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Abstract We establish a kind of ‘degree 0 Freudenthal Gm-suspension theorem’ in motivic homotopy
theory. From this we deduce results about the conservativity of the P1-stabilization functor.

In order to establish these results, we show how to compute certain pullbacks in the cohomology of
a strictly homotopy-invariant sheaf in terms of the Rost–Schmid complex. This establishes the main
conjecture of [2], which easily implies the aforementioned results.
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1. Introduction

After recalling some preliminaries in §2, this article has two main sections of very different

flavors. In §3 we establish a technical result about Rost–Schmid complexes of strictly

homotopy-invariant sheaves. Then in §4 we draw applications to the stabilization problem
in motivic homotopy theory. We now describe these two main sections in reverse order,

and then sketch their relation. For more background and motivation, the reader may wish

to consult the introduction of [2].

1.1. P
1-stabilization in motivic homotopy theory

Motivic homotopy theory is the universal homotopy theory of smooth algebraic varieties,
say over a field k. It is built by freely adjoining homotopy colimits to the category of

smooth k -varieties, and then enforcing Nisnevich descent and making A
1 contractible

[19]. Write Spc(k)∗ for the pointed version of this theory.1 This is a symmetric monoidal
category (the monoidal operation being given by the smash product), and every pointed

smooth variety defines an object in it. Given a pointed motivic space X ∈ Spc(k)∗, the
classical homotopy groups upgrade to homotopy sheaves2 πi(X ).

1We think of this as an ∞-category, but no information will be lost for the purposes of this
introduction by just considering its homotopy 1-category.

2That is, Nisnevich sheaves on the site of smooth k -varieties.

https://doi.org/10.1017/S1474748021000396 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0
mailto:tom.bachmann@zoho.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748021000396&domain=pdf
https://doi.org/10.1017/S1474748021000396


1294 T. Bachmann

The Riemann sphere P
1 :=

(
P
1,1

)
∈ Spc(k)∗ plays a similar role to the ordinary

sphere in classical topology. Stable motivic homotopy theory is concerned with the
category obtained by making ΣP1 := ∧P1 into an equivalence. It is this context in which

algebraic cycles and motivic cohomology naturally appear. We can take a more pedestrian

approach. The functor ΣP1 has a right adjoint ΩP1 , and there is a directed diagram of
endofunctors of Spc(k)∗:

id→ ΩP1ΣP1 =:Q1 → Ω2
P1Σ2

P1 =:Q2 → ·· · → Ωn
P1Σn

P1 =:Qn → ·· · .

Denote by Q its homotopy colimit. Then QX is the P
1-stabilization of X , and the

homotopy sheaves of QX are called the P
1-stable homotopy sheaves of X .

A simple form of our main application of our technical result is as follows. It is
reminiscent of the fact that for an ordinary space X, the sequence of sets

{
π0Ω

iΣiX
}
i≥0

is given by π0X, Fπ0X, Z(π0X), Z(π0X), . . ., where for a pointed set A, FA denotes the
free group on A (with identity given by the base point) and Z(A) denotes the free abelian

group on A (with 0 given by the base point).

Theorem 1.1. Let k be a perfect field and n≥ 3 (if char(k) = 0, n= 2 is also allowed).
Then for X ∈ Spc(k)∗, the canonical map

π0QnX → π0QX

is an isomorphism.

Proof. This is an immediate consequence of Corollary 4.9 and, for example, Morel’s
Hurewicz theorem [18, Theorem 6.37].

Example 1.2. Morel’s computations [18, Corollary 6.43] imply that for X = S0, already

π0Q2S
0 � GW � π0QS0. Our result shows that this stabilization is not special to S0,

except that our results are not strong enough to establish stabilization at Q2, only at Q3.

See also Remark 4.3.

We also obtain some conservativity results; here is a simple form. It is similar to
the fact that stabilization is conservative on simply connected topological spaces. Write

Spc(k)∗(n)⊂Spc(k)∗ for the subcategory generated under homotopy colimits by objects

of the form X+ ∧G
∧n
m , with X ∈ Smk (and Gm :=

(
A

1 \0,1
)
, X+ := X

∐
∗). Denote by

Spc(k)∗,≥1 ⊂ Spc(k)∗ the subcategory of A1-simply connected spaces.

Theorem 1.3. Let k be perfect, and put n = 1 if char(k) = 0 and n = 3 if char(k) > 0.

Then the stabilization functor

Q : Spc(k)∗,≥1∩Spc(k)∗(n)→Spc(k)∗
is conservative (i.e., detects equivalences).

In particular, ΣP1 and all of its iterates, and also Σ∞
P1 , are conservative on the same

subcategory.

Proof. This is an immediate consequence of Corollary 4.15 and, for example, [24,

Corollary 2.23].
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The results in §4 are stronger than this sample; in fact, they are stated in terms of the
stabilization functor from S1-spectra to P

1-spectra. The reader is encouraged to skip to

this section directly. Our main results in the form of Corollary 4.9, Theorem 4.14, and

Corollary 4.15 can be understood without reading the rest of the article (except perhaps
for taking a glance at §4.1, where some notation is introduced).

1.2. Pullbacks and the Rost–Schmid complex

The results just sketched are obtained by combining the main results of [2] with a technical

result that we describe now. Essentially, this establishes [2, Conjecture 6.10] (for n≥ 3);

all our applications are a consequence of this and were already anticipated in writing [2].
Let M be a strictly homotopy-invariant sheaf (see §2 for this and related notions, and

a more complete account of the following sketch) and X a smooth variety. Morel has

proved [18, Corollary 5.43] that there is a very convenient complex, known as the Rost–

Schmid complex C∗(X,M), which can be used to compute the Nisnevich cohomology
H∗(X,M). This complex has the special property that Cn(X,M) depends only on the n-

fold contraction M−n, and similarly so does the boundary map Cn(X,M)→Cn+1(X,M).

Let Z ⊂X have codimension ≥ d. An obvious modification C∗
Z(X,M) of C∗(X,M) can

be used to compute H∗
Z(X,M); by construction one has Cn

Z(X,M) = 0 for n < d. It

follows that the group Hd
Z(X,M) depends only on M−d (in fact this holds for all groups

H∗
Z(X,M), but we are most interested in the lowest one). Now let f : Y → X be a

morphism of smooth varieties with f−1(Z) also of codimension ≥ d on Y. Then the

pullback map

f∗ :Hd
Z(X,M)→Hd

f−1(Z)(Y ,M) (1)

is a morphism of abelian groups, both of which depend only on M−d.

It is not difficult to show (using the results of [2]; see the proof of Theorem 4.6 in
this article for details) that [2, Conjecture 6.10] is equivalent to the statement that the

morphism (1) also depends only on M−d, in an appropriate sense.3 The main result of

this article (Theorem 3.1) states that this is true.
We establish this by adapting an argument of Levine, using a variant of Gabber’s

presentation lemma to set up an induction on d. (The case d= 0 holds tautologically.)

1.3. From pullbacks to stabilization

This article brings to conclusion a program started in [2]. There we developed the following

strategy for establishing stabilization results such as Theorem 1.1. First we note that
S1-stabilization is well understood and behaves largely as in topology; thus it suffices

to prove the analogous result for motivic S1-spectra. (For detailed definitions of this

and the following notions, see §4.1.) Write SHS1

(k)(d) ⊂ SHS1

(k) for the localizing

3In fact, our original plan for [2] was to establish [2, Conjecture 6.10] (and hence the results in
§4) by proving that f∗ depends only on M−d. This turned out to be more difficult than we
had anticipated.
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subcategory generated by d -fold Gm-suspensions, and similarly SH(k)eff(d) ⊂ SH(k)

for the localizing subcategory generated by the image of SHS1

(k)(d). These categories
afford t-structures induced by the canonical generating sets, and hence the stabilization

functor SHS1

(k)(d) → SH(k)eff(d) is right-t-exact. One finds that in order to prove

stabilization results, it will be enough to show that the induced functor on hearts

SHS1

(k)(d)♥ →SH(k)eff(d)♥ is an equivalence. Since the right-hand category is by now

well understood, let us focus on the left-hand side. It is not difficult to show that the

functor of d -fold Gm-loops SHS1

(k)(d)♥ →SHS1

(k)♥ �HI(k) is monadic. In other words,

we may think of objects of SHS1

(k)(d)♥ as strictly homotopy-invariant sheaves with extra

structure. One way of phrasing the main result of [2] is (see, e.g., [2, Remark 4.17]) that
this extra structure is precisely the data of closed pullbacks on cohomology with support

in codimension d. These are precisely the kinds of maps that we show depend only on

M−d ‘in an appropriate sense’. To be more specific, the appropriate sense is that M−d is

a so-called sheaf with A
1-transfers (see Remark 3.2 for details), and the pullback depends

only on this additional structure.

All of this more or less implies4 that SHS1

(k)(d)♥ is equivalent to the full subcategory
of the category of sheaves with A

1-transfers on objects of the form M−d. It follows from

[2, Theorem 5.19] that for d big enough, this subcategory is equivalent to SH(k)eff(d)♥,
as desired.

1.4. Notation and conventions

We fix throughout a field k. All nontrivial results will require k to be perfect.
Given a presheaf M on the category of smooth varieties over k, and an essentially

smooth k -scheme X, we denote by M(X) the evaluation at X of the canonical extension

of M to pro-(smooth schemes), into which the category of essentially smooth schemes
embeds by [8, Proposition 8.13.5]. In other words, if X = limiXi is a cofiltered limit of

smooth k -schemes with affine transition maps, then M(X) = colimiM(Xi) (and this is

known to be independent of the presentation of X ).

Given a scheme X and a point x ∈X, we identify x and Spec(k(x)). In particular, if
X is smooth and k is perfect (so that x is essentially smooth), then we write M(x) for

what is often denoted M(k(x)).

Given a scheme X and d≥ 0, we write X(d) for the set of points of X of codimension d
on X ; in other words, if x∈X, then x∈X(d) if and only if dimXx = d, where Xx denotes

the localization of X in x. For example, X(0) is the set of generic points of X.

For a regular immersion Y ↪→ X, we denote by NY/X the normal bundle and by
ωY/X = detN∨

Y/X the determinant of the conormal bundle. More generally, for any

morphism Y → X such that the cotangent complex LY/X is perfect, we write ωY/X =

detLY/X .

4Making these arguments precise requires some further effort; for this reason we follow a slightly
different strategy in §4.2.
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2. Preliminaries

We recall some well-known results from motivic homotopy theory.

2.1. Strictly homotopy-invariant sheaves

We write Smk for the category of smooth k -schemes. We make it into a site by endowing

it with the Nisnevich topology [20]. This is the only topology we shall use; all cohomology
will be with respect to it. Unless noted otherwise, by a (pre)sheaf we mean a (pre)sheaf

of abelian groups on Smk.

Recall that a sheaf M is called strictly homotopy invariant if, for all X ∈ Smk, the
canonical map H∗(X,M)→H∗ (

A
1×X,M

)
is an isomorphism. We denote the category

of strictly homotopy-invariant sheaves by HI(k).

Example 2.1. For a commutative ring A, denote by GW (A) its Grothendieck–Witt

ring – that is, the additive group completion of the semiring of isometry classes of
nondegenerate, symmetric bilinear forms on A [14]. Write GW for the associated

Nisnevich sheaf on Smk. Then GW turns out to be strictly homotopy invariant (combine

[21, Theorem A] and [18, §§2,3]).

Remark 2.2. As mentioned in the introduction, there exists a universal homotopy
theory built out of (pointed) smooth varieties by enforcing A

1-homotopy invariance

and Nisnevich descent [19]; we denote it by Spc(k)∗. By construction, for M ∈ HI(k),

the Eilenberg–MacLane spaces K(M,i) define objects in Spc(k)∗. In this way, results
about Spc(k)∗ translate into properties of the cohomology of strictly homotopy-invariant

sheaves. For example, given X ∈ Smk and Z ⊂X closed, we have an isomorphism

Hi
Z(X,M)� [X/X \Z,K(M,i)]Spc(k)∗,

and given a morphism f : Y → X (resp., a closed subset Z ′ ⊂ Z) we have morphisms

Y/Y \ f−1(Z) → X/X \ Z (resp., X/X \ Z → X/X \ Z ′) inducing the pullback

Hi
Z(X,M) → Hi

f−1(Z)(Y ,M) (resp., the extension of the support map Hi
Z′(X,M) →

Hi
Z(X,M)). We will use this correspondence freely in the sequel.

2.1.1. Unramifiedness. Let X ∈ Smk be connected and ∅ �= U ⊂ X be open. Then
for M ∈HI(k), the canonical map M(X)→M(U) is an injection [17, Lemma 6.4.4]. It

follows that if ξ ∈X is the generic point, then M(X) ↪→M(ξ).

2.1.2. Contractions. For a presheaf M, write M−1 for the presheaf given by

M−1(X) = ker

(
M

((
A

1 \0
)
×X

) i∗1−→M(X)

)
and M−n for the n-fold iteration of this

construction. Here i1 :X →
(
A

1 \0
)
×X denotes the inclusion at 1 ∈ A

1. Pullback along
the structure map splits i∗1, and hence M−1 is a summand of the internal mapping object

Hom
(
A

1 \0,M
)
. It follows that M−n is a ((strictly) homotopy-invariant) (pre)sheaf

if M is.
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Example 2.3. We have H1
(
P
1
K,M

)
�M−1(K), for any finitely generated separable field

extension K/k. Indeed, we can cover P1
K by two copies of A1

K with intersection
(
A

1 \0
)
K

and Hi
(
A

1
K,M

)
�Hi(Spec(K),M) (whence in particular H1

(
A

1
K,M

)
= 0), so the claim

follows from the Mayer–Vietoris sequence for this covering.

2.1.3. GW -module structure. Set X ∈ Smk and u ∈ O(X)×. Multiplication by u
defines an endomorphism of

(
A

1 \0
)
×X and hence of Hom

(
A

1 \0,M
)
(X); passing to

the summand, we obtain 〈u〉 : M−1(X) → M−1(X). Suppose that M ∈ HI(k). Since

the map Z [O×]→ GW,u �→ 〈u〉, is surjective on fields, unramifiedness implies that this

construction extends in at most one way to a GW -module structure on M−1. It turns out
that this GW -module structure always exists [18, Lemma 3.49].

2.1.4. Twisting. Given a line bundle L on X ∈ Smk, write L× for the sheaf of nonva-

nishing sections. For M ∈HI(k) and d > 0, we put M−d(X,L) = H0 (X,M−d×O× L×);
here the action of O× on M−d is via O× → GW , and the action on L× is given by
multiplication. Note that since 〈u〉=

〈
u−1

〉
, we have M−d(X,L)�M−d

(
X,L−1

)
.

2.1.5. Thom spaces. For X ∈ Smk and V a vector bundle on X of rank d, we have

Th(V ) := V/V \ 0X ∈ Spc(k)∗. For M ∈ HI(k), there are canonical isomorphisms [18,

Lemma 5.35]

[V/V \0X,K(M,d)]Spc(k)∗ �Hd
0X (V ,M)�M−d(X, detV ).

2.1.6. Homotopy purity. Set X ∈ Smk and U ⊂ X open, with reduced closed
complement Z = X \U also smooth. Then in Spc(k)∗ there is a canonical equivalence

[19, §3 Theorem 2.23]

X/X \Z � Th
(
NZ/X

)
.

2.1.7. Boundary maps. Set X ∈ Smk and x∈X(d). Then Xx is an essentially smooth

scheme with closed point x. Homotopy purity supplies us with the collapse sequence5

Xx →Xx/Xx \x� Th
(
Nx/X

) ∂−→ Σ(Xx \x).

Pullback along ∂ induces the boundary map in the long exact sequence of cohomology

with support. We most commonly use the case where d= 1. Then Xx \x= ξ, where ξ is
the generic point of X (specializing to x ), and the boundary map takes the familiar form

∂ :M(ξ)→M−1

(
x,ωx/X

)
.

2.1.8. Monogeneic transfers. Let k be perfect and K/k be a finitely generated field

extension, whence X =Spec(K) is an essentially smooth scheme. Let K(x)/K be a finite,

monogeneic field extension. We are supplied with an embedding X ′ = Spec(K(x))
x
↪−→

A
1
X ⊂ P

1
X , and thus homotopy purity provides us with a collapse map

5Here and in the sequel we view essentially smooth schemes as defining pro-objects in Spc(k).
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P
1
X → P

1
X/P1

X \X ′ � Th
(
NX′/A1

X

)
� Th(OX′) ;

here the normal bundle is canonically trivialized by the minimal polynomial of x. Pullback

along this collapse map induces the monogeneic transfer6 [18, p.99]

τx :M−1(K(x))→M−1(K).

Slightly more generally, suppose that z ∈P
1
K is any closed point. Then we have the transfer

map

trz :M−1

(
z,ωz/P1

K

)
�H1

z

(
P
1
K,M

)
→H1

(
P
1
K,M

)
�M−1(K).

This contains no new information: if z ∈ A
1
K , then trz coincides up to isomorphism with

τz, and the only other case is z =∞, which is a rational point, so trz is isomorphic to the
identity.

2.2. Cousin and Rost–Schmid complexes

Let M be a sheaf of abelian groups on X. The cohomology of M on X can be computed

using the coniveau spectral sequence (see, e.g., [3, §1]). On the zero line of the E1 page

one finds the so-called Cousin complex [3, (1.3)]:

M(X)→
⊕

x∈X(0)

M(x)→
⊕

x∈X(1)

H1
x(X,M)→ ·· · →

⊕
x∈X(d)

Hd
x(X,M) =: Cd(X,M)→ ·· · .

(2)

Here

Hd
x(X,M) = colim

V 
x
Hd

{x}∩V
(V ,X), (3)

where the colimit runs over open neighborhoods of x. The boundary maps in formula

(2) are induced by certain boundary maps in long exact sequences of cohomology with

support.

Now suppose that M ∈HI(k). By the Bloch–Ogus–Gabber theorem [3, Theorem 6.2.1],
the Cousin complex (2) is then exact when viewed as a complex of sheaves (i.e., for X

local). Since it consists of flasque sheafes, it can thus be used to compute the Zariski

cohomology of M. The terms also turn out to be Nisnevich-acyclic (see [3, Theorem 8.3.1]
or [18, Lemma 5.42]), and hence the Cousin complex computes the Nisnevich cohomology

of M as well (which thus turns out to coincide with the Zariski cohomology).

Remark 2.4. The Cousin complex can also be used to compute cohomology with support

in a closed subscheme Z ; just replace

Cd(X,M) =
⊕

x∈X(d)

Hd
x(X,M) by Cd

Z(X,M) =
⊕

x∈X(d)∩Z

Hd
x(X,M).

This holds, since the resolving sheaves are flasque.

6Morel calls this the geometric transfer.
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Now let k be perfect. We would like to make this complex more explicit. As a first step,
homotopy purity (see §§2.1.5 and 2.1.6) allows us to identify the groups (3) in the Cousin

complex more explicitly as

Hd
x(X,M)�M−d

(
x,ωx/X

)
.

Indeed, by generic smoothness, shrinking V if necessary, we may assume that Z := {x}∩V
is smooth of codimension d on V, and then

Hd
Z(V ,M)� [V/V \Z,K(d,M)]�

[
Th

(
NZ/V

)
,K(d,M)

]
�M−d

(
Z,ωZ/V

)
;

the claim now follows by taking colimits. The boundary maps of the Cousin complex can

also be identified. We only use the following weak form of this result:

Theorem 2.5. (Morel [18]). Set M ∈ HI(k), X ∈ Smk, and d ≥ 0. Then the boundary

map Cd(X,M) → Cd+1(X,M) in the Cousin complex depends only on the sheaf M−d,
together with (if d > 0) its structure as a GW -module from §2.1.3.

In fact, Morel proves this result by identifying the Cousin complex with another
complex called the Rost–Schmid complex (which has the same terms but a priori different

boundary maps). In other words, the boundary map in the Cousin complex admits an

explicit formula, involving only the codimension 1 boundary of §2.1.7 and (composites
of) the monogeneic transfer of §2.1.8.7

In the sequel, we will not distinguish between the Cousin and Rost–Schmid complexes.

3. A ‘formula’ for closed pullback

In this section we establish our main result.

Theorem 3.1. Let k be a perfect field and set M ∈HI(k), f : Y →X ∈ Smk, d≥ 1, and

Z ⊂X closed of codimension ≥ d such that f−1(Z)⊂ Y is also of codimension ≥ d. Then

the map

f∗ :Hd
Z(X,M)→Hd

f−1(Z)(Y ,M)

depends only on M−d ∈HI(k), together with its GW -module structure and transfers along

monogeneic field extensions (in the sense of §§2.1.3 and 2.1.8).

In the sequel, we shall say ‘depends only on M−d’ to mean what is asserted in the

theorem – that is, ‘depends only on M−d as a GW -module with transfers’.

Remark 3.2. Let us make precise the notion that ‘f∗ depends only on M−d’.

For this, first recall from [2, §5.1] the notion of a presheaf with A
1-transfers. This is

just a presheaf F on Smk together with, for every finitely generated field K/k, a GW (K)-
module structure on F (K), and for every finite monogeneic extension K(x)/K, a transfer

7The monogeneic transfer on M−d is extra structure, determined by the presentation of M−d as

a contraction. But the boundary Cd →Cd+1 involves the monogeneic transfer only on M−d−1,
and so indeed depends only on the sheaf M−d.
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τx : F (K(x)) → F (K). A morphism of presheaves with A
1-transfers is a morphisms of

sheaves which commutes with the GW (K)-module structures and the transfers. If M ∈
HI(k) and d ≥ 1, then M−d acquires the structure of a presheaf with A

1-transfers (see

§§2.1.3 and 2.1.8 or [2, Example 5.2]).

Now suppose we are givenM,N ∈HI(k), and an isomorphismM−d �N−d of presheaves

with A
1-transfers. Then there is a canonical induced isomorphism Hd

Z(X,M)�Hd
Z(X,N)

(and similarly for Y ), by identifying the Rost–Schmid resolutions with support in Z (i.e.,

using Remark 2.4 and Theorem 2.5; this does not even depend on the identification of the

transfers). The theorem asserts that this isomorphism is compatible with the pullback f∗

(and for this we crucially need the compatibility of the transfers).

Remark 3.3. Note that the Rost–Schmid complex is functorial in smooth morphisms in

an obvious way, so that the theorem is clear, for example, for f an open immersion. We

will often use this in conjunction with the observation (which follows, e.g., from the form
of the Rost–Schmid complex) that if Z has codimension ≥ d on X, then

Hd
Z(X,M) ↪→

⊕
z

Hd
z (Xz,M),

where the sum is over the (finitely many) generic points of Z of codimension d on X.

If the support is smooth and the intersection is transverse, all is well.

Lemma 3.4. Suppose that both Z and f−1(Z) (with its induced scheme structure as a

pullback) are smooth. Then f∗ :Hd
Z(X,M)→Hd

f−1(Z)(Y ,M) depends only on M−d.

Proof. Since Z is smooth (and so is X ), we may write Z =Z0

∐
Z1, where all components

of Z0 have codimension precisely d on X and all components of Z1 have codimension >d.

Consider the commutative diagram

Hd
Z(X,M)

f∗

−−−−→ Hd
f−1(Z)(Y ,M)�⏐⏐

�⏐⏐
Hd

Z0
(X,M)

f∗

−−−−→ Hd
f−1(Z0)

(Y ,M).

Here the vertical maps are extension of support, and hence depend only on M−d.

Moreover, by construction the left-hand vertical map is an isomorphism. We may thus

replace Z by Z0 – that is, assume that all components of Z have codimension precisely d
on X.

Recall from Remark 2.2 that the pullback f∗ :Hd
Z(X,M)→Hd

f−1(Z)(Y ,M) is induced

by pullback along the map Y/Y \ f−1(Z) → X/X \Z ∈ Spc(k)∗ on K(d,M). Let η be

a generic point of f−1(Z) (necessarily of codimension d on Y ). Shrinking X around

f(η) using Remark 3.3, we may assume that the normal bundle NZ/X is trivial. Since
f :

(
Y ,f−1(Z)

)
→ (X,Z) is a morphism of smooth closed pairs [9, §3.5], the map Y/Y \

f−1(Z) → X/X \Z is equivalent to Th(g), where g : Nf−1(Z)/Y → NZ/X is the map

induced by f [9, Theorem 3.23]. Our assumptions on codimension imply that f∗NZ/X �
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Nf−1(Z)/Y , whence g � f |f−1(Z) × idAd . Pullback along Th(g) �
(
f
∣∣
f−1(Z)

)
+
∧ T d thus

depends only on M−d, and the result follows.

Recall that for (sets, say, and hence presheaves of sets) A ⊂ X,B ⊂ Y , we have a

canonical isomorphism

X/A∧Y/B �X×Y/(A×Y ∪X×B). (4)

Construction 3.5. Let Z ⊂ X × P
1 be closed with image Z ′ in X. Applying the

isomorphism (4) with Y = P
1, A=X \Z ′, B = ∅, we obtain the following equivalence:

X×P
1/

(
X×P

1 \Z ′×P
1
)
� (X/X \Z ′)∧P

1
+.

Together with the stable splitting P
1
+ � 1∨P

1 and extension of support, this induces a

map

trZ :Hd
Z

(
X×P

1,M
)
→Hd

Z′×P1

(
X×P

1,M
)
→Hd−1

Z′ (X,M−1).

Remark 3.6. This construction is clearly functorial in X.

Lemma 3.7. In the foregoing notation, suppose that Z ⊂ X ×P
1 has codimension ≥ d

(so that Z ′ ⊂X has codimension ≥ d−1). Then trZ only depends on M−d.

Proof. The transfer is given by pullback along the collapse map P
1
X/P1

X \P1
Z′ → P

1
X/P1

X \
Z. Remarks 3.6 and 3.3 imply that the problem is local on X around generic points of Z ′

of codimension d−1; we may thus assume that Z ′ is smooth [22, Tag 0B8X] and NZ′/X

is trivial. Lemma 3.9 identifies the transfer with the collapse map

NP1
Z′/P

1
X
/NP1

Z′/P
1
X
\P1

Z′ →NP1
Z′/P

1
X
/NP1

Z′/P
1
X
\Z.

By assumption, NP1
Z′/P

1
X

is trivial of rank d−1, so this map identifies with

A
d−1
P1
Z′

/Ad−1
P1
Z′

\P1
Z′ → A

d−1
P1
Z′

/Ad−1
P1
Z′

\Z.

Applying isomorphism (4) with X =A
d−1, Y = P

1
Z′ , A=A

d−1 \0, and respectively B = ∅
or B = P

1
Z′ \Z, this identifies with

A
d−1/Ad−1 \0∧P

1
Z′+

id∧t−−−→ A
d−1/Ad−1 \0∧P

1
Z′/P1

Z′ \Z.(
Use the fact that

(
A

d−1 \0
)
×P

1
Z′ =A

d−1
P1
Z′

\P1
Z′ and

(
A

d−1 \0
)
×P

1
Z′ ∪A

d−1×
(
P
1
Z′ \Z

)
=

A
d−1
P1
Z′

\Z
)
. Pullback along t is the monogeneic transfer for Z/Z ′, essentially by definition

(see §2.1.8). The result follows.

Remark 3.8. The foregoing proof shows that on the level of the Rost–Schmid complex,
the map trZ is given as follows. For z ∈ Z of codimension e in X×P

1 and with image z′

of codimension e−1 in X, the map is given in components by

Ce
(
X×P

1,M
)
⊃M−e

(
z,ωz/X×P1

)
�M−e

(
z,ωz/P1

z′
⊗ωP1

z′/P
1
X

)
tr−→M−e

(
z′,ωz′/X

)
⊂ Ce−1(X,M−1).
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Here tr is the monogeneic transfer coming from the embedding z ∈ P
1
z′ .

We have used the following form of the homotopy purity equivalence:

Lemma 3.9. Let Z ⊂ Y ⊂X be closed immersions with X,Y smooth. Then the collapse

map

X/(X \Y )→X/(X \Z)

is canonically homotopic to the collapse map

NY/X/NY/X \Y →NY/X/NY/X \Z.

Proof. Write X ′ =X \Z and Y ′ = Y \Z. We can write the collapse map as

X

X \Y → X/X \Y
X ′/X ′ \Y ′ .

Since (X ′,Y ′)→ (X,Y ) is a morphism of smooth closed pairs, it is compatible with purity

equivalences [9, after proof of Theorem 3.23], and so the collapse map identifies with

NY/X

NY/X \Y →
NY/X/

(
NY/X \Y

)
NY ′/X′/

(
NY ′/X′ \Y ′

) �
NY/X(

NY/X \Y
)
∪NY ′/X′

=
NY/X

NY/X \Z ;

see also [9, top of p. 24]. This is the desired result.

Lemma 3.10. Let X be (essentially) smooth, i : Y ↪→ X closed of codimension 1 with

Y essentially smooth, and Z ⊂X×P
1 of codimension ≥ d such that W :=

(
Y ×P

1
)
∩Z

also has codimension ≥ d on Y ×P
1. Write Z ′,W ′ for the images of Z and W in X,Y ,

respectively. Let η1, . . . ,ηr be the generic points of W of codimension d. Suppose further

that Z → Z ′ is quasi-finite and W →W ′ is birational at η1. Then

i∗ :Hd
Z

(
X×P

1,M
)
→Hd

W

(
Y ×P

1,M
)

depends only on M−d, the map

i∗ :Hd−1
Z′ (X,M−1)→Hd−1

W ′ (Y ,M−1),

and the maps

i∗ηj
:Hd

Z

((
X×P

1
)
ηj
,M

)
→Hd

W

((
Y ×P

1
)
ηj
,M

)
,

for j > 1.

In particular, the map i∗ does not depend on i∗1.

Proof. By Remarks 3.6 and 3.8, we have a commutative diagram

Hd
Z

(
X×P

1,M
)

Hd
W

(
Y ×P

1,M
) ⊕

iC
d
ηi

(
Y ×P

1,M
)

Hd−1
Z′ (X,M−1) Hd−1

W ′ (Y ,M−1)
⊕

η∈W ′∩Y (d−1) Cd−1
η (Y ,M−1).

i∗

trZ trW trW

i∗
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By Lemma 3.7, the vertical maps depend only on M−d, and it follows from Remark
3.8 and our assumption that W → W ′ is birational at η1 that the right-hand vertical

map is injective on the component corresponding to η1. Set a ∈ Hd
Z

(
X×P

1,M
)
. Write

i∗(a) = b1+ · · ·+ br, where bi ∈ Cd
ηi

(
Y ×P

1,M
)
. For j > 1, we know i∗ηj

, hence we know
bj and thus we know trW (bj). Since we know the bottom horizontal map, we know

i∗trZ(a) = trW (i∗(a)). Consequently, we know trW (b1) = trW (i∗a)−
∑

j>1 trW (bj), and

hence b1. This concludes the proof.

Example 3.11. If d=1, then the map i∗ :Hd−1
Z′ (X,M−1)⊂M−1(X)→Hd−1

W ′ (Y ,M−1)⊂
M−1(Y ) clearly depends only on M−1, as desired.

Example 3.12. If Z is smooth and transverse to Y at ηj for j > 1, then i∗ηj
depends

only on M−d by Lemma 3.4, as desired.

The following is the key reduction. It is an adaptation of [11, Lemma 7.2].

Lemma 3.13. Let X,Y be (essentially) smooth, i : Y ↪→X closed of codimension 1, and
Z ⊂X of codimension ≥ d such that W = Y ∩Z is of codimension ≥ d in Y. Then

i∗ :Hd
Z(X,M)→Hd

W (Y ,M)

depends only on M−d.

Proof. By a continuity argument, we may assume that X is smooth over k.

Using Remark 3.3, we may shrink X around a generic point of W. We may thus assume

that W is smooth over k and connected. Pullback along the smooth map X ×A
1 →X

yields an understood isomorphism Hd
Z(X,M)→Hd

Z×A1

(
X×A

1,M
)
, functorial in X. It

hence suffices to understand pullback along i×A
1. Let w = Spec(F ) be a generic point

of W ×A
1 of codimension d on Y ×A

1. Then w lies over the generic point of A1 [22, Tag

0CC1]. We may thus (using Remark 3.3 again) pass to the generic fiber over Spec(k(t)) ∈
A

1; essentially we have base-changed the entire problem to k(t)/k. Let us denote the base

change of X by X1, and so on. Since Z is geometrically reduced over k [22, Tag 020I],

its base change Z1 is geometrically reduced over k(t) [22, Tag 0384]. Lemma 3.14 below
supplies us with an étale neighborhood X2 →X1 of w and a smooth map X2 →W1 such

that Z2 →X2 →W1 is generically smooth and Y2 →W1 is smooth. Let X3 =X2×W1
{w}.

Our base changes are illustrated in the following diagram:

X3 −−−−→ X2 −−−−→ X1 =X⊗k(t) −−−−→ X×A
1 −−−−→ X⏐⏐�

⏐⏐�
w −−−−→ W1 =W ⊗k(t).

By construction, X3 →X1 is a pro-(étale neighborhood) of w ∈X⊗k(t), and so (again

using Remark 3.3) we may replace X⊗k(t) by X3.
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With these preparatory constructions out of the way, we rename X3 to X, Y3 to Y, and
Z3 to Z. We now have a smooth map X → Spec(F ), where F is infinite (since it contains

k(t)), Y → Spec(F ) is smooth, and Z → Spec(F ) is generically smooth. Also, W = {w}
is an F -rational point of X, dimX = d+1, dimY = d, and dimZ = 1. Shrinking X if
necessary, we may assume that Y ⊂X is principal, say cut out by f ∈ O(X), that every

component of Z meets w, that Z is smooth away from w, and that X is affine.

Lemma 3.16 supplies us with ū :Z →A
1 with ū(w) �=0, ūf :Z →A

1 finite, and ū having

no double roots. Pick u ∈ O(X) reducing to ū ∈ O(Z). Then φ1 := uf :X → A
1 is finite

when restricted to Z and satisfies φ1(w) = 0, and we claim that φ1 is smooth at all points

of φ−1
1 (0)∩Z. Note that by construction, (u,f) have no common root on Z (w being the

only root of f on Z ), and neither do (u,du) (u not having double roots on Z ) or (f,df)
(Z(f) being smooth). It follows that d(uf) = udf +fdu does not vanish at points p ∈ Z

with (uf)(p) = 0, proving the claim.

We may thus apply Lemma 3.17 to obtain φ2, . . . ,φd+1 : X → A
1 such that φ =

(φ1, . . . ,φd+1) :X →A
d+1 is étale at all points of φ−1

1 (0)∩Z and has φ(w) = 0, and there

exists an open neighborhood 0∈U ⊂A
d
F such that ZU

φ−→A
1
U is a closed immersion (in fact,

U =U1×A
d−1). The non-étale locus of φ meets Z in finitely many points (namely a closed

subset not containing w, and hence no component of the curve Z ), none of which map to

0 under φ1. Shrinking U further, we may thus assume that ZU is contained in the étale

locus V of φ. Since ZU � φ(ZU )→ φ−1(φ(ZU ))∩V is a section of a separated unramified
morphism, it is clopen [22, Tag 024T] – that is, we have φ−1(φ(ZU ))∩V = ZU

∐
Z ′ with

Z ′ closed in V.

Let D =D(u); this is an open neighborhood of w in X. Note that Z(uf)∩D = Y ∩D.

Let

X ′ =
(
φ−1

(
A

1
U

)
∩V

)
\Z ′,

U0 = U ∩
(
{0}×A

d−1
)
, and Y ′ = φ−1

(
A

1
U0

)
∩X ′ = Z(uf)∩X ′.

We have a commutative diagram of schemes

X
i←−−−− Y ←−−−− Y ∩D∩X ′

�⏐⏐
∥∥∥

X ′ ←−−−− Y ′ ←−−−− Y ′∩D

φ

⏐⏐� ψ

⏐⏐�
A

1
U

j←−−−− A
1
U0
.

Here j is the canonical closed immersion and ψ is the restriction (i.e., base change) of

φ. In particular, ψ is étale and Y ′ is smooth. By construction, φ is an étale neighborhood

of ZU , and ZU
φ−→ A

1
U → U is finite. There is an induced commutative diagram
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Hd
Z(X,M)

i∗−−−−→ Hd
W (Y ,M) −−−−→

�
Hd

W (Y ∩D∩X ′,M)

o

⏐⏐�
∥∥∥

Hd
ZU

(X ′,M) −−−−→ Hd
ZU∩Y ′(Y ′,M)

o−−−−→ Hd
W (Y ′∩D,M)

φ∗
�⏐⏐� ψ∗

�⏐⏐�

Hd
ZU

(
A

1
U,M

) j∗−−−−→ Hd
ZU∩Z(uf)

(
A

1
U0
,M

)
.

We need to understand the top left-hand horizontal map. All the labeled isomorphisms
are pullback along étale maps, and isomorphisms by excision. The two maps labeled o are

also pullback along étale morphisms (in fact open immersions), and hence understood.

We have thus reduced to understanding j∗; we rename ZU to Z and ZU ∩Z(uf) to V.
Since Z is finite over U, it remains closed in P

1
U , and hence by a further excision argument

it suffices to understand

j̄∗ :Hd
Z

(
P
1
U,M

)
→Hd

V

(
P
1
U0
,M

)
.

We have V = {w,z1, . . . ,zr}, and each zi is a smooth point of Z (since w is the only

singular point of Z ). Moreover, zi is a smooth point of V, since zi is a simple root of u
(since by construction u has no double roots on Z ). By Lemma 3.4, the pullback

j∗s :Hd
Z

((
P
1
U

)
zs
,M

)
→Hd

V

((
P
1
U0

)
zs
,M

)

depends only on M−d. Thus applying Lemma 3.10, it suffices to understand

k∗ :Hd−1
Z′ (U,M−1)→Hd−1

V ′ (U0,M−1);

here Z ′ and V ′ are the images of Z and V in U. If d= 1, we are done, by Example 3.11.

The general case (i.e., d > 1) now follows by induction (i.e., restart the argument with

(U,U0,Z
′) in place of (X,Y ,Z)).

Lemma 3.14. Let X be a smooth scheme over an infinite field K, W ⊂X,Y ⊂X smooth

closed subschemes, W ⊂ Z ⊂X with Z ⊂X closed, and Z geometrically reduced over K
(but not necessarily smooth). Set w ∈ W ∩Y such that dimwW ≤ dimw Y . There exists

an étale neighborhood X ′ →X of w together with a smooth morphism X ′ →W such that

Z×X X ′ →W is generically smooth (that is, the smooth locus is dense in the source) and
Y ×X X ′ →W is smooth.

Proof. We modify [4, Corollary 5.11]. Shrinking X around w, we may assume that
X is affine and there exist f1, . . . ,fd ∈ O(X) such that W = Z(f1, . . . ,fd) and W has

codimension everywhere exactly d in X. Let {z1, . . . ,zr} ⊂ Z be a choice of smooth points

in every component of Z, which exist because Z is geometrically reduced [22, Tag 056V].
Let dimX = d+n. We claim that there exist g1, . . . ,gn ∈ O(X) such that dg1, . . . ,dgn are

linearly independent (over the respective residue fields) in ΩwW , ΩwY , and ΩziZ for

every i ; we shall prove this at the end. It follows that df1, . . . ,dfd and dg1, . . . ,dgn are
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linearly independent in ΩwX. Consider the map F = (f1, . . . ,fd,g1, . . . ,gn) : X → A
d+n.

Let p : Ad+n → A
n be the projection to the last n coordinates. By [8, 17.11.1], F is

smooth at w, pF |W is smooth at w, pF |Y is smooth at w, and pF |Z is smooth at zi. In

particular, pF |Z is generically smooth. Shrinking X further around w, we may assume

that F, pF |W , and pF |Y are smooth (whence the former two are étale), and of course
pF |Z remains generically smooth. Applying the construction of [4, §5.5, §5.9], we obtain

a commutative diagram as follows:

Ω
j−−−−→ P −−−−→ A

d
W −−−−→ W

q

⏐⏐�
⏐⏐� pF |W

⏐⏐�
X

F−−−−→ A
d+n p−−−−→ A

n.

Here both squares are cartesian by definition, j is an open immersion, and qj is an étale

neighborhood of W (by construction of Ω). Since p, F, and j are smooth, so is Ω→W . By

construction, Z →X →A
n is generically smooth, thus so is Z×X P →W , and hence also

Z×X Ω→W . Similarly, Y →X → A
n is smooth and hence so is Y ×X Ω→W . Setting

X ′ =Ω, the result follows.

It remains to prove the claim. Embed X into A
N , and let g1, . . . ,gn be linear projections.

By Lemma 3.15 applied to
(
A

N
)∗⊗K K(w)⊂

(
ΩAN

)
⊗K K(w)→ΩwW , dg1, . . . ,dgn will

be linearly independent in ΩwW for general gj , and similarly for ΩwY and ΩziZ. The

result follows.

For completeness, we include a proof of the following elementary fact:

Lemma 3.15. Let K ′/K be a finite field extension. Let V be a finite-dimensional K-

vector space, V ′ a K ′-vector space of dimension ≥ n, and VK′ → V ′ a surjection. Write

A(V ) for the associated variety over K (isomorphic to A
dimV
K ). There is a nonempty open

subset U of A(V )n such that any (v1, . . . ,vn)∈U(K) have K ′-linearly independent images
in V ′. In particular, if F is infinite, then n general elements of V are linearly independent

in V ′.

Proof. Replacing V ′ by a quotient of dimension n, we may assume that dimK′ V ′ = n.

There is a map D : A(V ′)n → A
1
K′ such that n elements of V ′ are linearly independent

if and only if their image under D is nonzero (pick a basis of V ′ and let D be the
determinant). By adjunction, the composite

A(V )nK′ → A(V ′)n
D−→ A

1
K′

defines a map D′ : A(V )n → R
(
A

1
K′

)
, where R denotes the Weil restriction along K ′/K

(see, e.g., [1, §7.6]). By construction, n elements of V have image in V ′ linearly

independent over K ′ if and only if their image under D′ is nonzero. Since D is not

the zero map, neither is D′, and hence U =D′−1
(
R
(
A

1
K′

)
\0

)
is the desired nonempty

open subset.

The last statement follows because nonempty open subsets of affine space over an

infinite field have rational points.
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Lemma 3.16. Let Z be an affine curve over the field F, smooth away from a rational point
w, and let f : Z → A

1 be nowhere constant. There exists u : Z → A
1 such that u(w) �= 0

and fu : Z → A
1 is finite. If F is infinite, it can be arranged that u has no double zeros.

Proof. Let Z̄ be a compactification of Z which is smooth away from w, and Z̄ \Z =

{z1, . . . ,zr}. Since Z is smooth at infinity, any map Z →A
1 extends to Z̄ → P

1. It suffices
to find ui : Z → A

1 such that ordzi(ui)+ordzi(f) < 0, for every i. Then u =
∑

iu
ei
i for

suitably big ei will satisfy the same condition, but for all i at once. Now uf : Z̄ → P
1

is proper and Z̄ \Z ⊃ (uf)−1(∞) ⊃ {z1, . . . ,zr}, which implies that uf : Z → A
1 is finite

(being proper and affine). If u(w) = 0, then replace u by u+1; the first claim follows.

Replacing u by un+g for suitable g and n large, we may assume that du has only finitely

many zeros. Then u+ c for general c has no double zeros (away from w) and satisfies
u(w) �= 0, so that if F is infinite we may arrange the second claim.

Let ˜̄Z be the normalization of Z̄, and Z̃ ⊂ ˜̄Z the open subset over Z – that is, the

normalization of Z. Note that ˜̄Z → Z̄ is an isomorphism near zi. By Riemann–Roch,

we can find v : ˜̄Z → P
1 with an arbitrarily large pole at zi and no poles away from

zi, so in particular no poles on Z̃. Since Z̃ → Z is integral, there exists an equation

vn+a1v
n−1+ · · ·+an = 0, with ai : Z → A

1. It follows that (at least) one of the ai must

have a pole at zi (at least) as large as v. This concludes the proof.

We have used the following variant of the second part of Gabber’s lemma [6, Lemma

3.1(b)]; our proof is heavily inspired by Gabber’s:

Lemma 3.17. Let F be an infinite field, X smooth and affine of dimension d over F,
Z ⊂ X closed, w ∈ Z a rational point, e < d, and φ′ = (φ1, . . . ,φe) : X → A

e such that

φ′(w) = 0, φ′|Z : Z → A
e is finite, and φ′ is smooth at all points of φ′−1(0)∩Z.

Then there exist φe+1, . . . ,φd :X →A
1 such that φ= (φ1, . . . ,φd) :X →A

d is étale at all

points of φ′−1(0)∩Z, φ(w) = 0, and there exists an open neighborhood 0 ∈W ⊂ A
e such

that ZW → A
d−e
W is a closed immersion.

Note that the new map φ is also finite when restricted to Z.

Proof. Set X ↪→ A
N with w mapped to 0. We claim that general linear projections

φe+1, . . . ,φd have the desired properties. They vanish on w by definition.

In order for φ to be smooth at some point x ∈ φ′−1(0)∩Z, we need only ensure that

dφ1, . . . ,dφd ∈ ΩxX are linearly independent [8, 17.11.1]. Since φ′ is smooth at x, the

dφ1, . . . ,dφe are linearly independent at x, and then the other dφi are linearly independent,
for general φi; this follows from Lemma 3.15 applied to V ′ = ΩxX/〈dφ1, . . . ,dφe〉. Since
φ′−1(0)∩Z is a finite set of points, the étaleness claim holds for general φi.

It remains to prove the claim about the closed immersion. Note that by Nakayama’s
lemma, if f : X → Y is a morphism of affine S -schemes with X finite over S and S

Noetherian, and there exists s ∈ S such that fs : Xs → Ys is a closed immersion, then

there exists an open neighborhood U of s such that fU :XU → YU is a closed immersion.
Let ψ : Z → A

d be the restriction of φ, which we view as a morphism over S = A
e via

φ′ (and the projection A
d → A

e to the first e coordinates). It is thus enough to show

that ψ0 : φ
′−1(0)∩Z →A

d−e is a closed immersion (for general φi). Since φ is étale at all
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points of φ′−1(0)∩Z (for general φi) and Z →X is a closed immersion, ψ is unramified

at all points above 0 and so ψ0 is unramified (for general φi). Since φ : Z → A
d is finite,

so is ψ; in fact, φ′−1(0)∩Z is finite over F. By [22, Tags 04XV and 01S4], a morphism is

a closed immersion if and only if it is proper, unramified, and radicial; we already know

that ψ0 is finite (hence proper) and unramified. Being radicial is fpqc local on the target

[22, Tag 02KW], so may be checked after geometric base change. In other words (using
that φ′−1(0)∩Z is finite over F ), we need the φi to separate a finite number of specified

geometric points. This clearly holds for general φi.

Proof of Theorem 3.1. If the theorem holds for composable maps f and g, then it
holds for fg. Given f : Y →X, we factor it as

Y
i−→ Γf

p−→X;

here i : Y → Γf is the graph of f. Then i is a regular immersion and p is smooth. It follows

that p−1(Z)⊂ Γf has codimension ≥ d (see, e.g., [8, Corollary 6.1.4]). Hence it suffices to
prove the result for i and p separately – that is, we may assume that f is either a regular

immersion or a smooth morphism. The case of smooth maps was already explained in

Remark 3.3, so assume that f : Y ↪→X is a regular immersion. As usual, we may localize

in a generic point of Z∩Y of codimension d on Y ; hence we may assume that Z∩Y = {z}
is a closed point, X is local, and dimY = d. It follows (e.g., from [22, Tag 00NQ]) that

there exists a sequence of codimension 1 embeddings of essentially smooth schemes

Y = Yd ↪→ Yd+1 ↪→ ·· · ↪→ Yn =X.

Let Zi = Z ∩ Yi. Then dimZi ≥ dimZi+1 − 1 [22, Tag 00KW], but dimZn = n− d =
dimZd+n−d, so that dimZi = i−d for all i. It follows that we may prove the result for

each Yi ↪→ Yi+1 separately; this is Lemma 3.13.

4. Applications

After introducing some notation in §4.1, we identify the heart of SHS1

(k)(d) (for d≥ 3)
in §4.2. This establishes [2, Conjecture 6.10]. Finally, in §4.3 we study convergence of

the resolution of an S1-spectrum by infinite P
1-loop spectra arising from the adjunction

SHS1

(k)� SH(k) and deduce some conservativity results.
We also assume that k is perfect; we will restate this assumption with the most

important results only.

4.1. Notation and hypotheses

We write SHS1

(k) for the category of motivic S1-spectra [16, §4] (i.e., the motivic

localization of the category of spectral presheaves on Smk), and SH(k) = SHS1

(k)
[
G

∧−1
m

]
for the category of motivic spectra [16, §5]. For the stabilization functors, we use the

notation

Smk∗
Σ∞

S1−−→SHS1

(k)
σ∞
−−→SH(k)eff ⊂ SH(k),
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and we denote by ω∞ the right adjoint of σ∞. Here SH(k)eff is the localizing subcategory
generated by the image of σ∞.

There are localizing subcategories

SHS1

(k)⊃ SHS1

(k)(1)⊃ ·· · ⊃ SHS1

(k)(d)⊃ ·· · ;

here SHS1

(k)(d) is generated by Σ∞
S1X+∧G

∧d
m for X ∈ Smk. The inclusion SHS1

(k)(d)⊂
SHS1

(k) has a right adjoint which we denote by fd.
8 There are canonical cofiber sequences

fd+1 → fd → sd defining the functors sd. There is a similar filtration of SH(k)eff, given by
SH(k)eff(d) := SH(k)eff∧G

∧d
m , and the right adjoints (resp., cofibers) are again denoted

by fd (resp., sd). See [10, 23] or [2, §6.1] for more details on these functors.

Recall that SHS1

(k) has a t-structure with nonnegative part generated by Σ∞
S1X+ for

X ∈ Smk; its heart canonically identifies with HI(k) [16, Lemma 4.3.7(2)]. We denote by
E≥0, E≤0, and π0E the truncations and homotopy sheaves, respectively. The categories

SHS1

(k)(d), SH(k), and SH(k)eff(d) have related t-structures, with nonnegative parts

generated by X+∧G
∧d
m .

Recall from [2, §5.1] the notion of a presheaf with A
1-transfers. This is just a presheaf F

on Smk together with, for every finitely generated field K/k, a GW (K)-module structure

on F (K), and for every finite monogeneic extension K(x)/K, a transfer τx : F (K(x))→
F (K). The category SH(k)eff♥ embeds fully faithfully into the category of presheaves

with A
1-transfers [2, Corollary 5.17] (morphisms in this category are given by morphisms

of presheaves compatible with the GW -module structures and transfers). Given a presheaf

with A
1-transfers M, we say that the transfers extend to framed transfers if M is in the

essential image of this embedding. Recall also that Morel has shown that if M ∈HI(k)
and d > 0, then M−d canonically extends to a presheaf with A

1-transfers (see §2.1.8 or

[2, Example 5.2]).

Definition 4.1. Let k be a perfect field and d > 0.

(1) Set M ∈ HI(k). We shall say that hypothesis Td(M) holds if the canonical A1-

transfers on M−d extend to framed transfers. We shall say that hypothesis Td(k)

holds if Td(M) holds for all M ∈HI(k).

(2) We shall say that hypothesis Sd(k) holds if for any E ∈ SHS1

(k) and i ∈ Z, the

spectrum fdπisdE is in the essential image of ω∞ : SH(k)→SHS1

(k).

Remark 4.2. If k is perfect, then Td(k) holds for any d ≥ 3, and if char(k) = 0, then
T2(k) also holds [2, Theorem 5.19].

Remark 4.3. We speculate that T1(k) holds for any perfect field.

Remark 4.4. If f : Spec(l)→ Spec(k) is an algebraic extension (automatically separable)

and M ∈HI(k) such that Td(M) holds, then Td(f
∗M) also holds. This is obvious for f

finite, and the general case follows by continuity and essentially smooth base change.

8We abuse notation somewhat and view this as a functor SHS1

(k)→SHS1

(k).
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Theorem 4.5. (Levine [11]). Let char(k) = 0. Then Sd(k) holds for any d > 0.

Proof. This is essentially [11, Theorem 2]; we just have to show that

sp,nE � fnΣ
p+nπp+nsnE.

By definition [11, main construction (9.2)], sp,nE(X) is the realization of (a rectification
of) the simplicial object Σpπp(snE)(n)(X,•); here (snE)(n)(X,•) is the homotopy

coniveau tower model of fnsnE � snE, and πp just means taking the pth Eilenberg–

MacLane spectrum of the (levelwise) ordinary spectrum (snE)(n)(X,•).
The map (snE)≥n+p → snE of spectral sheaves induces a map

αp : ((snE)≥p+n)
(n)

(−,•)→ (snE)(n)(−,•)

of simplicial spectral presheaves. We claim that αp induces an isomorphism on πi for

i≥ p, and that the source has πi = 0 for i < p. This yields an equivalence

((snE)≥p+n)
(n)

(−,•)� τ≥p(snE)(n)(−,•),

where τ≥p just means levelwise truncation of the simplicial presheaf of spectra. Taking

cofibers, we obtain

(
Σp+nπp+nsnE

)(n)
(−,•)� Σpπp(snE)(n)(−,•),

which is what we set out to prove (using [10, Theorem 7.1.1]).

It is hence enough to prove the claim. Thus let X ∈ Smk and W ⊂A
m
X have codimension

≥ n. The definition of the homotopy coniveau tower (recalled, e.g., in [11, §9]) implies

that it is enough to show that

H−i
W (Am

X,snE)�H−i
W (Am

X,(snE)≥n+p) for i≥ p

and

H−i
W (Am

X,(snE)≥n+p) = 0 for i < p.

Considering the (strongly convergent) descent spectral sequence (for F ∈ SHS1

(k))

Hp
W

(
A

m
X,πqF

)
⇒Hp−q

W (Am
X,F ),

for this it suffices to show that for j ∈ Z we have

Hi
W

(
A

m
X,πjsnE

)
= 0 for i �= n.

We can compute this cohomology group using the Rost–Schmid resolution; since W has

codimension ≥ n, the vanishing follows from the observation that πj(snE)−i =0 for i > n,

which holds because Ωi
Gm

snE � 0 (for i > n) by definition.

4.2. The heart of SHS1

(k)(d)

Consider the adjunction

σ∞ : SHS1

(k)� SH(k) : ω∞.
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Then σ∞
(
SHS1

(k)(d)
)
⊂SH(k)eff(d) and σ∞

(
SHS1

(k)(d)≥0

)
⊂SH(k)eff(d)≥0, for any

d≥ 0. Moreover, it follows from [2, Lemmas 6.1(2) and 6.2(1,2)] that ω∞ (
SH(k)eff(d)

)
⊂

SHS1

(k)(d) and ω∞ (
SH(k)eff(d)≥0

)
⊂ SHS1

(k)(d)≥0. This implies that there is an
induced adjunction

πd
0σ

∞ : SHS1

(k)(d)♥ � SH(k)eff(d)♥ : ω∞,

where πd
0 denotes the truncation functor in the t-structure on SH(k)eff(d).

Theorem 4.6. Let k be a perfect field such that Td(k) holds. Then the functor ω∞ :

SH(k)eff(d)♥ →SHS1

(k)(d)♥ is an equivalence of categories.

This establishes [2, Conjecture 6.10] (for n= d).

Proof. The functor is fully faithful by [2, Theorem 6.9]; it hence suffices to prove essential

surjectivity. We shall prove the following more precise statement: ifM ∈HI(k) and Td(M)

holds, then M is in the essential image of ω∞.
We first prove this assuming that k is infinite. We have πi(M)−d =0 for i �=0 [2, Lemma

6.2(3)], and hence the canonical map M → fdπ0M is an equivalence (indeed, it induces

an equivalence on πi(−)−d for every i, and this detects equivalence in SHS1

(k)(d) by [2,

Lemma 6.1(1)]). By assumption, the A1-transfers on π0(M)−d extend to framed transfers;

hence there exists M̃ ∈ SH(k)eff♥ such that ω∞
(
M̃

)
−d

� π0(M)−d as presheaves with

A
1-transfers. By Lemma 4.7 (this is where we use the assumption that k is infinite), this

implies that fdω
∞
(
M̃

)
� fdπ0(M). It follows from [10, Theorem 9.0.3] that fd commutes

with ω∞; we thus find that

M � fdπ0M � fdω
∞
(
M̃

)
� ω∞fdM̃.

The claim is thus proved for k infinite.
Now let k be finite and M ∈HI(k) such that Td(M) holds. Since ω∞ is fully faithful,

M is in the essential image of ω∞ if and only if the canonical map M → ω∞σ∞♥M is an

isomorphism. The functors ω∞ and σ∞♥ commute with essentially smooth base change.

Let f : Spec(l)→ Spec(k) be an infinite algebraic p-extension of k, for some prime p. Using
Lemma 4.8 we reduce to proving that f∗M is in the essential image of ω∞. By Remark

4.4, Td(f
∗M) holds, and thus we are reduced to what was already established.

This concludes the proof.

Lemma 4.7. Let k be an infinite perfect field, M,N ∈ HI(k), and d > 0. Suppose

that Td(M) holds. Any isomorphism M−d � N−d respecting the A
1-transfers yields an

equivalence fdM � fdN .

Proof. We have fdM �M (d) [10, Theorem 7.1.1] (this is where we use the assumption
that k is infinite). As explained in [2, Remark 4.17], the (truncated) BLRS complex of

M provides a model of M (d) which depends only on M−d as a presheaf of GW -modules

together with the maps f∗ :Hd
Z(X,M)→Hd

f−1(Z)(Y ,M) for f : Y →X ∈ Smk, with Z ⊂X
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closed of codimension ≥ d such that f−1(Z) also has codimension ≥ d. (In order to apply

this remark, we need to know that M−d has framed transfers – see, e.g., [2, Proposition
4.14]); this is the only reason for assuming Td(k).) Theorem 3.1 shows that f∗ depends

only on M−d as a presheaf with A
1-transfers. The result follows.

Lemma 4.8. Let k be a perfect field and kp/k (resp., kq/k) a separable algebraic p-

extension (resp., q-extension), for primes p �= q. Set α : E → F ∈ SHS1

(k)(d) such that

Td(M) holds for any homotopy sheaf M of E or F. If the image of α in SHS1

(kp)(d)×
SHS1

(kq)(d) is an equivalence, then so is α.

Proof. It suffices to prove that Ωd
Gm

(α) is an equivalence [2, Lemma 6.1(1)] – that is,

that πi(α)−d is an isomorphism for all i. By assumption, this is a morphism between

sheaves admitting framed transfers, and by [2, Corollary 5.17] the morphism preserves the

transfers. The result thus follows from [5, Corollary B.2.5] (using the fact that essentially
smooth base change commutes with Ωd

Gm
).

The following is our degree 0Gm-Freudenthal theorem:

Corollary 4.9. Suppose that Td(k) holds.

(1) Set E ∈ SHS1

(k)≥0∩SHS1

(k)(d). Then

π0(E)� π0(ω
∞σ∞E).

(2) Set E ∈ SHS1

(k)≥0. Then

π0(ω
∞σ∞E)� π0

(
G

∧d
m ∧E

)
−d

.

In particular, this holds for d≥ 3 if k is perfect, and for d≥ 2 if char(k) = 0.

Proof. (1) We have E ∈ SHS1

(k)(d)≥0 [2, Lemma 6.2(3)]. Write πd
0 for the homotopy

object in the t-structure on SHS1

(k)(d). Then since σ∞ and ω∞ are both right-t-exact

[2, Lemma 6.2(1,2)], we learn from Theorem 4.6 that

πd
0E � πd

0ω
∞σ∞E. (*)

Since SHS1

(k)(d)≥0 ⊂ SHS1

(k)≥0 (by construction), we have π0π
d
0 � π0 (when applied

to objects in SHS1

(k)(d)≥0), and hence the result follows by applying π0 to (∗).
(2) We have

π0(ω
∞σ∞E)� π0

(
ω∞Ωd

Gm
Σd

Gm
σ∞E

)
� π0

(
Ωd

Gm
ω∞σ∞Σd

Gm
E
)

� π0

(
ω∞σ∞

G
∧d
m ∧E

)
−d

(1)
� π0

(
G

∧d
m ∧E

)
−d

.
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4.3. Canonical resolutions

In this section we will freely use the language of ∞-categories as set out in [13, 12].

Given any adjunction F : C � D : G of ∞-categories, there is a monad structure on

GF [12, Proposition 4.7.4.3]. Hence for E ∈ C there is a canonical ‘triple resolution’

E → E•, where E• denotes a cosimplicial object with En = (GF )◦(n+1)(E). In more
detail, by the definition of a monad, GF promotes to an E1-algebra in Fun(C,C)
under the composition monoidal structure, and then [15, Construction 2.7] yields an

augmented cosimplical object in Fun(C,C); the triple resolution is obtained by applying
this cosimplicial endofunctor to E. This also makes it clear that the triple resolution is

functorial in E.

Applying this to the stabilization adjunction σ∞ : SHS1

(k)� SH(k) : ω∞, we obtain
the canonical resolution

E → E∧ := lim
Δ

[
(ω∞σ∞)◦(•+1)E

]
,

functorially in E.

Definition 4.10. We say that the canonical resolution converges for E if this morphism

is an equivalence.

Example 4.11. The canonical resolution converges if E is in the essential image of ω∞,

since then the cosimplicial object is split.

Example 4.12. Given a cofiber sequence E1 → E2 → E3, if the canonical resolution

converges for any two of the three terms, then it converges for the third. This holds
because all the functors involved are stable.

The following result clearly holds in much greater generality, but for simplicity we state

it in our restricted context:

Lemma 4.13. Set E ∈ SHS1

(k) and suppose we are given a tower

· · · → E2 → E1 → E0 := E

and a sequence ni ∈ Z such that

(1) limini =∞,

(2) Ei ∈ SHS1

(k)≥ni
(for all i), and

(3) the canonical resolution converges for cof(Ei+1 → Ei) (for all i).

Then the canonical resolution converges for E.

Proof. Define an endofunctor F of SHS1

(k) by F (X) = fib(X →X∧). By construction,

this is a stable functor such that F (X)� 0 if and only if the canonical resolution converges

for X. Since F (cof(Ei+1 → Ei))� 0 for all i, we find that the tower

· · · → F (E1)→ F (E0) = F (E)
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is constant. In order to prove that F (E) = 0, it thus suffices to show that limiF (Ei)� 0.

Commuting the limits, we find that

lim
i
F (Ei)� lim

i≥0,n∈Δ
fib

(
Ei → (ω∞σ∞)◦(n+1)Ei

)
� lim

n∈Δ
lim
i
fib

(
Ei → (ω∞σ∞)◦(n+1)Ei

)
;

it thus suffices to show that the inner limit over i vanishes. Since σ∞ and ω∞ are both

right-t-exact [2, Lemma 6.2(1,2)], we have fib(. . .)∈SHS1

(k)≥ni−1, and hence it is enough

to show that if Xi is a sequence of spectra with Xi ∈ SHS1

(k)≥ni
then limiXi � 0.

Since SHS1

(k) is generated as a localizing subcategory by objects of the form Σ∞
S1U+

for U ∈ Smk, considering the Milnor exact sequence [7, Proposition VI.2.15] it suffices

to show that if n > dimU , then
[
Σ∞

S1U+,SHS1

(k)≥n

]
= 0. This follows from the descent

spectral sequence.

Theorem 4.14. Let k be a perfect field such that Td(k) holds.

(1) The canonical resolution converges for all E ∈ SHS1

(k)≥0∩SHS1

(k)(d).

(2) Suppose in addition that Sj(k) holds for all 1≤ j < d. Then the canonical resolution

converges for all E ∈ SHS1

(k)≥0∩SHS1

(k)(1).

Proof. (1) Write τd≥i for the truncation in the t-structure on SHS1

(k)(d). We have

E ∈ SHS1

(k)(d)≥0 [2, Lemma 6.2(3)]. Apply Lemma 4.13 with Ei = τd≥iE and ni = i;
assumption (i) is clear, and (ii) holds by [2, Lemma 6.2(1)]. For (iii), it suffices by Example

4.11 to show that πd
i E is in the essential image of ω∞. This follows from Theorem 4.6.

(2) By Example 4.12, part (1) of the theorem, and induction, it suffices to show that

the canonical resolution converges for sjE, for 1 ≤ j < d. Since fj : SHS1

(k)→SHS1

(k)

is right-t-exact [2, Lemma 6.2], we have sjE ∈ SHS1

(k)≥0. Apply Lemma 4.13 with Ei =

fj

[
(sjE)≥i

]
and ni = i. Assumption (i) is clear, (ii) holds by the right-t-exactness of fj ,

and (iii) holds by the definition of Sj(k) and Example 4.11.

Corollary 4.15. (1) Suppose that Td(k) holds. Then

σ∞ : SHS1

(k)≥0∩SHS1

(k)(d)→SH(k)

is conservative.

(2) Suppose that additionally Sj(k) holds, for 1≤ j < d. Then

σ∞ : SHS1

(k)≥0∩SHS1

(k)(1)→SH(k)

is conservative.

In particular, (1) holds for d= 3 if k is perfect, and (2) holds if char(k) = 0.

Proof. Clearly the convergence of canonical resolutions implies conservativity (which is
equivalent to detecting zero objects, by considering cofibers), so this is immediate from

Theorem 4.14.
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Inst. Hautes Études Sci. 32 (1967), 1–361.

[9] M. Hoyois, ‘The six operations in equivariant motivic homotopy theory’, Adv. Math. 305
(2017), 197–279.

[10] M. Levine, ‘The homotopy coniveau tower’, J. Topol. 1(1) (2008), 217–267.
[11] M. Levine, ‘Slices and transfers’, Doc. Math. (Extra Vol.) (2010), 393–443.
[12] J. Lurie, Higher Algebra, September 2017, http://www.math.harvard.edu/˜lurie/papers/

HA.pdf.
[13] J. Lurie, Higher Topos Theory, April 2017, http://www.math.harvard.edu/˜lurie/papers/

HTT.pdf.
[14] J. W. Milnor and D. Husemoller, Symmetric Bilinear Forms, Ergebnisse der

Mathematik und ihrer Grenzgebiete, 73 (Springer, New York-Heidelberg-Berlin, 1973).
[15] A. Mathew, N. Naumann and J. Noel, ‘Nilpotence and descent in equivariant stable

homotopy theory’, Adv. Math. 305 (2017), 994–1084.
[16] F. Morel, ‘An introduction to A1-homotopy theory’, ICTP Trieste Lecture Note Ser. 15

(2003), 357–441.
[17] F. Morel, ‘The stable A1-connectivity theorems’, K-Theory 35(1) (2005), 1–68.
[18] F. Morel, A1-Algebraic Topology over a Field, Lecture Notes in Mathematics (Springer,

Berlin, 2012).
[19] F. Morel and V. Voevodsky, ‘A1-homotopy theory of schemes’, Publ. Math. Inst.

Hautes Études Sci. 90(1) (1999), 45–143.
[20] Y. A. Nisnevich, ‘The completely decomposed topology on schemes and associated

descent spectral sequences in algebraic K -theory’, in Algebraic K-Theory: Connections with
Geometry and Topology, pp. 241–342 (Kluwer Academic Publishers, Dordrecht-Boston-
London, 1989).

https://doi.org/10.1017/S1474748021000396 Published online by Cambridge University Press

http://www.math.harvard.edu/~lurie/papers/HA.pdf
http://www.math.harvard.edu/~lurie/papers/HTT.pdf
https://doi.org/10.1017/S1474748021000396


The zeroth P
1-stable homotopy sheaf of a motivic space 1317

[21] M. Ojanguren and I. Panin, ‘A purity theorem for the Witt group’, Ann. Sci. Éc.
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