; ‘Fine’), 24 fine channels (an EoR spec-
tral channel; ξ = 109.87 kHz; ‘EoR’), one-half of a coarse
channel (ξ = 384.6 kHz; ‘Half coarse’), and a single coarse
channel (ξ = 769.10 kHz; ‘Coarse’). Each symbol denotes a
single fine channel. The smaller the mismatch ξ , the steeper
the phase feature. However, when the data are averaged to the
EoR spectral resolution, mismatches finer than the channel
resolution, 109.87 kHz, are smoothed.

We average each fine channel to the EoR spectral reso-
lution, before forming the frequency–frequency correlation
matrix, and propagating into the power spectrum. The errors
are computed for a single coarse channel, with the remain-
der of the band showing no phase residuals. This therefore
corresponds to the best-case scenario.

In phase, the correlation matrix contains complex phase
terms that imprint phase structure. Figure 5 (right) plots the
ratio of power for each value of ξ , compared with a flat

profile (zero phase),
|P

ξ
|

Pflat
, for a chosen cut through the 2D

parameter space. The different phase structure imprints fea-
tures at harmonics of the coarse bandpass, convolved with the
spectral shape of the phase error. The phase errors bias the
cosmological signal by re-distributing power in LOS modes,
but do not contribute power because the power spectrum

Figure 5. (Left) Phase plots as a function of frequency using equation (12), where the mismatch in frequency is equivalent to a single
fine channel (4.578 kHz; ‘Fine’), 24 fine channels (an EoR spectral channel; 109.87 kHz; ‘EoR’), one-half of a coarse channel (384.6

kHz; ‘Half coarse’), and a single coarse channel (769.10 kHz; ‘Coarse’). (Right) Ratio of power to a flat phase profile,
|P

ξ
|

Pflat
, for a single

value of k⊥, and four values of the frequency mismatch, ξ .
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Figure 6. Ratio of residual power after polynomial fitting, where the ratios compare a fourth-order
fit to a third-order fit (left), and a fourth-order fit to a second-order fit (right). Runge’s phenomenon
is visible at high k‖ where fitting residuals at the box edges are larger for higher order fits.

natively destroys phase information, by squaring the com-
plex visibilities.

4.6 Results

Figure 1–3 display the 2D power spectra for each frequency,
for the following: (top-left) the reference unresolved point
source model; (top-centre) the calibration uncertainty power
for a third-order polynomial fit; (top-right) the residual unre-
solved point source power due to residual fourth-order curva-
ture (pessimistic model, scaled to reach thermal noise level);
(bottom-left) the residual unresolved point source power
due to residual fourth-order curvature (optimistic model);
(bottom-centre) the uncertainty power due to calibration of
each fine channel independently; and (bottom-right) the ther-
mal noise power.

The strategy to calibrate each fine channel independently
leads to no residual curvature (above the fine-channel level)
and no correlations, but is less precise than estimating the
polynomial parameters because more independent parame-
ters needs to be fitted, and therefore there are fewer available
degrees of freedom. For bandpass responses that are smooth,
this strategy costs a larger amount than the polynomial fitting,
in the optimistic case.

In each experiment, the calibration uncertainty power due
to fitting a third-order polynomial over three contiguous
coarse channels yields structured power in the power spec-
trum space. This power is less than the thermal noise, but
has the potential to cause low-level bias in the derived sci-
ence results due to its shape. This is particularly true at low
frequencies where the calibration uncertainty power is com-
parable to the thermal noise. The regular, horizontal lines
of increased power in k‖ are due to the correlation of uncer-
tainties across a given coarse channel, but with independence
between channels. This leads to a block-diagonal structure to
the correlation matrix, and the features observed in the power
spectrum. It is also a consequence of Runge’s phenomenon

(e.g., see Dahlquist & Bjorck 2003), whereby fitting a poly-
nomial to regularly space datapoints across a box leads to
high-frequency residuals at the box edges. These residuals
increase in amplitude for higher order polynomial fits (for
the same data spacing, as is the case here). This effect is visi-
ble in both the calibration uncertainty power (order n fitting)
and the residual power (order n+1 fitting). We can further
demonstrate this by computing the ratio of residual power
for different polynomial orders. Figure 6 displays the ratio
of the power in the fourth-order fit to the second- and third-
order fits. The additional power at high frequency (high k‖)
is visible for the higher order fits.

This structure in k‖ has the potential to yield bias in the
results. As compared to the uncertainties (additional power)
due to limited information, as computed by the Cramer–
Rao bound, bias can add signal power that may be mis-
taken for cosmological power, in a statistical estimate. De-
spite potentially yielding a better fit to the data, the addi-
tional structured power from higher order polynomials may
be more problematic than using a fine-channel fitting proce-
dure, where the residual power is higher, but is flat across
the parameter space. This choice is subject to the experi-
ment itself, where the power at the location of the struc-
tures in k‖ relative to the cosmological signal power will
determine the best approach (i.e., if the cosmological signal
is expected to peak in the same region where the residual
power gradient is large, then the bias will be increased). This
is model-, bandwidth-, and redshift-dependent for a given
telescope.

Table 2 lists the relative fractional bandpass error toler-
able in a (n+1)th-order polynomial residual, as applied to
the plots, where δ is the fractional reduction in power val-
ues. Each tolerance is approximately 1%, but higher order
fits have more stringent constraints due to the additional
structured power at high k‖. Note that these results are ap-
propriate when the underlying shape is well fitted by an
(n + 1)th-order polynomial, such that the amplitude of
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10 Trott and Wayth

Figure 7. 2D power from phase residuals on sky point sources at 200 MHz, scaled by the amplitude tolerance, δ=0.008, for four values
of the frequency mismatch, ξ . The overall scale of power is not markedly changed, but the power is distributed differently in k‖. (a) Fine.
(b) EoR. (c) Half a coarse channel. (d) Coarse.

Table 2. Derived tolerances for each experiment such that
the residual power due to (n+1)th-order curvature in the
bandpass is less than the thermal noise.

Experiment δn=2 δn=3 δn=4

50 MHz 0.027 0.025 0.019
100 MHz 0.011 0.010 0.008
150 MHz 0.006 0.005 0.004
200 MHz 0.009 0.008 0.006

terms with > (n + 1)th-order are small compared with the
(n + 1)th order.

The impact of phase residuals described in Section 4.5
is plotted in the 2D power spectrum in Figure 7. Here, the
same fractional reduction in power values, δ, as described
in Table 2 is applied to the sky point source model, in or-

der to scale the uncertainty power to that deemed tolerable
from amplitude residuals. Frequency mismatches below the
EoR channel averaging bandpass (109.8 kHz) are smoothed,
while much larger mismatches imprint a slower gradient
structure. The largest differential is obtained for a fre-
quency mismatch of the same scale as the spectral resolution
(4.578 kHz), while the power distribution is most different
from flat for a mismatch corresponding to the coarse channel
bandwidth.

When the amplitude and phase residuals are combined,
the phase errors introduce a small power bias difference in
the low k-modes. Figure 8 displays the spherically averaged
(1D) power from the amplitude and phase residuals, for each
of four different values for ξ . Smoother transitions in the
spectrum (larger ξ ) yield larger bias at low k, with factors
of two reduction in power. There is, therefore, a bias in the
power. The phase gradient tolerance derived from this work
is weak, due to the implicit loss of phase information in the
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Figure 8. 1D (spherically averaged) power spectra for each value of the frequency mismatch, ξ , displaying the power bias introduced
by a given combination of δ and ξ . Also shown is the thermal noise level. (a) 50 MHz. (b) 150 MHz. (c) 200 MHz.

power spectrum upon squaring of the complex-valued data.
A much more stringent gradient is set by the tomographic
experiment, where phase is retained, and this is explored in
the next section. As was shown for the 2D case in Figure 6,
the structures at high k‖ yield biases at large k.

5 TOMOGRAPHY

The tomographic experiment is a new addition to the EoR
observational arsenal, not previously accessible with lower
sensitivity instruments. It is a challenging experiment that
uses deep image cubes to detect brightness temperature fluc-

tuations corresponding to ionised structures (e.g., bubbles) in
the CD and EoR. It is therefore a direct detection experiment,
rather than a statistical experiment, necessitating high image
dynamic range and precision calibration. We assess phase
residual impact at 150 MHz, and at a wavenumber, k, where
the array filling factor is close to unity.

There are several approaches to assess the image dynamic
range due to phase residuals, with a thorough treatment and
rules-of-thumb presented in Perley (1999). Here, we wish to
consider the impact of a residual phase gradient across a 100-
kHz channel, with uncorrelated gradients between stations.
To perform this analysis, we consider the maximum phase
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change across a fine channel. We define the phase within a
fine channel for station α to be

φ
α
(ν) = ε

α
ν, (13)

with a visibility at ν measured between two stations of

V ′
αβ

(ν) = V
αβ

(ν) exp
(
−2π i(ε

α
− ε

β
)ν

)
. (14)

Integration of a signal across a channel leads to signal
decorrelation according to the integral of this expression,
such that the visibility degradation is given by

V ′

V
= 1

2π�ε�ν
[sin (2π�ε�ν) + i(cos (2π�ε�ν) − 1)] ,

(15)

where �ε and �ν are the phase gradient differences be-
tween stations and channel width, respectively. One can im-
mediately observe that the real part of this expression is
a sinc function, which is <1 when �ε �= 0. This expres-
sion describes the fractional flux density loss of a coher-
ent signal due to decorrelation across the bandwidth of a
channel �ν.

We can now extend this analysis for a single visibility to
explore the impact in an image slice, by defining the phase
gradient for each station to be a random value, which is Gaus-
sian distributed with characteristic width σε = ε. We proceed
by forming the uv-sampling in a snapshot at zenith, with
unity-amplitude visibilities corrupted according to equation
(15). We then Fourier transform these gridded, corrupted
visibilities to the image plane, and compare the peak of the
point spread function (PSF) to that for a gridded set of unity-
amplitude visibilities (i.e., the instrument sampling function,
leading to the instrumental PSF). We define the tolerance to
be the characteristic phase gradient, σε , where the reduction
in dynamic range causes the residual from the brightest im-
age source to exceed the expected bubble signal strength. A
phase residual of 1 radian across a channel leads to almost
complete decorrelation of signal.

5.1 Results

All sampled uv points in the core are used to estimate the
snapshot PSF of the array, matching the expected bubble
size to the array resolution. At 150 MHz, the longer base-
lines provide resolution at the 10-s arcseconds level, while
the densely packed core provides a wider PSF base of ∼10
arcmin. We compute the characteristic phase gradient, σε on
each station bandpass fine channel such that the dynamic
range degradation destroys the cosmological signal. We take
a pessimistic approach (where the phase residual on each
channel is fixed over the full experiment) and an optimistic
approach (where the phase residual is uncorrelated in time
between calibration cycles, yielding an increase in dynamic
range and weaker constraints).

On scales of the SKA1-Low core (20 arcmin), a 1-mK
brightness temperature fluctuation corresponds to a ∼0.02-
mJy source, increasing to 0.2 mJy for degree scales (Koop-

Table 3. Characteristic phase residual across a fine channel,
σ

ε
�ν, for a loss in dynamic range that would destroy the cosmo-

logical signal, due to phase decorrelation.

σ
ε
�ν (degrees) σ

ε
�ν (degrees)

Scale Pessimistic Optimistic

20′ 0.04 0.2
60′=1◦. 0.2 1.3

mans et al. 2015). For a 5-Jy source in the field, these levels
corresponds to a 0.02/5 000=10−5 (0.2/5 000=10−4) frac-
tional residual flux density (noise term in the image) across
the array in a 4.58-kHz channel for the pessimistic case.
Loss in dynamic range of this amplitude would erase any
high-redshift signal, and sets the tolerance level. Any 1-
degree bubble is statistically likely to have a 1-Jy source
within its synthesized beam, and will therefore be affected
by this effect. Table 3 shows the derived parameters for each
experiment. The constraints are therefore stringent in either
the pessimistic or optimistic case for bubbles on tens of ar-
cminute scales.

The tolerance allows for a phase gradient that yields a
phase difference that does not exceed a residual of 0.2 (1.3)
degrees per fine channel in the pessimistic (optimistic) case,
on scales of 1◦. This calculation assumes that the phase resid-
ual is uncorrelated between two different antennas.

6 SUMMARY

This work takes a signal estimation theoretic approach to
calibration of low-frequency radio interferometers. Specifi-
cally, it computes the tolerances on bandpass amplitude and
phase residuals for SKA-Low to achieve the goals of the EoR
and CD experiments, using calibration precision and accu-
racy. The additional power due to imprecise and inaccurate
bandpass calibration in the power spectrum is defined to not
exceed the thermal noise power expected for the experiment.
Similarly, the imaging dynamic range is defined to not de-
stroy brightness temperature fluctuation detections for the to-
mography experiment. These tolerances provide quantitative
specifications for the intrinsic spectral response of SKA-Low
antennas. The choice of calibration approach depends on the
shape of the antenna bandpass, whereby the requirement to
fit higher order polynomials may lead to increased signal
power bias. In this case, a fine-channel fitting model, while
yielding larger uncertainties across the parameter space, also
yields a smooth response in frequency, thereby producing a
potentially less-biased solution.
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