7—11 January 2013 Raichak on Ganges, Calcutta, India **Proceedings of the International Astronomical Union** # Supernova Environmental Impacts Edited by Alak Ray Richard A. McCray ISSN 1743-9213 **International Astronomical Union** **CAMBRIDGE**UNIVERSITY PRESS # SUPERNOVA ENVIRONMENTAL IMPACTS ${\rm IAU~SYMPOSIUM~No.~296}$ | COVER ILLUSTRATION: | |--| | The cover illustration is a montage of the Supernova Remnant Simeis 147 over a view of River Ganga near Kolkata. | | | #### IAU SYMPOSIUM PROCEEDINGS SERIES $Chief\ Editor$ THIERRY MONTMERLE, IAU General Secretary Institut d'Astrophysique de Paris, 98bis, Bd Arago, 75014 Paris, France montmerle@iap.fr #### Editor PIERO BENVENUTI, IAU Assistant General Secretary University of Padua, Dept of Physics and Astronomy, Vicolo dell'Osservatorio, 3, 35122 Padova, Italy piero.benvenuti@unipd.it ## INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE **International Astronomical Union** ## SUPERNOVA ENVIRONMENTAL IMPACTS ### PROCEEDINGS OF THE 296th SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION HELD AT RAICHAK ON GANGES NEAR CALCUTTA, INDIA JANUARY 7 – 11, 2013 Edited by #### ALAK K. RAY Tata Institute of Fundamental Research, Mumbai and #### RICHARD McCRAY University of Colorado, Boulder CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, United Kingdom 32 Avenue of the Americas, New York, NY 10013 2473, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia #### © International Astronomical Union 2014 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the International Astronomical Union. First published 2014 Printed in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY Typeset in System $\LaTeX 2\varepsilon$ A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the worlds forests. Please see www.fsc.org for information. $\begin{array}{c} {\rm ISBN} \ 9781107044777 \ {\rm hardback} \\ {\rm ISSN} \ 1743-9213 \end{array}$ ### **Table of Contents** | Preface | xi | |---|------| | Conference photograph | xiii | | Recent $Hubble\ Space\ Telescope\ Observations\ of\ SN\ 1987A$: Broad Emission Lines $K.\ France$ | 1 | | 9500 Nights of Mid-Infrared Observations of SN 1987A: the birth of the remnant P. Bouchet & J. Danziger | 9 | | Radio Observations of Supernova 1987A | 15 | | The radio remnant of Supernova 1987A at high frequencies and high resolution. G. Zanardo, L. Staveley-Smith, CY. Ng, B. M. Gaensler, T. M. Potter, R. N. Manchester & A. K. Tzioumis | 23 | | Core Collapse Supernova Models and Nucleosynthesis | 27 | | Supernova searches and rates | 37 | | Binary Effects on Supernovae | 45 | | Recent developments in supernova research with VLBI | 53 | | Early Emission of Core-Collapse Supernovae | 58 | | CSM-Interacting Stripped-Envelope Supernovae | 63 | | Superluminous Supernovae | 68 | | Supernova Optical Observations and Theory | 77 | | Light Curve Modeling of Superluminous Supernovae | 86 | | Distance determination to six nearby galaxies using type IIP supernovae S. Bose & B. Kumar | 90 | vi *Contents* | Supernova interaction with dense mass loss | 95 | |--|-----| | X-rays from Core-collapse Supernovae | 103 | | A tale of two shocks in SN 2004dj | 108 | | Radio Observations Of A Nearby Type IIP SN 2012aw | 112 | | The optical photometric and spectroscopic investigation of Type IIP supernova 2012A | 116 | | Supernova progenitor mass constraints through spatial correlations with host galaxy star formation | 121 | | Light Echoes of Historic Transients | 126 | | Circumstellar interaction in Type IIn supernovae | 135 | | The dusty debate: core-collapse supernovae and dust | 144 | | Molecules and dust in the ejecta of Type II-P supernovae | 151 | | Autopsy of the Supernova Remnant Cassiopeia A | 155 | | Dust Destruction in the Cygnus Loop Supernova Remnant | 160 | | An Integral View of Balmer-dominated Shocks in Supernova Remnants S. Nikolić, G. van de Ven, K. Heng, D. Kupko, J. A. Lopez Aguerri, J. Méndez-Abreu, J. F. Serra & J. Beckman | 165 | | Molecular Environments of Supernova Remnants | 170 | | The molecular emission from old supernova remnants | 178 | | SRAO CO Observation of Supernova Remnants in $l=70^\circ$ to 190° | 183 | | The Galactic distribution of SNRs | 188 | | Contents | vi | |---|-----| | Observations and discoveries of supernova remnants with GMRT | 197 | | Radio polarization observations of large supernova remnants at λ6 cm J. L. Han, X. Y. Gao, X. H. Sun, W. Reich, L. Xiao, P. Reich, J. W. Xu, W. B. Shi, E. Fürst & R. Wielebinski | 202 | | Discovery of supernova remnants in the Sino-German λ6 cm polarization survey of the Galactic plane | 210 | | Infrared [Fe II] and Dust Emissions from Supernova Remnants | 214 | | The First Systematic Multi-wavelength Survey of Extragalactic Supernova Remnants | 222 | | Thermal X-ray Spectra of Supernova Remnants | 226 | | X-ray imaging and spectroscopic study of the SNR Kes 73 hosting the magnetar 1E 841–045 | 235 | | What Shapes Supernova Remnants? | 239 | | Nonthermal X-rays from supernova remnants | 245 | | Supernovae driven galactic outflows | 253 | | Reprise of the Supershells | 260 | | The Supernova – ISM/Star-formation interplay | 265 | | Supernovae and the Galactic Ecosystem | 273 | | Formation of cold filaments from colliding superbubbles | 282 | | Gamma-ray observations of supernova remnants | 287 | | Fermi-LAT and WMAP observations of the supernova remnant Puppis A MH. Grondin, J. W. Hewitt, M. Lemoine-Goumard & T. Reposeur, for the Fermi-LAT collaboration | 295 | | TeV γ -ray source MGRO J2019+37 : PWN or SNR? | 300 | $L.\ Saha\ \mathcal{C}\ P.\ Bhattacharjee$ viii Contents | Supernova remnants and the origin of cosmic rays | 305 | |---|-----| | Probing the effects of hadronic acceleration at the SN 1006 shock front M. Miceli, F. Bocchino, A. Decourchelle, G. Maurin, J. Vink, S. Orlando, F. Reale & S. Broersen | 315 | | Interaction of escaping cosmic rays with molecular clouds | 320 | | Simulating the Outer Nebula of SN 1987A | 328 | | Three-dimensional simulations of the expanding remnant of SN 1987A T. Potter, L. Staveley-Smith, J. Kirk, B. Reville, G. Bicknell, R. Sutherland, A. Wagner & G. Zanardo | 330 | | V-band light-curve morphologies of supernovae type II | 332 | | Optical observations of supernova 2012aw | 334 | | Evolution of the Type IIb SN 2011fu | 336 | | Optical studies of Type IIb SN 2011dh | 338 | | SN 2010as and Transitional Ib/c Supernovae | 340 | | The strange case of SN 2011ja and its host | 342 | | Type Ib Supernova 2007uy — a multiwavelegth perspective | 344 | | A double plateau and unprecendented circumstellar variable sodium in the transient SN 2011A | 346 | | Spectral analysis of type II supernovae | 348 | | Using the environment to understand supernova properties | 350 | | Multi-band optical light-curve behavior of core-collapse supernovae $B.\ Kumar$ | 352 | | A comparative study of GRB-Supernovae | 354 | | Contents | 13 | |------------|-----| | Contection | 1.7 | | GRB as luminosity indicator.
$R. \; Basak \; \mathcal{C} \; A. \; R. \; Rao$ | 356 | |---|-----| | On the hadronic γ -ray emission from Tycho's Supernova Remnant $X.\ Zhang,\ Y.\ Chen,\ H.\ Li\ \ensuremath{\mathfrak{C}}\ X.\ Zhou$ | 358 | | An XMM-Newton study of the mixed-morphology supernova remnant W28 P. Zhou, S. Safi-Harb, Y. Chen, & X. Zhang | 360 | | The Structure of Overionized Plasma in SNR IC 443 | 362 | | An interpretation of the overionized plasma in supernova remnant W49B X. Zhou, M. F. Bocchino, S. Orlando, Y. Chen, L. Ji & J. Yang | 364 | | GMRT Observations of SNR G15.4+0.1/HESS J1818-154 | 366 | | Near-Infrared Study of Iron Knots in Cassiopeia A Supernova Remnant $Y.\text{-}H.\ Lee,\ B.\text{-}C.\ Koo,\ D.\text{-}S.\ Moon\ \mathcal{C}\ M.\ G.\ Burton$ | 368 | | Supernova Remnants in the UWISH2 and UWIFE Surveys | 370 | | Kinematic Distances of SNRs W44 and 3C 391 | 372 | | Multi-band Observation of TeV Supernova Remnants | 374 | | A combined GMRT/CLFST image of IC443 at 150 MHz | 376 | | Distances of Galactic supernova remnants | 378 | | Locating the TeV γ -rays from the shell regions of Cassiopeia A | 380 | | Simulations of RS Oph and the CSM in Type Ia Supernovae | 382 | | Outer Shock Interaction in Young Core-Collapse SNRs | 384 | | Fast-Expanding HI Shells Associated with Supernova Remnants in the I-GALFA Survey | 386 | | Observations of O VI Absorption from the Superbubbles of the Large Magellanic Cloud | 388 | | Heavy Elements Produced in Supernova Explosion and thier Propulsion in the ISM $R.\ Baruah$ | 390 | | IR and sub-mm fluxes of SN1987A revisited: when moderate dust masses suffice A Saranai fo I Cherchneff | 392 | x Contents | Radio studies of relativistic SN 2009bb | 395 | |---|-----| | Clumping of ejecta and accelerated cosmic rays in the evolution of type Ia SNRs $S.\ Orlando,\ F.\ Bocchino,\ M.\ Miceli,\ O.\ Petruk\ &\ M.\ L.\ Pumo$ | 397 | | Author index | 300 | #### **Preface** As the title of this volume indicates, the unifying theme of this Symposium was the interaction of supernovae with their environments, both interstellar and circumstellar. New telescopes spanning the entire electromagnetic spectrum have caused the study of supernovae (SNe) and supernova remnants (SNRs) to advance at a breathtaking pace. In only a decade, automated synoptic surveys have increased the detection rate of supernovae by more than an order of magnitude and have enabled discovery of highly unusual supernovae. Observations of gamma rays SNRs with ground-based Cherenkov telescopes and the Fermi telescope have given us new insights into particle acceleration in supernova shocks. Far-infrared observations from the Spitzer and Herschel observatories are telling us much about the properties and fate of dust grains in SNe and SNRs. Multi-wavelength surveys have yielded new insights into the influence of SNe on the ecosystems of galaxies. Core-collapse SNe have a great diversity of light curves and spectral evolution. We now understand that their diversity is determined largely by the history of mass loss from the progenitor star, which determines the distribution of circumstellar matter and the structure of the star immediately before it explodes. The remarkable SN2009ip shows that the some supernova progenitors have major episodes of mass loss only a few years before they finally explode. The impact of the explosion debris with the extended stellar envelope may result in a supernova of exceptional luminosity, such as SN2006gy. Explosions of stars with extended circumstellar envelopes give rise to X-ray and radio supernovae. Such systems blur the distinction between SNe and SNRs. Alternatively, if the supernova progenitor has lost most of its envelope and has become a relatively compact star, the explosion may be sub-luminous, as is the case of SN1987A. A strong stellar wind from a blue giant progenitor to a supernova may create a cavity in the circumstellar environment, displacing the interstellar matter to great distance from the supernova. Thus, the evolution of the supernova progenitor may have a great influence on the subsequent evolution of X-ray and radio emission from the SNR. Moreover, supernova explosions can stimulate star formation by compressing interstellar gas and can also help to terminate star formation by dispersing gas in star-forming molecular clouds. Supernovae in low-density regions, such as superbubbles or galactic bulges, cannot effectively radiate energy therefore may drive global outflows, affecting the galactic ecosystem. In 2011, the Scientific Organizing Committee proposed that an IAU Symposium be held in India during January 7 - 11, 2013. After some initial search for sites within India, the organizers selected the venue of the Symposium at The Fort Raichak on the banks of river Ganga about 65 km south of the city of Kolkata (formerly Calcutta). In hindsight, the IAU's decision was a good fortune for the supernova community. Most speakers that the organizers proposed as Invited Speakers were able to attend, and many young researchers presented exciting new results in oral presentations and poster sessions. Apart from professional astronomers (including PhD students), graduate students and advanced undergraduates with strong interest in astronomy took part in the meeting. Students and professional astronomers participated from many countries of north and south as well as from all regions of India. The scientific program started with a session on SN 1987A, the nearest SN in recent times in the Large Magellanic Cloud and continued with recent developments of supernova models and surveys to find new supernovae. Almost all aspects of research on different types of core-collapse supernovae and their interactions with the surrounding medium, including observational studies of light curves and spectra in the radio, mm, optical, UV, X-ray and gamma-ray bands using many ground and space based telescopes and facilities were presented at the Symposium. There was also an impromptu session on SN 2009ip where research in progress was discussed on the first evening. Research on various aspects of Supernova Remnants (as a young supernova ages and develops full-scale interaction with the interstellar medium), how they affect galactic outflow, star formation and superbubbles and large scale structure of the host galaxies, acceleration of high energy cosmic rays were presented in the five days of the meeting. The unifying theme of the Symposium was the physics of shocks and the observations of their radiation in both SNe and SNRs. The website of the conference at: http://www.tifr.res.in/ iau296/ has many details of the scientific programme and rationale, members of the Local and Scientific Organizing Committees, talks and posters presented at the Symposium etc. It also has a link to the videographic recordings of the talks presented at the meeting arranged according to the scientific sessions. These recordings will remain deployed at this site for a period up to the end of 2015. On the second evening of the Symposium a classical Indian Dance programme of the Odissi genre was presented by Sharmila Biswas and her disciples from the Odissi Vision and Movement Centre, Kolkata. The Symposium ended with a cruise up the River Ganga to take the delegates from Raichak to Calcutta. All delegates to the Symposium stayed in the same Hotel Complex throughout the meeting, which significantly enhanced the interactions both formal and informal among the participants. Many individuals and organizations helped in multiple ways to make the IAU Symposium 296 a successful scientific meeting in a rural setting in the state of West Bengal. Generous funding was received from the International Astronomical Union, Tata Institute of Fundamental Research, Mumbai, Indian Institute of Astrophysics, Bangalore and the Indian National Science Academy, New Delhi. The organizers thank the Director, the Dean, Natural Sciences Faculty and the Registrar, Tata Institute of Fundamental Research, Mumbai for administrative support and help. The organizers appreciate the conference work carried out by Messers Surendra Kulkarni, Nassim Khan and Ms. Magnes Johny and the help rendered by the members of the Local Organizing Committee and the student volunteers. The organizers thank Prof. Malabika Sarkar, Vice Chancellor, Presidency University, Calcutta and Prof Somak Raychaudhury for critical help in liaising with local agencies and representatives of the Governments of West Bengal and India. Richard McCray and Alak Ray, On behalf of the Scientific Organizing Committee: Roger Chevalier (USA) Evgeny Berezhko (Russia) Catherine Cesarsky (France) Yang Chen (China) Claes Fransson (Sweden) Marianne Lemoine-Goumard (France) Fangjun Lu (China) Virginia Trimble (USA) Massimo Turatto (Italy) Jacco Vink (The Netherlands) Daniel Wang (USA) ### CONFERENCE PHOTOGRAPH Photo Credits: Tata Institute of Fundamental Research. R. Sankrit. Photo Credits: R. Sankrit.