
J. Austral. Math. Soc. (Series A) 45 (1988), 46-61

SMOOTHNESS CONDITIONS AND
INTEGRABILITY THEOREMS

ON BOUNDED VILENKIN GROUPS

WALTER R. BLOOM and JOHN J. F. FOURNIER

(Received 6 March 1987)

Communicated by J. F. Price

Dedicated to Robert Edwards in recognition of
25 years' distinguished contribution to mathematics in Australia,

on the occasion of his retirement

Abstract

Various criteria, in terms of forward differences and related operations on coefficients, are shown
to imply that certain series on bounded Vilenkin groups represent integrable functions. These
results include analogues of known integrability theorems for trigonometric series. The method
of proof is to pass from the given series to a derived series, and to deduce the integrability of
the original series from smoothness properties of the latter.
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50, 43 A 70.

1. Conditions on coefficients

We will specify our conventions concerning Vilenkin systems and Vilenkin groups
in Sections 2 and 3. The main fact that we need in this section is that there is a
measure-preserving correspondence between such groups and the interval [0,1).
This allows us to state our main theorem for series on [0,1) in this section, and to
prove the theorems in Section 4 by proving the corresponding statement about
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[2] Smoothness conditions and integrability theorems 47

series on bounded Vilenkin groups. In the proof we will use certain facts about
smoothness classes on Vilenkin groups, which we summarize in Section 3.

The symbol (Xn)^=o w m denote an orthogonal sequence of functions on the
interval [0,1) with the property t h a t s u p n ||Xn||oo < °°- Given such a sequence
(Xn) and an integrable function / on [0,1) let

/(„) = I f(t)Xn(t)dt.
JO

Given a sequence (an)£L0 of scalars we say that the series X)nt=o a«Xn represents
an integrable function if there is a function / in L1 [0,1) such that f(n) = an for
all n. By the Riemann-Lebesgue lemma a necessary condition for this is that
on —• 0 as n —• oo, that is, that the coefficient sequence (an) belongs to the space
co(iV). This condition is not sufficient, however, and we seek further conditions
on the coefficients (an) that guarantee that the series X)n^=oa«Xn represents an
integrable function.

For each nonnegative integer n let Aon = a n + 1 — an. Fix a sequence (mr)£L0

of positive integers with the properties that mo = 1,

(1) Urn s u p — ^ - < oo and liminf—^i- > 1.
mr r-*oo mr

Then, given an index p in the interval [1, oo), say that the sequence (an) satisfies

i/p

< oo.

the condition 7P if

i mr

r=l I mr_i<n<mr

Similarly say that (an) satisfies the condition £» if

ir sup |Aan| < oo.

Finally say that (on) satisfies condition J if an —• 0 as n —• oo and there is an
index p > 1 for which (an) satisfies condition 7P.

In Section 2 we will describe a class of orthonormal uniformly bounded se-
quences of functions on the interval [0,1), called bounded Vilenkin systems. We
will prove the following assertion in Section 4.

THEOREM 1. If{Xn) is a bounded Vilenkin system and if (an) is a sequence
of scalars satisfying condition 7 then the series X)^l0 onx« represents an inte-
grable function.

We conclude this section with some remarks about Theorem 1. The best-
known example of a Vilenkin system is the Walsh system. Bruce Aubertin has

https://doi.org/10.1017/S1446788700032250 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032250


48 Walter R. Bloom and John J. F. Fournier [3]

found a different proof of the theorem in this special case; we thank him for
showing us his proof and for some very useful comments about the problem.
The model for our theorem is the result of G. A. Fomin [6] to the effect that
if (an) satisfies condition 7 then the series X)£Loa« cos(27rn<) represents an
integrable function. Fomin also showed for the same condition on (an) that
the corresponding sine series represents an integrable function if and only if
X^"Li(|ein|/n) < oo. We will encounter an analogue of the latter condition in
our proof of Theorem 1, but it will turn out for bounded Vilenkin systems that
the analogue is automatically satisfied. Other proofs of Fomin's theorems have
appeared in [4] and [7].

Observe that if a coefficient sequence (an) satisfies condition 7V for one choice
of the sequence (mr) then (an) also satisfies condition 7V for all other choices of
(mr) with the properties in (1). It follows easily from Holder's inequality that
if (an) satisfies condition 7P for an index p > 1 then it also satisfies condition
7q for all q < p. In particular £ „ is the strongest of these conditions and 7\
is the weakest. The latter condition can be written more simply in the form
X3£Li |Aan | < oo; in other words the sequence (an) satisfies condition 7\ if and
only if it is of bounded variation.

It is a classical fact [5, Section 7.3.1] that if the sequence (an) is convex,
that is, if A 2 a n > 0 for all n, and if an —> 0 as n —> oo, then the series
Z^Lo a « cos(2irnt) represents an integrable function. This is a special case of
Fomin's theorem because every convex sequence hi the space co(N) satisfies con-
dition 7oo- Condition 7 also includes several other classical sufficient conditions
for integrability of cosine series [4]. Our Theorem 1 implies that these conditions
also suffice for integrability of Walsh series. It was already known [10] that con-
vexity is sufficient, as is a weaker condition called quasiconvexity, which is also
a special case of condition 7. Finally it should be observed that condition / in
Theorem 1 cannot be weakened to include the endpoint case p = 1; indeed in
[1] examples are given of sequences (an) having bounded variation, belonging to
the space co(N), and for which the Walsh series with coefficients (on) does not
represent an integrable function.

2. Vilenkin systems

In this section we will set out our notation for Vilenkin systems and discuss
some properties of these. We refer to [9] for more on this topic. We will use the
term Vilenkin system for any orthononnal system of functions that can be built
up in the following way.

Begin with a nonatomic probability space and a sequence (pn)%L0 of prime
numbers, and construct a sequence (x«) of functions on the space as follows. Let
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[4] Smoothness conditions and integrability theorems 49

Xo be the constant function 1 and let To b e the singleton set {xo}- Let 0 i be
a function taking each value in the set of p i t h roots of uni ty wi th probabili ty
1/pi. For 1 < n < pi let Xn be the function 0", and let I \ be the set of all
functions Xn with n < p\. For each positive integer r let mr = Iln=i Pn an (i let
mo = 1. Assume that the functions Xn with n < ror_i have been specified and
denote the set of these by Fr_i. Then select three functions ar, 0r and 7r with
the following properties:

(i) ar belongs to the set r r _ i ;
(ii) /3r is a prth root of ar that is constant on each set where ar is constant;
(iii) > takes each value in the set of prth roots of unity with probability l/pr;
(iv) > is independent of the functions in the set Fr_i.
Let <t>T be the product "irfir- Then 0£r belongs to the set Fr_x. The values

taken by 0r form a subgroup of the circle group, each occurring with the same
probability. Observe that each integer n in the interval [mr_i, mr) has a unique
representation as n = jmr-i + I with 1 < j < pr and 0 < I < mr-\. Given this
representation of n let Xn = 4>r JXf • Denote by Fr the set of functions Xn with
n < mr and continue the construction for each r. Call the system of functions
constructed in this way bounded if the sequence (pn) is bounded.

The simplest example of such a system of functions is the Walsh system, which
arises when pn = 2 for all n and each of the functions 0n takes the values ±1
only, each with probability 1/2. The most common representation of this system
is as a set of functions on the interval [0,1), and it is usually specified that the
function 0X is equal to 1 on the first half of this interval and to —1 on the second
half, and that 02 is equal to 1 on the first halves of each of the intervals [0,1/2)
and [1/2,1) and to —1 on the second halves of these intervals etc. In this example
0^ = 1 for all r; other examples of Vilenkin systems, still with pn = 2 for all n,
arise by letting 0^ coincide with some other function in the set Fr_i. Varying
the sequence (pn) leads to further examples.

What determines the integrability of a given Vilenkin series is not the particu-
lar representation that we choose for the underlying probability space, but rather
the joint distribution of the functions Xn and the properties of the coefficients in
the series. In proving that certain conditions on the coefficients are sufficient for
integrability we will find it convenient to view the underlying probability space
as a totally disconnected abelian group. This is the point of view that we will
take in the next two sections. In this section, however, we concentrate on the
properties of Vilenkin systems that are independent of the representation of the
underlying probability space. We may assume with no real loss of generality
that this space is the interval [0,1) with normalized Lebesgue measure.

The function DN = ^n=o Xn is called the Dirichlet kernel of order N. When
N = mT for some integer r this kernel has a particularly simple form. Let Gr

be the set where the functions Xn with n < mr all coincide with 1. It is evident

https://doi.org/10.1017/S1446788700032250 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032250


50 Walter R. Bloom and John J. F. Fournier [5]

that Dmr = mr on the set Gr, and it turns out that Dmr vanishes elsewhere;
that is, letting £cr denote the indicator function of the set Gr we have that
A n r = mr(,Gr- Similarly any sum of the form £jmr<n<(j+i)mr Xn vanishes off
the set Gr and coincides on that set with mrxn for any one of the functions \n
appearing in the sum.

The set Gr has measure l / m r . When we represent the underlying space as
the interval [0,1) we can arrange matters so that Gr = [0, l /m r ) for all r. In this
setting our proof of Theorem 1 runs roughly as follows. We choose a suitable
function k such that \k(t)\ > t for all t in [0,1) and such that the formal product
of the given series 2 ^ L o a n X n and the Fourier series for k, with respect to the
given Vilenkin system, is well-defined. We show that this product is the Fourier
series of a function / with the property that

(2) /
Jo

It follows that the ratio f/k belongs to /^[0,1), and we then show that the given
series X)£°=o anXn is just the Fourier series of this integrable function.

The roundabout approach to the integrability of the Vilenkin series is moti-
vated by the fact that a similar procedure works well for cosine series [7]. Our
way of showing that inequality (2) holds is to arrange for the function / to vanish
at 0 and to be smooth enough that the inequality follows. The notion of smooth-
ness that we use is most easily described in the setting of Vilenkin groups, and
this we present in the next section.

3. Smoothness classes on Vilenkin groups

We now summarize the facts that we need concerning Vilenkin groups and
certain smoothness classes on them. For a particular Vilenkin system denote
the set of all functions \n by F. One of the key properties of such a system is
that the product of any two functions in the set F also belongs to F, as does
the reciprocal of any function in F. Thus the set F is a group under pointwise
multiplication; moreover each of the sets Fr is a subgroup of F. Put the discrete
topology on the abelian group F. Then F has a compact abelian dual group, G
say and, since the dual group of G is isomorphic to F, each element of F can be
regarded as a function on G. The Haar measure on G can be normalized so that
G has total mass 1; this provides a representation of F as a set of functions on
a probability space that is also a compact abelian group.

The advantage of this representation is that it provides a notion of translation
of functions that is consistent with the multiplicative structure on F. Write
the group operation on G additively and denote the identity element of G by
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[6] Smoothness conditions and integrability theorems 51

0. Given a function f on G and y G G, let ryf be the function for which

Tyf(x) = f(x - y) for all x 6 G. If / G LP(G) for some index p in the interval

[1, oo) then \\ryf — f\\p —• 0 as y —> 0, and the ra te at which \\ryf — f\\v tends to

0 is a measure of the smoothness of the function / .

Again let Gr = {x G G: Xn{x) = 1 for all n < m r } . Now Gr is a subgroup of

G, called the annihilator of F r . The discrete group F is the union of the increasing

sequence (F r ) ; dually the groups Gr form a decreasing sequence of subgroups of

G with intersection {0}. Each of the subgroups Gr is open and closed in the

topology on G and the set of all t ranslates of these subgroups forms a basis for

that topology. The index of Gr in Gr-i is the same as the index of r r _ x in F r ,

tha t is, the prime number p r . The group G is called a Vilenkin group, and it is

called bounded if the sequence (pr) is bounded. The topology on G can also be

specified by a metric, for example by letting d{x, y) = l/mr+i whenever x — y

belongs to Gr but not to G r + i .

Conversely one can s tar t with any separable infinite totally disconnected com-

pact abelian group G and show tha t there is a nested sequence (Gr) of open

subgroups of G t ha t intersect in the set {0}, whose translates form a basis for

the topology on G, and for which GT has prime index in G r _ i for all r. The

dual group of G is then a Vilenkin system as denned in the previous section.

Given a number p in the interval [ l ,oo) the Lp-modulus of continuity of a

function / in L"(G) is defined by letting w p ( / , t) = sup{ | | r j , / - f\\p: d(y, 0) < t}

for all t G [0,1). Given a G (0,1] and q G [1, oo) let

f } 9
Define the generalized Lipschitz space A(a,p,q) to be the set of all functions /
in LP(G) for which the quantity ||/||a,p,g is finite.

These spaces have been studied for some time, and it is known [3] for p < oo
that if / G A(l/p,p, 1) then / coincides almost everywhere with a continuous
function, and for fixed p the space A(l/p, p, 1) is the largest of the space A(a, p, q)
with this property. Moreover when 1 < p < 2 every function in A(l/p,p, 1) has
an absolutely convergent Fourier series, and when 2 < p < oo and the group is
bounded every function in A(l/p,p, 1) has a uniformly convergent Fourier series
[3]-

It is shown in [3] that there is a simple criterion on the Fourier coefficients of a
function / in A(l/p, p, 1) that determines whether the function x —> f(x)/d(x, 0)
is integrable. Denote the partial sums of the Fourier series of / by Swf =

THEOREM 2. Suppose that f is a function on a bounded Vilenkin group and
that f G A(l/p,p, 1) for some p G [l,oo). Then the following conditions are
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equivalent

f I f ( n*\ I

(I) JG d&0)dX < °°'
.... v—v 5jv/(O)
(II) > -———- < oo.

N=l
oo

r=0

In using this theorem it is useful to have a criterion, in terms of its Fourier
coefficients, for an integrable function / to belong to the space A(l/p,p, 1). To
this end we vary the indexing in [3] slightly and let

fr = SmJ-Smr_J= J2 /(Xn)Xn-
mr_i<n<mr

When 0 < a < 1 and 1 < p, q < 00 define the Besov space B(a, p, q) to be the
set of all functions / in LP(G) for which

Y,[mra\\fr\\p]1/q<°O.
r = 0

It is shown in [3] that B(a,p, q) — A(a,p, q) for these values of the indices. Note
that when p = 2 the quantities ||/r||2 appearing above can be replaced by the
J2-norms of the Fourier coefficients of these functions.

At one point in the next section we will need the fact that conditions (i)
and (iii) in Theorem 2 are equivalent for some functions that do not satisfy
the hypothesis of the theorem. Let B(0,00,1) be the space of all continuous
functions / on G with the property that J2?Li ll/rlloo < 00. It is pointed out in
[3] that for functions / in this space on a bounded Vilenkin group conditions (i)
and (iii) are equivalent provided that

4. Integrability theorems

We need the notion of formal multiplication of Vilenkin series. In this context
it is best to regard the coefficients in the series as functions on the set T rather
than on the set {0 ,1 ,2 , . . . } that indexes T. Thus we write a(xn) in place of an.
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[8] Smoothness conditions and integrability theorems 53

Recall t ha t the convolution of two functions a and b on the group F is defined

by
oo

c(Xn) = a * 6(Xn) = ^2 a(XnXm)KXm)
m=0

whenever the series on the right converges. The formal product of two Vilenkin
series with coefficients a and b is the series with coefficients a * b. In particular
this product is defined when a e /°°(F) and b € ^(F).

Denote by A(G) the algebra of all functions / on G for which / € ^(F). Call
a function k on G adapted if k € A(G) and there are positive constants K and K
such that

(4) Kd(x,0) < \k{x)\ < Kd{x,O)

for all i in G. We will give an example of such a function later in this section.

THEOREM 3. Let (xn) be a bounded Vilenkin system and let (an) e co(T).
Let k be an adapted function. Suppose that the formal product of the Fourier
aeries of k and the series X)^Lo fl«Xn is the Fourier series of a function f that
belongs to one of the spaces A(l/p, p, 1) with p < oo. Then the series I ^ L o anXn
represents an integrable function if and only if

(5) f > m r / ( 0 ) | < oo.
r=0

PROOF. If the series S^=oa"Xn represents an integrable function, F say,
then the function / really is the product kF. Since k is adapted and F is
integrable

(6) f
JG
/Gd(x,O)

By Theorem 2 this condition is equivalent to inequality (5).
On the other hand if inequality (5) holds then so does inequality (6), and it

follows that the function f/k is integrable. The one point that remains to be
verified is that the Fourier series of f/k is 5Z^LoanXn- Recall that a pseudo-
function is simply a Vilenkin series with coefficients that belong to co(F), and
that a pseudomeasure is a Vilenkin series with bounded coefficients. Let F be
the pseudofunction Y!™=oanXn- The formal products of pseudomeasures with
functions in A(G) are always well-defined. Both F and f/k have the property
that their product with k is equal to / .

To deduce that F = f/k we consider the support of a pseudomeasure. This
is the complement in G of the largest open set on which the pseudomeasure
vanishes; a pseudomeasure, /x say, vanishes on an open set, U say, if the formal
product g • n is the trivial series for all functions g in A(G) that are supported
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by compact subsets of U. Let n be the pseudofunction F — f/k. We claim that
the support of \i is the singleton {0} or is empty. If the claim is valid then /i
must be a point mass at 0 and ft must be constant. This constant must be 0
because jj, € co(F), in which case \i = 0 and F = f/k, as required.

To prove the claim, let C be a compact subset of the open set G\{0} and
let g be a function in A(G) that vanishes off C. Since the function k has no
zeros in the set C the Wiener-LeVy theorem yields a function h in A(G) with the
property that hk — 1 on C. Then g = ghk and g • fi = (gh)(k • fi) — {gh)0 = 0.
Hence (j. vanishes on the open set G\{0} as claimed. This completes the proof
of the theorem.

We now give an example of an adapted function on a bounded Vilenkin group.
For each integer s > 2 let k3 be the product of the functions </>a[l — 0s_i] and
(l/ma_2)2i?m,_2- Observe first that ka(xn) is equal to ( l /m s _2) 2 for all n in the
interval [ m s _ i , m s _ 1 + m s _ 2 ) , t o - ( l / m s _ 2 ) 2 for all n in [2m s _ i -m s _ 2 ,2m s _ i ) ,
and to 0 for all other values of n. In particular ||fcs||i = 2/ms_2, so that the
series J2^=2 >̂ converges in the space A(G) to some function k.

To verify that k has property (4) for suitable constants K and K, note first
that the function ks vanishes off Gs_2 because Dms_2 does, and that it vanishes
on G3-i because 1 — ^ s _ i does. Moreover, (j>v

a°_Ii € Fs_2 implies that <j>v
a'Si = 1

on Gs-2- Therefore the values taken by the function (j>a-i on this set lie in the
group of p s _ i th roots of unity. On the other hand Gs_i was defined as the set
on which Xn = 1 for all n < m s _ i , so that <j>a-i ^ 1 on the corona G s - 2 \ G s - i .
Hence the values taken by <j>a-i on this corona must be p s - i t h roots of unity
other than 1 and, in particular, |1 — ^ s - i | lies between 2sin(7r/pa_i) and 2 on
this set. The other factor (l/ma-2)2Dma_2 is equal to l /m s _ 2 on the same set.
Since the sequence (pa) is bounded there are constants K and K such that the
function k satisfies condition (4).

This adapted function was specifically devised for use in this paper but it
turns out to be similar to one used by Onneweer [8] in a discussion of dyadic
differentiation. Applying Theorem 3 with this choice of an adapted function
yields an integrability criterion that has no counterpart for trigonometric series.
It is also easy to prove the sufficiency of this condition via summation by parts.

THEOREM 4. Let G be a bounded Vilenkin group and let a be a function
in the space co(F) that is constant on each of the sets F r \ F r _ i and satisfies
condition J\. Then the series J2V=oa(Xn)Xn represents an integrable function.

PROOF. For each nonnegative integer r let Fr = Z)T O r_j<n < m r a(Xn)Xn and
consider the products of these functions with the various functions ks. We claim
that the function Fr vanishes off the set Gr-\. To verify this we use the fact
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[10] Smoothness conditions and integrability theorems 55

that a is constant on the corona F r \ F r _ i to write Fr in the form

P r - l

Fr = o(Xmr_1)

As pointed out in Section 2 the inner sums above all vanish outside the set Gr-i •

On the other hand the functions ka vanish on this set when s < r, so t ha t the

products kaFr are all trivial for such values of s.

Next we make some observations tha t do not use any special properties of

the coefficients a(xn)- We adopt the convention tha t the functions ks are zero

when s < 1 and we let s > 2 in the rest of this discussion. The transform of Fr

vanishes off the corona r r \ r r _ i and the transform of k3 vanishes off the corona

r a \ r s _ i . Hence the transform of the product ksFr vanishes off the product of

these coronas. When r < s this product set is included in the corona F s \ F s _ i ,

and when r > s it is included in F r \ F r _ i ; when r = s the product set is included

in the subgroup F s .

Since ks is constant on each coset of the subgroup F a _2 the convolution ks * b

also has this property for all bounded functions b on F . The value of ks * b on

such a coset Xj^a-2 is

m (sb)'{ E *.)- E
The fact that kgFr = 0 when s < r and a is constant on Fr\Fr_i also follows
from an analysis of the expression above with b — a on Fr\Fr_i and 6 = 0
elsewhere.

We now consider the products ksFr when s > r. As noted above the trans-
form of such a product vanishes outside the corona Fs\Fs_i. In particular
Sm.tfcŝ rKO) = 0 for alH < s. On the other hand the partial sum Sm,[ksFr}(0)
is equal to the sum of expressions of the form (7) as j runs from 0 to ms — 1. As
j varies in this way each coset of Fs_2 that is included in Ts occurs ms-2 times
as the support of the first sum in expression (7) and the same number of times
as the support of the second sum in (7). Hence Sm3[ksFr](0) — 0. Finally the
partial sums Smt[ksFr](0) are also 0 when t > s because the transform of fcsFr

vanishes outside Fs.

Fix a > 2 and let fs = k9 YZ=o F^ t h e n SmJa{0) = 0 for all t. The Fourier
coefficients of fa vanish outside Fs\Fs_i. On this corona these coefficients are
given by expression (7) in terms of differences of sums of values of the function
a over cosets of Fs_2 that are included in Fa_i. Writing each such difference of
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sums as a sum of differences gives the est imate

, 0<»<m,_2 t<n<m,_i
(8)

~~ (n + l)|Aon| + ms_2 V |Aon|

for all j . Since / s vanishes off Fs\Fa_i the L2-norm of fa is at most ma times
the quantity in the second line above, and the norm of fa in 5(1/2,2,1) is at
most ma times the same quantity. Adding these estimates and interchanging
the order of summation shows that if the function a satisfies condition 7\ and
the Vilenkin group is bounded then the series YlT=2 /* converges in the space
B(l/2,2,1) to a function that satisfies condition (iii) in Theorem 2. An appeal
to Theorem 3 now completes the proof of Theorem 4.

The only property of the function a that was used in the analysis of the
functions / s was that it satisfied condition 7\. For later use we now summarize
this and other consequences of condition 7\. For each r > 1 let hr be the product

1

LEMMA 5. Let G be a bounded Vilenkin group and let a be a function on T
that satisfies condition J\. Then the formal product k • F can be split into three
parts in the following manner

(i) The series Y^T=i fa converges in the space -8(1/2,2,1) to a function f with
the property that Sm,f{0) = 0 for all t.

(ii) The series Yl%2 ^Fs converges in the space .8(1/2,2,1) to a function g
with the property that 5Z~0 |5m,(/(0)| < oo.

(iii) The series Y^T=2 hr converges in the space .8(0, oo, 1) to a function h with
the property that Smth(0) = 0 for all t.

P ROOF. Part (i) is just a summary of what we showed in the proof of Theorem
4. For part (ii) we begin with the observation that the transform of the product
ksFa vanishes oft" the subgroup Fs. On the other hand it follows from an analysis
of expression (u) with b = a on r s \ F s _ i and 6 = 0 elsewhere that

(9) \[k.F.nXj)\ < ^ -

for all j <ms. The norm of any function in 5(1/2,2,1) is computed by finding
the Z2-norm of the restriction of the transform of the function to each corona
F t \ r t _ i , multiplying this Z2-norm by ml'2, and adding. Hence ||fcsF
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is majorized by the quantity on the right above multiplied by X)t=om*- Since
the group is bounded

It follows that the series Z)£ l 2 kaFa does indeed converge in the space .6(1/2,2,1) .
Now consider the partial sums 5m,[fcsFs](0). In the proof of Theorem 4 we

showed that S m , [fcsFr](0) = 0 for all r < s. The same argument applies to
Sm.[^aF3](0) and since the transform of kaFa vanishes outside the group F s we
have that Smt[kaFs](0) is 0 for all t > s. The corresponding partial sums with
t < s do not have to vanish at 0 but we can apply the estimate (9) above to get
that

8 m,_i<n<ma

for all t < s. It follows that

s=t m,-i<n<m,

for each t. The desired conclusion that £)£l0 |Sm,<?(0)| < oo follows by adding
with respect to t and reversing the order of summation.

Finally we consider part (iii). When s < r the transform of kaFr vanishes
off r r \ r r _ ! . This fact and an analysis of expression (7) again shows that the
partial sums Smt (kaFr)(0) are all zero. Hence the same is true with kaFr replaced
by hr. Moreover hr vanishes outside Fr\Fr_i so that ||/ir||j3(o,oo,i) = IIMloo-
Since the various functions ks have disjoint supports ||ftr||oo is the maximum
of the quantities Hfcs-FVHoo for s < r. In expression (7) for such a product kaFr

the function b coincides with a on Fr\Fr_i and vanishes elsewhere, and the two
cosets <j>aXjTa-2 and 0s0a_iXjFs_2 are both included in the same coset of Fs_i.
It follows that

1 ^-^
(10) u^s-^rPfXi)! ^ / |Aan|

TOS_2 / — '

for all j in [mr_i,mr). Since [kaFr]~(xj) = 0 f°r all other values of j

lAOnl.
a mr_i<n<mr

Because the group is bounded and the norm ||/ir||s(o,oo,i) ^s majorized by the
maximum for s < r of the lefthand sides above, the series Z)^2 ^ converges
in the space B(0, oo, 1). The sum h of the series will have the property that
Sm, MO) = 0 for all t. This completes the proof of the lemma.

To prove Theorem 1 split the formal product k • F into the pieces / , g and
h specified by the lemma. By the argument used in the proof of Theorem 3 it
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sufRcies to show that each of the functions f/k,g/k and h/k belongs to
That this is so for f/k and g/k follows from Theorem 3 and parts (i) and (ii) of
the lemma. By part (iii) of the comment made at the end of the previous section
all that remains is to verify that

< 00.

To this end split the integral over G\Gr into integrals over coronas
Gs-2\Gs-i. On such a corona the only term in the sum for hr that is nonzero
is ksFr. By Holder's inequality

JG.-2

Here p' denotes the index conjugate to p. Suppose without loss of generality
that p € (1,2]. Then the Hausdorff-Young theorem provides an estimate for the
Lp -norm appearing above in terms of the /p-norm of the Fourier coefficients of
kaFr. Inequality (10) shows that these coefficients can be individually estimated
in terms of the /1-norm of the restriction of the sequence (Aon) to an appropriate
coset of Fs_i. By Holder's inequality again such an /1-norm is majorized by m^_1

times the /p-norm of the restriction of (Aan) to the same coset. Combining these
estimates yields that (the constant c varies from line to line)

Adding as the index s runs from 2 to r + 1 gives
i/p

*? G\(jr

Finally adding with respect to r yields inequality (11), thus completing the proof
of Theorem 1.

Under condition 7 the coefficient sequence must satisfy 7V for some p > 1,
which is a stronger restriction than condition 7\ alone. Integrability also follows
from another condition that is stronger than 7\.

THEOREM 6. If (Xn) is a bounded Vilenkin system and if (an) is a sequence
of scalars satisfying the condition that

(12)
n=l

then the series YlnLo anXn represents an integrable function.
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PROOF. TO verify this note tha t in the proof of Theorem 1 only condi-

tion 7\ was used except in the last step concerning inequality (11). Much as

above each of the integrals / G \ G \kaFr\dx/d(x,0) with s < r is majorized by

c E m r _ 1 < n < m r l A a n l - H e n C e

V |Aan|
mr_i<n<mr

Inequality (11) now follows by adding with respect to r.

COROLLARY 7. // (xn) is a bounded Vilenkin system and if (an) is a real-
valued sequence that tends monotonically to 0 and satisfies the condition that

then the series J2^Lo anXn represents an integrable function.

PROOF. Summation by parts shows that the condition above and condition
(12) are equivalent for real-valued sequences (an) that tend monotonically to 0.

We conclude the paper with some comments about other methods and results.
1. Our methods work with the function k replaced by certain other adapted

mentions. The properties of k that seem essential are that it be adapted, that
the functions ks be supported on distinct coronas, and that the transforms ks

be supported on distinct coronas.
2. In every case that we have considered our results can also be proved by more

direct methods, and in fact this has been done for Walsh series. As mentioned in
the introduction it was already known [10] that a Walsh series with a sequence
of coefficients that is quasiconvex and tends to 0 must be integrable, and Bruce
Aubertin has a direct proof of Theorem 1 for Walsh series. Corollary 7 for Walsh
series in the Kaczmarcz ordering was proved by Balashov [2]; his proof also works
for the Paley ordering specified in Section 2.

3. We feel that our method of proof is of independent interest. Our proof
of Theorem 1 could be shortened if we could show that the function h must
also belong to one of the spaces B(l/p,p, 1) with p < oo. Unfortunately this
conclusion about h does not follow from the hypotheses of the theorem. There
are convex sequences (an) that tend to 0 for which the corresponding functions
h on the Walsh group belong to B(l/p,p, 1) only when p — oo; such coefficient
sequences satisfy condition 7^ and hence 7q for all q.
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4. It is known [9] that the Dirichlet kernels DN on a Vilenkin group have the
property that for each x ^ 0 the sequence (DN(X))^=0 is bounded. It follows by
summation by parts that if the sequence (an) tends to 0 and satisfies condition
Ji then the series Z)^Loa«X«(x) converges pointwise except at x — 0. Our
theorems provide criteria for this pointwise sum to belong to Ll{G).

5. Our methods also lead to estimates for the Z^-norm of the function repre-
sented by the series. Under the hypotheses of Theorem 1 we get that

(13) Wfh^CpiCDl^mrl^- X, lAa"l"
r=l I r mr-i<n<mr

for all p > 1. Similarly Corollary 7 can be recast to assert that

n=l J

whenever the right hand side is finite and the sequence (on) is real-valued and
tends monotonically to 0. It follows from inequality (13) that the Fej6r kernels
KN on a bounded Vilenkin group G form a bounded sequence in the space L1 (G);
this conclusion is implicit in [9]. Applying inequality (14) to the Dirichlet kernels
on a bounded Vilenkin group yields that ||.DJV||I ^ c(G) log N for all N.

6. This conclusion about the Dirichlet kernels was shown by Vilenkin [9] to
hold without the requirement that the group be bounded. The conclusion about
the I1 -norms of the Fejer kernels also holds for unbounded groups. We have used
boundedness repeatedly in this paper, and we do not know whether our other
conclusions continue to hold without this assumption.
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