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Abstract

The qualitative behaviorof positive solutions of the neutral-delay two-species Lotka-
Volterra competitive system with several discrete delays is investigated. Sufficient
conditions are obtained for the local asymptotic stability of the positive steady
state. In fact, some of these sufficient conditions are also necessary except at those
critical values. Results on the oscillatory and non-oscillatory characteristics of the
positive solutions are also included.

1. Introduction

The autonomous logistic delay-differential equation

x(t) = rx(t)[l-x(t-r)/K], (1.1)

where "'" = d/dt, r, K, x are positive constants, has been widely used as a
model equation capable of showing oscillations of single-species population
sizes in constant environments closed to both immigration and emigration.
See Cushing [3], Gopalsamy and Zhang [9], Hale [12], Kuang and Feldstein
[ 14] and Pielou [15]. It has been the object of intensive analysis by numerous
authors (see the references cited in Gopalsamy and Zhang [9]). Indeed, it is
a natural generalisation of the following well-known logistic single-species
population equation

x(t) = rx(t)[l-x(t)/K]. (1.2)

Here r is called the intrinsic growth rate of the species x , K is interpreted
as the environment capacity for x, and r[\ -x(t)/K] is the per capita growth
rate of x at time t. Based on his investigation on laboratory populations of
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Daphnia magna, F. E. Smith [16] argued that the per capita growth rate in
(1.2) should be replaced by r[l - (x(t) + px{t))/K] (for details see Pielou
[15]). This leads to the following equation

x(t) = rx{t)[\ - (x(t) + px(t))/K]. (1.3)

We may think of x as a species grazing upon vegetation, which takes time T
to recover. In this case, it will be even more realistic to incorporate a single
discrete delay T in the per capita growth rate, which results in the following
neutral-delay logistic equation

x(t) = rx{t)[\ - (x(t - T) + px(t - r))/K}. (1.4)

This equation was introduced and investigated by Gopalsamy and Zhang
[9]. Subsequently, it was studied by Freedman and Kuang [5], Kuang and
Feldstein [14]. The focus of these works is the qualitative behavior of the
solutions, such as boundedness, asymptotic stability and oscillation.

Assume x(t) described by (1.4) is the population of a species competing
with another species with population y(t) for a shared limited resource—
space or a nutrient, for example, then the following system may model their
interaction,

f x(t) = rxx(t)[\ - fc,x(0 - ax(t - T,) - 0x(t - TO) - cxy{t - T2)] ,

\y{t) = r2y{t)[\-c2x{t-xi)-k2y{t-x,)].

Here all parameters except fi are assumed to be positive constants. We have
included k{x(t) into the per capita growth rate of x(t), which may reflect
the possible instantaneous interference within species x.

The focus of our present study is the qualitative behavior of positive so-
lutions of system (1.5). This includes the asymptotic stability of its positive
steady state, and oscillatory behavior of its solution about it.

This paper is organised as follows: Section 2 presents some preliminary
analyses of the system. Section 3 is devoted to the asymptotic stability anal-
ysis of the unique positive steady state. The technique utilised here is a
generalised version of the one developed by Cooke and Grossman [ 1 ] mainly
for equations of linear constant coefficients with single delay. It is further
developed by Cooke and van den Driessche [2] for several other situations.
Section 4 contains a detailed oscillation analysis for both the single species
equation (1.4) and the competitive (1.5). The whole paper concludes with a
section of discussion.

2. Preliminaries

Throughout the rest of this paper, we always assume that the initial con-
ditions for system (1.5) are of the type
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x(s) = 4>l(s)>0, se[-T,0], <f>l(0)>0&nd(j)leC\[-T,0),R+),

y(s) = <f>2(s)>0, se[-T,0], <f>2(0) > 0 and <f>2 e c\[-r, 0 ] , R+),

where T = max{i.; / = 0, 1, . . . , 4} . We say (x(t), y{t)) is a solution of
(1.5) on [—T,OO), if both x(t) and y(t) are positive continuously differ-
entiable functions and satisfy both the above initial conditions and system
(1.5). It is not difficult to see that solutions of (1.5) corresponding to the
initial conditions of the above type exist and are unique, and they are always
positive and denned on [0, oo).

If kx + a > c2 and k2> c , , then (1.5) has four steady states. They are
(0, 0), (0, k~x), ((*, +Q)" 1 , 0) and {x\y*),x* > 0 , / > 0, satisfy

In case T = /? = 0, the system (1.5) reduces to the well-studied Lotka-
Volterra competition model without delay (see Waltman [17]). In this sit-
uation, (x*, y*) attracts all positive solutions of system (1.5), (0,0) is an
unstable node and the other two steady states are saddles. If T = /? = 0,
k{+a < c2 and k2 < cx, then (x*, y*) becomes unstable and both (0, k2 )
and ((fc, + a ) " 1 , 0) become stable. In case (i) kx+ a > c2 and k2 < c{ or
(ii) kx+a < c2 and kx > c{, (x*, y*) does not exist.

It is easy to see that the positive cone R2
+ = {(x, y)\x > 0, y > 0}

is invariant in the sense that if (<£,(.$), </>2(s)), s > 0 is in R2
+ , and if

{x(t),y(t)) is a solution of (1.5), and x(s) = </>,(.?), y(s) = <j)2{s), then
{x(t), y(t)) e R2

+ for all t > s. In a similar sense, we see that both the
x-axis and y-axis are invariant as well.

Denote

II^H = m a x { | 0 O ? ) | : s e [ - r , 0 ] } + vaax{\4> {s)\ : s e [ - r , 0 ] } ,

then Ĥ ll defines a norm for functions in C ' ( [ - T , 0], R+). It is easy to see
that if both ||^,|| and ||02|| are very small, we will witness an increase in
the populations of both species. This indicates that the origin has a similar
property to an unstable node in the conventional sense. Suppose (x0, yQ) is
a steady state of (1.5); we say it is stable if for any e > 0, there is a <50 = SQ(e)
such that if

- xo | : s e [~x, 0]} + max{|02(5) -yo\:se [ - T , 0]} < do,

then

(f) -xo\ :te R+} + mn\{\y(t) ~yo\ : t e R+} < e.
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We say (x0, y0) is unstable if (x0, y0) is not stable. In this sense, we see
that (0,0) is always unstable.

It is easy to see that the properties associated with the unique positive
equilibrium (x* ,y*) (if it exists) plays a central role in determining the
qualitative behavior of solutions of (1.5). Consequently, it becomes the focus
of our analysis in the subsequent sections.

3. Local stability of the positive equilibrium

In this section, we consider the local stability of the unique positive equi-
librium (x*, y*) of the neutral-delay two-species Lotka-Volterra competition
system:

f x(t) = rtx(t)[l - kxx[t) - ax(t - T) - fix(t - r) - cxy(t)),

\y{t) = r2y(t)[l - k2y(t) -c2x{t-a)].

The first equation of (3.1) is equivalent to

£-([ln(x(t)/x*) + r{px{t - T)] = r,[l - kxx(t) - ax(t - r) - Cly(t)].

Denote

u(t) = ln(x(t)/x'), v{t)=y(t)-y\ (3.2)

then x(t) — x* e\p(u(t)), y(t) = v(t) + y*. System (3.1) is reduced to

£[«(*) + rxpX'u{t - T) + Gx(u(t - T))] = -rxkxx*u(t) - rxax*u{t - x)
-rxcxv(t) + Fx(u(t), u(t-T),v(t)),

ftv(t) = -r2k2v{t) - r2c2y*x*u{t - a) + F2{u(t - a), v(t)),

where Gx, Fx, F2 satisfy

Gi(0) = GXu{l_r)(0) = 0

F , ( 0 , 0 , 0) = Flu{t)(0, 0 , 0) = F l u ( , _ T ) ( 0 , 0 , 0 ) = ^ , , ( 0 , 0 , 0) = 0

In the notation of Hale [12], (3.3) can be written as

j ,)] = LX, + F(Xt), (3.4)

where X(t) - (u(t), v{t)), Xt = X{t + 6), 6 e [-3, 0] , 5 = max{r, a) ,
X, e C([-S, 0] , R2), and D,G,L,F are maps of C([-d, 0], R2) into
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R denned by

DX
• (

LX =

G(X) =

K(0)+ !•,£*• U(-T)\

«(0) /

-r,fc,x*M(0) - rlax*u{-r) - r,c,

-r2c2x*y*u(-o)-r2lc2v{0)

FX -C

(3.5)

)
It is well known that if the trivial solution of the linear system

4-DX, = IX (3.6)

is uniformly asymptotically stable, then, with G(X) and F(X) denned as
in (3.5), the trivial solution of the nonlinear system (3.3) is (locally) expo-
nentially asymptotically stable (for details, see Hale, [12], Theorem 9.1, pp.
304-305). Therefore, in the rest of this section, we shall consider the stability
of the trivial solution of (3.6). Denote

a = r1klx*, b —r1kl (3.7)
^ J C J , d = r2c2y*x*, p = r2k2y*.

System (3.6) becomes

J u(t) + eu(t - T) = -au{t) - bu{t - T) - cv(t),

{ v(t) = -du(t -a)- pv(t).

Differentiating both sides of the first equation of (3.8), and using the second
equation leads to

(3.8)

u(t)+eu{t-T)+(a+p)u{t)+(b+pe)u{t-T)+pau{t)+pbu(t-T)-cdu(t-a) = 0.
(3.9)

The second equation of (3.2) implies

u{t) = -d~\v(t + a) +pv(t + a)). (3.10)

By substituting (3.10) into the first equation of (3.8), we obtain

v(t)+ev(t-r)+(a+p)v(t)+(b+pe)v(t-r)+pav(t)+pbv(t-t)-cdv(t-a) = 0.

Therefore, u(t) and v(t) have the same local stability.
It is well known that the stability of the trivial solutions of an autonomous

differential difference equation depends on the location of the roots of its
characteristic equation. If the characteristic equation associated with a lin-
ear neutral equation has roots only with negative real parts, and if all the
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roots are uniformly bounded away from the imaginary axis, then the trivial
solution of the linear neutral equation is uniformly asymptotically stable in
the sense of Hale [12] (for details, see Hale, [12], Corollary 10.1, p. 310).
The characteristic equation of (3.9) is

A2 + eX2e'Xx + (a+p)X + (b+pe)Xe~Xr +pa + pbe~Xr -cde~Xa = 0 . (3.11)

Before we state and prove our results, we need the following theorem which
is essentially the same as Theorem 4.1 in Freedman and Kuang [5]. In the
rest of this section, stability is referred to as the uniform asymptotic stability,
unless stated otherwise. Therefore, the stability of the trivial solution of (3.8)
implies the local stability of the trivial solution of (3.3), which is equivalent
to the local stability of the positive equilibrium of the original system (3.1).

THEOREM 3.1 (Freedman and Kuang). Consider the following second-order
real scalar linear neutral-delay equation

u(t) + eu(t - T) + au(t) + b~u(t - x) + rju(t) + £u(t - x) = 0. (3.12)

Assume |e| < 1, r\ + £ ^ 0 and a2 + b~ +{£,- erj)2 / 0. Then the number of
different positive {negative) imaginary roots of the characteristic equation of
(3.12)

X2 + eX2e Xz + aX + bXe Xz + n + Zx Xr = 0 (3.13)

can only be zero, one or two. For (3.12), the following statements are true
(1) If there are no such roots, then the stability of the trivial solution does

not change for any x > 0.
(2) If there is one imaginary root, then an unstable trivial solution at x =

0 never becomes stable for any x > 0. If the trivial solution is uniformly
asymptotically stable for x = 0, then it is uniformly asymptotically stable up
to the delay time x0 , , and becomes unstable afterwards.

(3) If there are two imaginary roots, ico+ and ico_ , such that to+> co_ >
0, then the stability of the zero trivial solution can change a finite number of
times at most as x is increased, and eventually it becomes unstable.

(4)

l =sign{a + 2 e £ 2 ? / - £ 2 + 2&; 2 ( l -e 2 )} . (3.14)

In the above statements, co+ , co_ , T0 , are defined as (if they do exist):

2rj-a2- 2fe) ± [(b~2 + 2n-a2-

(3.15)
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where 0 < 0, < In, and

ab(D2
+ + (ti-(D2

+)(Z-eto2)
fL— ± , , , (3.17)

Now we are ready to formulate our results. We shall discuss only two
cases, namely (i) a = 0; (ii) a — x. Our first theorem deals with the case
(i) a = 0. We denote A, = (b + pe)2 + 2{pa - cd) - (a + pf - 2pbe,
A2 = 4(1 -e2)[(pa-cd)2~p2b2].

THEOREM 3.2. In (3.8), assume a — 0, |e| < 1. Then the following state-
ments are true.

(1) Suppose either A{ < 0, or A2 < A2.
(1A) If kx + a > c2 and k2 > c,, /Ae« the trivial solution of (3.8) w

uniformly asymptotically stable for all x > 0.
(IB) 7/"/c, + a < c2 am/ k2 < c,, rAe« ?/ze trivial solution o/(3.8) w unstable

for all x > 0.
(2) Suppose A, > 0, a«a" Â  > A2.
(2A) If k{ + a > c2 and k2> cl, then the stability of the trivial solution of

(3.8) will change from stability to instability a finite number of times as x is
increased and eventually it becomes unstable.

(2B) If k{ + a < c2 and k2< c,, then the stability of the trivial solution of
(3.8) can change from instability to stability a finite number of times as x is
increased and eventually it becomes unstable.

PROOF. When a = 0, the characteristic equation of (3.8) becomes

X2 + eX2e~Xz + (a+p)X + (b + pe)Xe~*z + {pa- cd)+pbe~*T = 0. (3.19)

C o m p a r i n g t o ( 3 . 1 3 ) , w e h a v e a = a + p , b — b + p e , r\ — p a - cd , £ = p b .
When x = a = 0 in (3.8), it reduces to

f (1 + e)*(0 = -(a + b)u(t) - cv(t),

\ i)(t) =-du(t) - pv(t). l ' '

It is easy to see that the positive steady state (x*, y*) of (3.1) exists if and
only if (1°) kl + a > c2 and k2 > c, or (2°) 0 < kx + a < c2 and k2<cl.
In case of (1°), the trivial solution of (3.20) is asymptotically stable, and in
case of (2°), it is unstable.
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Obviously, in both case (1°) and (2°), we have n + £ ^ 0 . a2 + b +
(£, - en)2 ^ 0. Suppose either A, < 0 or Â  < A2, then (3.15) indicates that
co± do not exist. Therefore, the first part of Theorem 3.1 can be applied to
this situation, which results in the conclusion of parts (1A) and (IB).

Suppose A, > 0 and A^ > A2 . Then, from (3.15), we see that both co+

and co_ exist. Hence, parts (2) and (3) of Theorem 3.1 apply. A similar
argument as made in the proof of part (1A) and (IB) can be repeated, thus
proving the statement of part (2).

In (3.12), we denote
^ 2nn

"-1 co+ co+

where 0, is defined by (3.17) and (3.18). We also denote

= 62 2nn
T«,2 ~ co_+ co_ '

where 0 < 02 < 2n , and

abco2 + (n - co2 )(£ - eco2 )
cos02 = ^-ii ~ A \ ~ ; , (3.23)

b co_ + (^ - eco_)

(<f - eco )aco — bco (n — co )
sin 02 = ^ = — — . (3.24)

b co_ + (£-eco2_)2

When the trivial solution of (3.12) is stable for x = 0, k switches from
stability to instability to stability occur when the parameters are such that

T 0 , l < T 0 , 2 < T l , l < ' ' ' < T k - l , l < X k - l , 2 < T k , l < T f c + l , l < X k , 2 " ' '

or k switches from instability to stability to instability may occur when

T 0 , 2 < T 0 , l < T l , 2 < " < X k - \ , 2 < Xk-\,\ <Xk,\ < X k , 2 " ' '

when the trivial solution of (3.12) is unstable when x = 0 (for details, see
Freedman and Kuang, [5]).

A similar result to Theorem 3.2 can be established for the case (ii) a — x.
In order to simplify the presentation, we denote

5{ = (b + pe)2 + 2pa - (a + p)2 - 2e(pb - cd),

d2 = 4(1 - e2)[p2a2-(pb-cd)2].

THEOREM 3.3. In (3.8), assume a — x, \e\ < 1.
(1) If (5, < 0 or S2 < 82, then we have the same conclusions as (IA) and

(IB) in Theorem 3.2.
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(2) If Sx > 0 and d2 > 82, then we have the same conclusions as (2A) and
(2B) in Theorem 3.2.

PROOF. When a = x, the characteristic equation of (3.8) becomes

A2 + eX2e~Xx + (a+ p)X + (b + pe)Xe~Xr +pa + (pb- cd)e~Xx = 0. (3.25)

The rest of the proof is similar to the proof of Theorem 3.2, we omit the
details to avoid repetition.

It is well known that when |e| > 1 in (3.13), then for all T > 0, there is
an infinite number of roots of (3.13) whose real parts are positive. In other
words, this asserts that the trivial solution of (3.14) is unstable (for details,
see Theorem 2.1 in Freedman and Kuang [5], or Corollary 7.1 in Hale [12],
p. 29). This fact leads to the following theorem.

THEOREM 3.4. In (3.8), / / |e| > 1, then for all T > 0, its trivial solution is
always unstable.

One of the results obtained from the critical case analysis for the second-
order neutral-delay equation made in Freedman and Kuang [5] is equivalent
to the following theorem.

THEOREM 3.5. Assume \e\ = 1 in (3.8).

(1) Suppose a = r, a + p > \j2pa + 2\pb - cd\ + {b + pe)2 and pa >
\pb -cd\. Then the trivial solution o/(3.8) is always uniformly asymptotically
stable.

(2) Suppose a = 0, a+p > \]2{pa - cd) + 2pb + (b + pe)2 and pa-cd >
pb. Then the trivial solution o/(3.8) is always uniformly asymptotically stable.

PROOF. The detail can be found in Freedman and Kuang [5].
When P = 0, (3.1) reduces to a single discrete-delay competition model.

If a £ 0, a = 0 (or T) and A, < 0 or A] < A2 (<5, < 0 or d2 < 82), then
no stability switching can occur as T changes its value. However, if a — 0
(or T) , A, > 0 and A2 > A2 (<J, > 0 and S2 > S2), then the length of delay
T will play an important role in the stability of the trivial solution of system
(3.8). In some circumstances, increases in the delay T can even stabilise the
unstable trivial solution. However, if T is large enough, the presence of delay
will generally destabilise the trivial solution of system (3.8), thus destabilising
system (3.1).

The role played by the neutral term fix(t - T) seems quite complicated as
well. In case a = 0, let A, (e) = (b + pe)2 + 2{pa - cd) - {a + p)2 - 2pbe ,
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A2(e) = 4(1 -e2)[(pa-cd)2-p2b2]. We see, A,(e) is increasing with respect
to e, for e > 0, while A2(e) is decreasing with respect to |e|. Suppose
A,(0) < 0 and A, (1) > 0, then increase in the value fl will result in A, (e) >
0 and A^(e) > A2(e) for some value P. This makes the local stability of
(x*, y*) in (3.1) become T dependent. If kx + a > c2 and k2 > c, , then
the neutral term will eventually play the destabilising role as T increases. If
/c, + a < c2 and k2 < c, , then for some values of r , the neutral term can
play a stabilising role to the local stability of the steady state (x*, y*) in
system (3.1). Similar behaviours of the neutral term can appear in the case
a = x.

4. Oscillatory results

This section is devoted to the discussion of oscillatory behavior of positive
solutions of the following neutral-delay Lotka-Volterra competition system
with several discrete delays,

x(t) = r ,x(0[l - kxx(t)-ax{t - T,) - 0x(t - TO) - cxy{t - T 2 ) ] ,
= r2y(t)[l - c2x(t - T3) - k2y(t - T4)] , ' '

where rx,r2,kx,k2, c, and c2 are positive constants, T; > 0, / = 0, 1 , . . . ,
4 . It is easy to see that when T0 = T, = r , T2 = T3 = T4 = 0, (4.1) reduces
to (3.1). In fact, as will be pointed out later, the method to be employed in
the proof of our oscillatory results can be applied to systems more general
than (4.1).

If ji — 0 , the results in the previous section indicate that for some pa-
rameters rx, r2, /cj, k2, c, and c2 when T increases from zero, the local
stability of the positive steady state may switch. By part (4) of Theorem
3.1 and the well-known Hopf bifurcation theorem (see Theorem 1.1, p. 246
in Hale [12]), we know that the periodic solution may bifurcate from the
equilibrium, thus causing oscillations. Our numeric results indicate that the
presence of the neutral term can cause oscillations as well, which coincides
with our local stability results, established in Section three. However, we are
not sure that some of these oscillatory solutions are periodic solutions, since
so far no Hopf-bifurcation theory is available to nonlinear neutral systems.
Nevertheless, the following oscillatory results may provide some partial rem-
edy to this awkward situation.

Recall that a positive function x{t) denned on [-T, oo) is said to be
oscillatory about x* if there exists a sequence {tn} -* oo as n —» oo, for
which x{tn) = x*, n = 1, 2
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THEOREM 4.1. In (4.1), assume fi>0, a + kx>c2, k2> c, and (x*, y*) is
the unique positive steady state. If (x(t), y{t)) is a bounded positive solution
and y(t) is not oscillatory about y*, then lim(_>ooy(0 - y* and either x{t)
is oscillatory about x*, or lim(_>oo(x(r), y(t)) = (x*, y*).

PROOF. It is easy to see that the second equation of (4.1) implies

y(t)=y{to)exp\-r2 \c2 J (x(s - T 3 ) - x*)ds + k2 J (y(s - T4) - y*)ds \ .

(4.2)

Since y{t) is not oscillatory about y*, we have the two possibilities
(i) y(t) > y* eventually;
(ii) y(t) < y* eventually.

We consider first the case (i). Define

X(tt,t2)= ['2(x(s)-x*)ds, (4.3)
J'i

Y(tl,t2)= ['2(y(s)-y*)ds. (4.4)
Jt,

Without loss of generality, we may assume when t > t0 , y(t) > y*. Hence
for t2 > t{ > tQ, y(tx, t2) > 0 and y(t}, t2) is strictly increasing with respect
to t2. Thus there are two possibilities to be considered:

(ia) lim, _tooy(ti, t2) exists and is finite.
(ib) l im^ o o j ; ( r 1 ) r 2 ) = +oo.
Suppose (ia) is true, then by the assumption that (x{t), y(t)) is bounded,

we see that y{t) is bounded. Combining this with the fact that y(t) > y*
and f}2{y(s) -y*)ds is bounded above, we have

lim y(t)=y*. (4.5)

From (ia), we see
tJ^O. (4.6)

t2—*oot2

This fact together with (4.5) leads to

lim f (x{s-ri)-x*)ds = 0. (4.7)
'o—°° Jt.

It is easy to see

f\x(s - T3) - x*)ds = X(t0 - T3 , t - T3) , (4.8)
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hence we have

Y. Kuang

lim X(t., t,) = 0.
t *OO

[12]

(4.9)

Obviously, (4.9) implies there is a sequence

7,., i = 1,2, ..., lim 7. = 0 and lim xfiA = x*.
i—>oo /—>oo

We note that the first equation of (4.1) implies

x(t) = x(tQ)expl-rl \ky j (x(s) - x*)ds + d J {x(s - T,) - x*)ds

+fi(x(t-ro)-x(tQ - !„)) + (;, J\y(s - T2) -y*)ds\ 1 . (4.10)

Suppose x(t) is not oscillatory about x* and assume first that x(t) > x*
eventually. We denote x = lim s u p ^ ^ x(t), x. - lim inf,^^ x(t). By (4.9),
we see ]c > x* and x. = x*. In the following, we want to prove that ~x = x*.
Assume that x > x*, then there exists e , such that 0 < 2e <x~ - x* and

/ * \ '•i(

{x +e)e '
—rB(x—x'—2e) , *

e < x -e. (4.11)

It is easy to see that there exists t0 > 0 , such that x(t) > x*, x(t0) < x* + e,
x(~t0 -T0) <x* + e,

[\x(s)-x')d.
J tn

f\y(s-z2)-y*)d
Jtr,

< e

for t > t0. Since l imsup,^^ x(t) — x > x*, we can find a tl > t0, such
that x(it - T0) > x - e. For this choice of 70, 7,, we have

,- > , , * > ^(fc. + lal+c.Jc — rf)(x—x'— 2e) . *
X(t{) < ( j t + { ) « ' ' " ' • e ' < X - 6.

This contradicts the fact that x(t) > x* for t > 70. Hence x = x*.
Now, suppose that x{t) < x* eventually. If x_ — liminf/_(oox(0 < x*,

then there exists e0, such that 0 < 2e0 < x* - * and

>x*+e. (4.12)

A similar argument as above can show that x_ = x*.
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If (ib) is true. Then the assumption y(t) > y* eventually implies that the
function c2X{t{, t2) + k2Y(tl, t2) is bounded. Since

[c2{l, t2) + k2Y(t{ , t2)] + L - ^(fc , + a)] Y(tx, t2),
c2 L C 2 J

(4.13)
and C[ - c2

 lk2{kl + a) — c2 '(c{c2 - k2(k{ + a)) < 0, we see from (4.10) that
when t —> +oo, lnx(t) —> +oo; thus indicating x{t) is unbounded. This
contradiction implies that (ib) cannot be true.

Now, assume (ii) y(t) < y* eventually. Again there are two possibilities
to be considered:

(iia) lim, ^ ^ Y(t{, t2) exists and is finite.
(iib) H m , ^ y(r , , t2) = -oo .

The argument for the case (iia) is similar to the one for case (ia). So, in the
following we assume (iib) is true. Denote y — liminf(_>oo>>(f). Obviously,
y_ < y*. Thus from (4.2), we know c2X(ti, t2)+k2Y(t{, t2) must be bounded
from below. A similar equation to (4.13) can be established in this case,
which leads to the conclusion that lnx(t) —> -oo ; i.e. x(t) —> 0 as t —>
oo. This obviously contradicts the fact that c2X(tl, t2) + k2Y(t{, t2) must
be bounded from below. Therefore, (iib) cannot be true. This proves the
theorem.

When a + k{ <c2 and k2 < c{, the situation becomes very complicated.
Even in the case that no delay exists and 0 = 0, the limit sets of the positive
solutions consist of three equilibrium states (0, k2

l), (x*, y*) and ((fc, +
a ) " 1 , 0). With the presence of delays, periodic solutions around each of the
three equilibria can exist, thus making the behavior of each positive solution
hard to predict. A similar result to Theorem 4.1 for this case will be very
lengthy and the proof of which can be very tedious, although the method will
be more or less the same. For these reasons, we choose to omit it here.

By virtue of the proof of Theorem 4.1, the following theorem is essentially
proved.

THEOREM 4.2. Assume /} > 0, a > 0, then every non-oscillatory positive
solution of

x(t) - r,x(0[l - kxx{t) - ax(t - T,) - fix(t - TO)] , (4.14)

satisfies liml_^oox(t) — (&, +a)~l.

PROOF. Assume first that x(t) is a non-oscillatory positive solution of (4.14)
tlwhich is eventually bigger than (k, +a) ' . Therefore, there exists a t. such
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that when t > tx , x(t) > (k{ + a ) " 1 . We denote

f{tx,t)= f'[x(s)-(kl+a)~i]ds. (4.15)

For t > t} , / ( / , , t) is positive and increasing. We claim that x(t) must be
bounded. Since otherwise, there exists t* > tx, such that

x(t* - T0) > *(*, - T0) + (r0)'1 [/*(*(*,)) - In ((A:, + a)"l / 2)] .

This implies that

x(t*) =

which contradicts the assumption that x(t) > (&, +a)~l for t > t{.
Obviously, the boundedness of x(t) implies that l i m ^ ^ f(t{, t) exists

and is finite. Hence

liminf jc(f) - (it, + a)~X. (4.16)

The rest of the proof is similar to the one for Theorem 4.1, we omit it to
avoid repetition.

This theorem generalises Theorem 4.2 in [13]. A similar generalisation
can be made to Theorem 4.1 in [13] as well.

It is conceivable that both the two possibilities in Theorem 4.1 can actually
occur. Imagine that we start with the following uncoupled system

x{t) = rxx{t){\-x{t-\)), (4.17)

y(t) = r2y(t)(l-y(t)), (4.18)

where r, > 0, r2 > 0. If r, > n/2, then it is well known that (see Hale
[12]) x(t) — 1 is surrounded by at least one periodic solution and y{t) = 1
is globally stable with respect to the positive solutions of (4.18). When we
couple the system

r *(/) = r,x(0(l -x(t-l)-ey(t)),

\y(t) = r2y(t)(l-y(t)),

and let e increase from zero, we may see a trajectory (x(t), y(t)), such that
lim/_(OOj;(0 = y*(e), and x{t) is oscillatory about x*(e), where (x*(e),
y*(e)) is the unique positive steady state of (4.19). When there are no delays,
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P = 0, a+kx > c2 and k2 > c, , it is well-known that for any positive solution
(x(t), y(t)) (4.1), we have l i m ^ W O , y(t)) = ( * * , / ) .

5. Discussion

In order to apply the recent results obtained by Freedman and Kuang [5],
we have purposely chosen a = 0 or T . Although the method utilised by
Freedman and Kuang can be extended to establish more general results to be
applied to system (3.1), the computation required by this process is expected
to be very tedious.

As far as only asymptotical stability and oscillation analysis are concerned,
we do not have to choose the logistic per capita growth rate for both species
x and y in order to obtain similar results to those established so far. We
can replace it by some more general growth rate functions. In Section 4, if
we replace ax(t-xx) by YHU «,*(<-*„•). P*{t-T0) by T%xPtx(t-Tw),
cxy{t - T2) by E^i, cuy{t - x2i), c2x(t - r3) by E"ii c2lx{t - T3|.) and
k2y(t-x4) by Yl"Lik2iy(t -x4j) (as long as all these constants are nonnega-
tive), then both Theorem 4.1 and Theorem 4.2 are still true. The proofs are
similar but their presentations are more tedious.

As pointed out at the end of Section 3, the role played by the neutral term
fix(t-x0) in the per capita growth rate for species x is very complex. It may
serve as both a stabilising and a destabilising factor, depending on the specific
situation. At the very least, we know its presence causes various difficulties
for our analysis.

It is well-known and easy to prove that when fi — 0, then solutions of the
system (1.5) (see Gopalsamy et al. [8]) are eventually uniformly bounded.
With the neutral term introduced into the per capita growth rate, this is no
longer true. As pointed out by Kuang and Feldstein [14], for some negative
number /?, x(t) may indeed become unbounded.

One of the most important questions left untouched in this paper is what
is the criterion for the existence of periodic solutions in (1.5). In fact, so far,
we do not even know what the condition is for a Hopf bifurcation to occur in
(1.5). Although our numerical results indicate that a similar Hopf bifurcation
theorem may be true for the nonlinear neutral-delay system (1.5), we cannot
provide any rigorous proof for that yet. It seems that the integral manifold
technique developed by Hale [10], [11], [12] may contribute to the solution
of this general problem. In case /? = 0, the Hopf bifurcation of system (1.5)
was analysed by Gopalsamy and Aggarwala [7], and Cushing [3].

Another interesting question remaining to be investigated is what are the
conditions for the global stability of the unique positive steady state in (1.5).
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In case fi = 0, some results are available, for instance, if fc, > a + c , ,
T3 = 0, k2 > c2, then (x* ,y*) is globally asymptotically stable. For lin-
ear neutral differential systems, a simple criterion for this was obtained by
Gopalsamy [6].

Finally, we would like to admit that the way we have introduced the delays
in (2.1) is not the most realistic one. The best way to do so is probably to
replace those discrete delays by continuously distributed delays.
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