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ON INCIDENCE RINGS OF GROUP AUTOMATA

A.V. KELAREV

For all finite p-groups, we describe the Jacobson radicals of incidence rings of group
automata.

We use standard concepts of automata and languages theory following [2] and [7].
The reader is referred to [3, 4] for preliminaries on ring constructions and their applica-
tions. Incidence rings of graphs have been actively investigated by many authors and it
turns out that this concept provides valuable information on the related classes of graphs
(see [3, 8]). It is natural to expect that an analogue of this construction may turn out to
be useful in automata and languages theory. We consider a generalisation of incidence
rings of graphs defined for all finite group automata. A finite group automaton is an
algebraic system A = (Q, G,S)t where

1. Q is a finite set of states;

2. G is a finite group of input symbols;

3. 6 : Q x G —> Q is & transition function satisfying the equality

(1) 8(q,gh) = 6(6(q,g),h)

for a\\qeQ,g,heG (see [6]).

Notation qg — q-g is also used for 6(q, g), where q € Q, g € G. Group automata are worth
considering since they occur in the Krohn-Rhodes Decomposition Theorem if we identify
words of the free monoid on the input alphabet with their images in the transition group
(see [2], [4, Section 29], and [6]). It is possible to record this definition for any semigroup
automaton and allow not only functions but also relations to be involved as 6 in order to
embrace nondeterministic automata. Our definition has been stated in the more special
case, because in the present paper we concentrate on group automata only.

By analogy with incidence rings of graphs we introduce the concept of an incidence
ring of an automaton. Let R be a ring. The incidence ring of the automaton A over R is
the ring IA(R) which is spanned as a left .ft-module by the set TA of all triples (g; q, qg),
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where g G G, q G Q, and is equipped with multiplication defined by the distributive law
and the rules

(2, toi*.«,) •(•;•.«,)-{o
to*!-"*)^«-

(3) r • (</i,9i,9i5i) = (<7i,9i,9i<7i) • T,

fo r a l l gug2 G G, quq2, €Q,r € R.

The Jacobson radical is one of the major tools used in the investigation of the
structure of ring constructions (see [1, 3, 5] for references). Our main theorem gives a
complete description of the Jacobson radicals of incidence rings of group automata for
all finite p-groups.

The Jacobson radical of a ring R is denoted by J(R). Let A^ be the set of all
triples (g; q, qg) G TU such that q £ Qe, where e is the identity of the group. As usual,

m

denote by F[NA] the set of all finite sums J2 f(tu where fi G F, ti G A^. For any triple

u = (<?! Q,Q9) G TA, denote by u the pair (q,qg). If R is a ring, then we put

W(IA{R))= £ R(u-v).

THEOREM 1. Let F be a field of characteristic p, and let A = (Q, G, 5) be a finite
group automaton, where G is a p-group for a prime p. Then the Jacobson radical of the
incidence ring IA(F) is equal to

(4) J(IA(F))=F[NA]+U(IA(F)).

The following useful lemma is well known; in particular, it follows from the modular
law that holds in the lattice of ideals in every ring.

LEMMA 2 . Let R be a ring with ideals A, B, I such that AC B. If A + 1 - B + I
and AHI - Bf\I, then A = B.

If R is a ring and G is a semigroup, then the semigroup ring R[G] consists of all

sums of the form ^3 rg9' where rg G R for all g G G, and only a finite number of the

coefficients rg are nonzero, with addition and multiplication defined by the rules

g€G g€G geG

If G is a group, then F[G] is called a group ring. If 5 is a semigroup with zero 6, then
the quotient ring F[S)/F0 is called a contracted semigroup ring, and is denoted by F0[S].
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Straightforward verification shows tha t T4 = TA U {0} is a semigroup and IA{F) is an

associative ring isomorphic to the contracted semigroup ring Fo[T^].

We also need the following two known lemmas (see [3]).

LEMMA 3 . Let F be a Beld of characteristic p, and let G be a Bnite p-group. Then
the Jacobson radical J(F[G]) is equal to the augmentation ideal

u,(F[G\) = ij2fi9i \ f i e F , 9 i & G,, £/,- = o).
« = 1 •*

LEMMA 4 . If R is a ring and Mn(R) is the ring ofnxn matrices over R, then

J(Mn(R)) = Mn(J(R)).

PROOF of Theorem 1. First, we claim that N^ = NA U {0} is a nilpotent ideal of
TA. Indeed, choose any (5i;9i,9i5i) e TA and (52:92,9252) G NA. By the definition of
NA, we get q2 £ Qe. Since qigi = (giffi)e G Qe, it follows that q\gi ^ q2, and therefore
(9i19i,9iffi)(52:92,9252) = 0 by (2). Hence TANA = 0. Therefore {F[NA])2 = 0. Since
F[NA].is an ideal of F0[TA], it follows that F0[iVj] C J(F0[TA]) = J(lA{F)).

Next, we define a mapping / from IA(F) into the matrix ring Mn[F[G]) over the
group ring F[G], where n = |Q| is the number of states of the automaton A. To this
end let us identify the states of A with integers 1,2,..., n so that all columns and all
rows of every n x n matrix ring become labelled by the elements of Q. Denote by
er,c the standard elementary matrix with 1 in the intersection of row r and column c,
where r,c € Q, and with zeros in all other entries. Then Mn(F) — 0 Fer>c. For each

/•(&: Qu 9t5i) G IA(F), where f{ € F , (&; q{, q^) € T^, we set

J2f'(9i'1uqi9i)) = E(/'ft)e«*« G Mn(F[G}).
i=l ' « = 1

A tedious but routine verification shows that this mapping is a monomorphism,

(6) f(uj(lA(F)))cMn(cj(F{G))),

and besides

(7) f

Since F[G]/u(F[G]) S F, it follows from (7) that

Mn(F[G])/Mn(u(F[G})) S Mn(F)

and so we may identify Mn(F) with Mn(F[G])/MnLj(F[G})).
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Lemma 3 tells us that J(F[G}) — w(F[G]). The Jacobson radical of every fi-

nite dimensional algebra is nilpotent, and hence it follows that OJ(F[G]) is nilpotent,

and so the same can be said of Mn(cj(F[G})). Therefore the subring f(ui{lA{F)) J of

Mn(ui(F[G])j is nilpotent too. Since / is injective, we see that u>[IA(F)) is a nilpotent

ideal of / ^ (F ) ; whence ui(lA(F)) C j(lA(F)). Thus we have proved that

F[NA]+uj(lA(F))cj(lA(F)).

Consider the quotient ring R = IA(F)/LJ(IA(F)). Let ip be the natural homomor-
phism from IA(F) to R with kernel CJ(IA(F)). Conditions (6) and (7) show that / induces
an isomorphic embedding tp of R into Mn{F). For every q € Q, denote by Dq = (V,, Eq)
the subgraph induced by the set qG in the graph D = (Q, E), where

E^{(q,qg)\qeQ,geG}.

It is easily seen each Dq is a maximal complete subgraph of D. Hence it follows that the
image ip(Rq) of the ring

contains all standard elementary matrices er<c with r,c G Vq, and so Rq is isomorphic to
the full matrix ring of \qG\ x \qG\ matrices over F.

It is straightforward to verify that D is the disjoint union of NA and the complete
subgraphs Dq, for q G Q. Therefore R is a direct sum of the ideal F[NA] and full
matrix rings Rq, q G Q. It follows that J(R) — F[NA], and Lemma 2 implies J(lA(F))
= F[NA] +u)(lA{F)), as required. D

An associative ring R is called a G-graded ring if i? = 0 # p is a direct sum of

additive groups Rg, and RgRh C Rgh for all g,h G G. It is easily seen that IA(F) is a
G-graded ring:

IA{R) = 0 R9, where Rg= R{g; q, qg) for g 6 G.(8)

The following example of a group automaton A — ({1,2,3}, {e, 5, g2}, 6) with transition

diagram in Figure 1 illustrates this.

The incidence ring of this automaton is graded as follows:

IA{F) = Re + Rg + /ij2

F
0
0

0
F

0

0
0
F

e +
0
0

F
0
0

0
F
0

g +
0
F
0

0
0
F

F
0
0
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Figure 1: A group automaton A = ({1,2,3}, {e, g,g2},6).

REFERENCES

[1] B.J. Gardner, Radical theory, Pitman Research Notes in Mathematics 198 (Longman

Scientific & Technical, Harlow, 1989).

[2] M. Ito, Algebraic theory of automata and languages (World Scientific,, 2001).

[3] A.V. Kelarev, Ring constructions and applications, Series in Algebra 9 (World Scientific,
River Edge, N.J., 2002).

[4] R. Lidl and G. Pilz, Applied abstract algebra (Springer-Verlag, New York, 1998).

[5] D.S. Passman, The algebraic structure of group rings (J. Wiley & Sons, London, Sydney,

1977).

[6] B.I. Plotkin, L.Ja. Greenglaz and A.A. Gvaramija, Algebraic structures in automata and

databases theory (World Scientific, River Edge, N.J., 1992).

[7] G. Rozenberg and A. Salomaa (Editors), Handbook of formal languages, Vol. 1, 2, 3,
(Springer-Verlag, Berlin, 1997).

[8] E. Spiegel and C.J. O'Donnell, Incidence algebras, Monographs and Textbooks in Pure
and Applied Mathematics 206 (Marcel Dekker, New York, 1997).

Department of Mathematics
University of Tasmania
G.P.O. Box 252-37
Hobart
Tasmania 7001
Australia
e-mail: Andrei.Kelarev@utas.edu.au

https://doi.org/10.1017/S0004972700037217 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037217

