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SUMMARY

Influenza vaccination is the most practical means available for preventing influenza virus
infection and is widely used in many countries. Because vaccine components and circulating
strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The
test-negative design is frequently used to estimate VE. In this design, patients meeting the same
clinical case definition are recruited and tested for influenza; those who test positive are the cases
and those who test negative form the comparison group. When determining VE in these studies,
the typical approach has been to use logistic regression, adjusting for potential confounders.
Because vaccine coverage and influenza incidence change throughout the season, time is included
among these confounders. While most studies use unconditional logistic regression, adjusting for
time, an alternative approach is to use conditional logistic regression, matching on time. Here, we
used simulation data to examine the potential for both regression approaches to permit accurate
and robust estimates of VE. In situations where vaccine coverage changed during the influenza
season, the conditional model and unconditional models adjusting for categorical week and using a
spline function for week provided more accurate estimates. We illustrated the two approaches on
data from a test-negative study of influenza VE against hospitalization in children in Hong Kong
which resulted in the conditional logistic regression model providing the best fit to the data.
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INTRODUCTION

Influenza vaccines are unique in requiring annual vaccin-
ation for continued protection. The reasons for this
are twofold. First, their composition is frequently
updated to keep pace with antigenic drift; and second,

vaccine-induced immunity rapidly wanes [1]. Moreover,
the dominant strain, timing and severity of seasons
vary. As a result, the influenza vaccine’s effectiveness
(VE) may not be constant across seasons and therefore
there may be a need for re-estimation each season.

While randomized controlled trials provide the
most robust estimates of the efficacy of influenza vac-
cines, they are not feasible on an annual basis. In con-
trast, observational studies can easily provide ongoing
estimates of influenza VE. Commonly, this is done
using data collected through routine surveillance and
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analysed as a test-negative design study [2]. Using this
design, the odds of influenza positivity among the vac-
cinated are compared to the odds of positivity among
the unvaccinated to estimate VE [3].

Although vaccination campaigns are typically
timed to precede the start of the influenza season, in
some instances the timing of vaccine receipt has over-
lapped with enrolment; e.g. during the 2009 influenza
A(H1N1) pandemic [4]. Thus, both vaccination cover-
age and influenza incidence can change throughout a
season, so time acts as a confounder and should be
adjusted for in VE estimation. This is typically
achieved by including it as a covariate in a multivari-
able logistic regression model fitted using uncondition-
al maximum likelihood. The specification of time can
vary and it has been included as a continuous vari-
able, a categorical variable or spline function, and
the unit of time has also varied [2]. An alternative ap-
proach is to use time as a matching variable, which is
equivalent to stratification over time, and fit the model
using conditional maximum likelihood.

The objective of this paper was to evaluate the val-
idity of the unconditional and conditional maximum-
likelihood estimates when applied to data from test-
negative studies under different scenarios of influenza
vaccination coverage within a season. In the following
sections, we provide a detailed description of the test-
negative design and the regression approaches consid-
ered, and we then present a comparison of approaches
using a simulation study and empirical data from a
test-negative study conducted in Hong Kong.

Test-negative design

The test-negative design was first used for the estima-
tion of influenza VE in 2005 [5] and has since been
used in over 100 papers reporting VE estimates [2].
It is popular because it can take advantage of routine
surveillance systems that are already in place in many
settings. In these studies, participants meeting a clinic-
al case definition for influenza-like illness or acute re-
spiratory illness are enrolled in a clinical setting, such
as an outpatient clinic or a hospital. For example,
such a study might recruit patients presenting to
their general practitioner (GP) with fever and cough.
A respiratory specimen is collected from each partici-
pant and tested for influenza virus. Participants meet-
ing the clinical case definition and testing positive for
influenza are the cases, while those meeting the clinical
case definition and testing negative for influenza are the
comparison group. Information on the vaccination

status and important confounders is recorded. VE is
estimated by comparing the odds of positivity between
the vaccinated and unvaccinated; i.e. VE= (1 –
ORadj) × 100, where ORadj is the odds ratio with
correction for potential bias caused by confounding
[2, 3, 6].

In contrast to traditional case-control studies, the
participant’s status (test-positive vs. test-negative) is
not known at enrolment, so no sampling frame is
used to select participants. Furthermore, all patients
are seeking care for the same complaint. This ap-
proach is said to avoid the validity issues identified
in more traditional case-control studies of influenza
VE, which are threatened by bias associated with
underlying differences in health status [7] and
healthcare-seeking behaviour [3] between vaccinated
and unvaccinated patients. By enrolling all patients
from the same population, presenting with the same
complaint and therefore believed to have similar
health status and healthcare-seeking behaviours, this
type of bias should be reduced.

A number of assumptions are required for the test-
negative design to provide accurate estimates of
influenza VE. First, the occurrence of influenza-like ill-
nesses due to non-influenza causes cannot be affected
by receipt of influenza vaccine. Second, the test used
to determine influenza status must be highly specific, al-
though this is true for any study where the exposure is
uncommon [8]. Recruitment should also be restricted to
the period during which influenza is circulating.

Motivating example

In a test-negative study of influenza VE, our effect of
interest is vaccination on influenza infection. This ef-
fect may be confounded by age because both vaccin-
ation coverage and risk of infection commonly vary
by age. Calendar time might also confound the effect
because of its association with the timing of vaccin-
ation and the varying probability of infection due to
influenza circulation following the seasonal pattern
of increase, peak and decline. To account for the po-
tential confounding caused by calendar time, most
influenza VE studies include it as a covariate (e.g.
week of presentation) in their logistic regression mod-
els [2]. However, it is unclear whether simply including
a variable in a maximum-likelihood model can suffi-
ciently account for the bias that arises if the vaccin-
ation coverage changes over the season. Control for
the effects of time may be better handled by using
time as a matching variable and estimating VE by
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conditional maximum likelihood. In such a study,
patients are selected for the study by matching cases
and controls on time (risk-set sampling). In case-
control studies, matching alone does not remove the
confounding bias and induces selection bias [9, 10].
To overcome this bias, adjustment for the matching
variable is required, which can be achieved by sparse
data methods, such as conditional logistic regression
[9, 10].

METHODS

Maximum-likelihood estimation of VE in the
test-negative design

Adjusted odds ratios to estimate VE are typically cal-
culated using a logistic regression model, which is gen-
erally defined by:

logit Pr(Y = 1|x) = α+ β′x, (1)
where Y is the outcome status of the patients, α is the
parameter for the intercept, β is a vector of parameters
(β1, β2, . . ., βp) for the covariates, and x is a vector of
covariates. In a study of influenza VE, Y would be the
patients’ influenza status and the covariates might in-
clude vaccination status, age and time.

The parameters in the logistic regression model are
estimated by maximum-likelihood estimation, which
involves finding the set of parameters for which the
probability of the observed data is greatest. Formal
likelihood theory is explained in detail in Breslow &
Day [11]. Briefly, there are two options: unconditional
and conditional.

The unconditional maximum likelihood is described
by:

Luc(β)

=
∏N
i=1

exp(α+ β′xi)
1+ exp(α+ β′xi)

( )yi 1
1+ exp(α+ β′xi)

( )(1−yi)
,

(2)
where N is the total number of individuals.

The conditional maximum likelihood is described
by:

Lcon(β) =
∏n1

i=1 exp(β′xi)∑
k

∏n1
i=1 exp(β′xki )

, (3)

where subjects 1 to n1 correspond to the cases and n0 is
the number of controls. The sum in the denominator

ranges over the
n
n1

( )
choices of n1 integers from

the set {1, 2, . . ., n} [11] for each of k strata.

The conditional likelihood for each stratum is
obtained as the probability of the observed data con-
ditional on the stratum total and the number of cases
observed:

πk(x) = exp(αk + β′xi)
1+ exp(αk + β′x) , (4)

where αk represents the contribution of all constant
terms, including the matching variables, within the
kth stratum [12].

The two maximum-likelihood estimates differ in
some important ways. The conditional estimate does
not equal the unconditional estimate and has no expli-
cit formula [12]. Nevertheless, the interpretation of the
regression coefficients is the same. Moreover, the con-
ditional estimate is always closer to the null and tends
to be less biased than the unconditional estimate [11,
10]. However, when samples are large, the two likeli-
hood estimates and their standard errors will be
asymptotically identical [13].

For the test-negative design study, where time is a
covariate, the logistic regression model corresponds
to:

logit P(I = 1|v, a, c) = α+ β1v+ β2a+ β3c, (5)
where v represents vaccination, a age and c calendar
time. Conversely, when patients are matched on
time, the model is:

logit P(I = 1|v, a)k = αk + β1v+ β2a, (6)
where there are k = 1, 2, . . ., n strata of calendar time.

Simulation study

To begin the investigation a simple discrete time simu-
lation using three vaccination scenarios was per-
formed: (1) all vaccinations administered before the
epidemic; (2) vaccinations administered before and
during the epidemic; (3) vaccinations administered
throughout the peak period of the epidemic at a con-
stant rate. (The period of 13 weeks was chosen as the
peak period based on sentinel surveillance data from
Australia, which indicated that the epidemic period
was approximately 13 weeks) [14, 15]. The three scen-
arios are illustrated in Figure 1.

The simulated population size was 1 million people.
VE was set at 60%, based on a recent meta-analysis
[16]. The proportion vaccinated π was set to 0·3
based on the prevalence of vaccination among test-
negative subjects in some recent outpatient studies
[17–20]. The proportion infected with influenza ψ
was set to 0·05 [21]. The rate of infection for other
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respiratory viruses γ was set to 0·3 [22]. Additionally,
the proportions of those infected with influenza which
were selected to be in the test-negative dataset ψS and
other viruses selected to be in the test-negative dataset

γS were arbitrarily set to 0·005. These parameters are
summarized in Table 1. The simulation model
assumes restricted age to avoid incorporating a statis-
tical adjustment for age.

Epidemic curves were produced using a binomial
(25, 0·5) infection pattern (P) to populate the numbers
of infected susceptibles (SI=1), infected vaccinees
(VI=1), susceptibles infected with other, non-influenza
viruses (SO=1) and vaccinees infected with non-
influenza viruses (VO=1) using the following equations:

SI=1 = S × ψ × P,

VI=1 = V × ψ × P× (1− VE),
SO=1 = S × γ× (P+ lag),
VO=1 = V × γ× (P+ lag).

}
(7)

Fig. 1. Plots showing the epidemic curve and the number of vaccinated patients using the three different vaccination
scenarios. Solid black lines show the infected susceptibles, dashed black lines show the infections among vaccinated
persons and the grey lines show the total vaccine coverage. We assume vaccines become effective 2 weeks after
vaccination.

Table 1. Parameters used in the
simulation

Parameter Value

VE 0·6
π 0·3
ψ 0·05
γ 0·3
ψS 0·005
γS 0·005
N 1 000 000
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Susceptibles and vaccinees infected with non-influenza
viruses followed the same epidemic curve as those with
influenza. However, the peak of the epidemic curve
was varied to occur 2 or 6 weeks before and 2 or 6
weeks after the peak of the influenza epidemic. The
main analysis here shows the case in which the non-
influenza viruses occur 2 weeks before. The model
was restricted to run only during the epidemic period,
defined as the weeks in which there were 51 patients
testing positive for influenza, as this is a commonly
used criterion [2]. Sensitivity analyses were carried
out to assess: the sensitivity of parameter inputs to
the simulation results by varying the expected VE,
proportion vaccinated and proportion testing positive;
the effect of running the model outside of the epidemic
period (i.e. not restricting to the data to weeks with
cases); and the effect of differing the onset time of
the non-influenza viruses epidemic.

Each simulation was run 1000 times. Five regres-
sion models were assessed: (1) crude logistic regression
(L); (2) logistic regression with week as a continuous
variable (LW); (3) logistic regression with week as a
categorical variable (LC); (4) logistic regression with
week as a restricted cubic spline function with four
knots (LS); (5) conditional logistic regression, stra-
tified by week (CL).

Application to test-negative data from Hong Kong

The use of conditional logistic regression was compared
with ordinary logistic regression using data from a test-
negative study conducted in Hong Kong [23]. Children
were enrolled on a specified day each week from the
paediatric inpatient wards of two large public hospitals
on Hong Kong island – Queen Mary Hospital and
Pamela Youde Nethersole Eastern Hospital. Inclusion
criteria were: (1) resident of Hong Kong island; (2)
aged 2–5 years; (3) meeting the case definition of a

febrile acute respiratory infection, defined as fever
538 °C with any respiratory symptom such as
cough, runny nose, or sore throat. Respiratory speci-
mens were collected from all enrolled children and
tested for influenza by immunofluorescence, culture,
and/or reverse transcription–polymerase chain reac-
tion. Influenza vaccination history within 6 months of
hospitalization was elicited from the parents or legal
guardians of enrolled patients using a standardized
questionnaire administered by research staff. The meth-
ods have been described in detail previously [6]. VE was
estimated using the same regression models described
for the simulation study, excluding the crude logistic re-
gression model as we a priori believe that time should
be adjusted. Age was restricted to avoid including it
in the regression models.

RESULTS

Simulation study

For the simulation study, results for VE using the pre-
viously mentioned models are shown in Table 2. These
results suggest that when all vaccinations are adminis-
tered before the epidemic, adjusting a regression
model for time is not necessary as the crude model
gives a VE estimate close to our set parameter value
of 60%. The results show slight bias in the crude
model for scenario 2 where all vaccinations are
given before and during the epidemic. Larger biases
were observed in the crude model for scenario 3
where vaccinations are given at a constant rate during
the epidemic. These simulation results therefore sug-
gest that if modelling a situation in which vaccinations
are being administered during an epidemic adjusting
for time in a regression model is necessary. How this
adjustment is made, however, seems to have little ef-
fect on the results.

Table 2. Vaccine effectiveness (VE) and 95% sampling intervals obtained from simulated results using conditional
and unconditional maximum-likelihood models under three vaccination scenarios

Logistic regression model Scenario 1: VE (95% SI) Scenario 2: VE (95% SI) Scenario 3: VE (95% SI)

1. L 59·66 (42·86–76·45) 55·71 (37·15–74·27) 45·91 (19·35–72·47)
2. LW 59·70 (42·90–76·50) 60·13 (42·86–77·41) 59·46 (38·75–80·17)
3. LC 60·03 (43·10–76·96) 60·41 (42·99–77·82) 59·91 (38·95–80·88)
4. LS 59·83 (42·99–76·66) 60·15 (42·83–77·46) 59·59 (38·75–80·42)
5. CL 59·71 (42·80–76·63) 60·04 (42·66–77·43) 59·49 (38·58–80·40)

SI, Sampling interval; L, crude model; LW, adjusting for week as a continuous variable; LC, adjusting for week as a categor-
ical variable; LS, adjusting for week with a spline term; CL, conditional logistic model matching on week.
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Sensitivity analysis was also carried out to inspect
the sensitivity of the simulation towards parameter
values. Figure 2 shows the differences when we restrict
the model to only run during the influenza season (51
positive case each week) and when we allow the model
to run on all data. We expected there to be bias when
using the entire surveillance period vs. just the weeks
with cases because this is what has been seen in prac-
tice [24]. However, the two panels in Figure 2 show
minimal differences. Such variability is probably a
product of sample size, such that in a study with a
small overall sample, changing the definition of the
study period can have a severe impact on VE esti-
mates. In contrast, our simulated datasets included be-
tween 1000 and 2000 patients, which may have been
sufficient to overcome sampling problems.

The effect of varying parameter values is shown in
Figure 3. These adjustments have little effect on the
calculated VE estimate, except when the probability
of infection (PI) is increased in which case the sam-
pling intervals for the estimate narrow. Again, there
is evidence of bias towards the null in the crude esti-
mate obtained from scenarios 2 and 3.

We also conducted a sensitivity analysis, examining
the effect of varying the onset of the epidemic curves
for non-influenza viruses. This was done by imple-
menting the non-influenza viruses’ curves with a
2- and 6-week lag and a 2- and 6-week lead/advance.
The infection pattern for both influenza and non-
influenza viruses were the same throughout the

analysis [binomial (25, 0·5)]. The results are shown
in Table 3. We can see that when the two epidemic
curves are significantly separated, i.e. 6 weeks lag
and 6 weeks lead, the bias shown for the crude
model in scenarios 2 and 3 is large. This analysis
also shows that when the non-influenza epidemic
occurs before the influenza epidemic the crude
model underestimates VE and, conversely, when this
occurs after the influenza epidemic the crude model
overestimates VE. This highlights the need for time
adjustment in a model where the vaccination is
given during the influenza epidemic especially when
the non-influenza virus activity occurs before or after
the influenza epidemic. We can also see slight bias in
all models when the difference between the influenza
and other virus’ epidemics are greatest.

Overall, considering all simulation results, includ-
ing the sensitivity analyses, it is shown that when vac-
cinations are distributed during an epidemic the
models producing the most accurate results are the lo-
gistic model adjusting for time as a categorical vari-
able or using a spline function, and the conditional
logistic regression model matching on time.

Application to test-negative data from Hong Kong

Between 1 October 2009 and 30 September 2013, 2467
children were recruited from the inpatient depart-
ments of two hospitals, of whom 241 (9·8%) tested
positive for influenza A virus and 82 (3·3%) tested

Fig. 2. Plots showing results of the sensitivity analysis comparing calculated vaccine effectiveness estimates when data are
restricted to the influenza epidemic period vs. using entire surveillance period. Data shown are point estimates and
sampling intervals for each model.

1606 H. S. Bond and others

https://doi.org/10.1017/S095026881500309X Published online by Cambridge University Press

https://doi.org/10.1017/S095026881500309X


positive for influenza B virus. The timeline of recruit-
ment of patients is shown in Figure 4. The upper panel
shows that influenza virus infections in Hong Kong
occurred throughout the year, with occasional peaks
and troughs in incidence. Elsewhere we have shown
that peaks in influenza virus activity tend to occur in
winter (February–March) and summer (June–July)
in subtropical Hong Kong although the seasonal pat-
tern can vary from year to year [6, 25].

The lower panel of Figure 4 shows the influenza
vaccination coverage among the test-negative patients,
which reflects vaccination coverage in the population,
varied throughout each year, with highest coverage
between January and March each year. Hong Kong
uses the Northern Hemisphere influenza vaccine and
vaccination campaigns typically run from October to
January prior to the winter influenza season, although
vaccines are also administered at other times of the
year and are available throughout the year.

From analysis of the hospital data we found among
the test-negative patients, 245/(1899 + 245) (11·4%)
reported receipt of influenza vaccination in the preced-
ing 6 months, compared to 18/(305 + 18) (5·6%) of
patients that tested positive for influenza A or B
virus. Estimates of the VE adjusted for different
time indicators were estimated from fitting conditional
and unconditional maximum-likelihood models
(Table 4).

Table 4 shows the results from the unconditional lo-
gistic regression models adjusting for time in the pre-
viously described ways and the conditional logistic
model using matched time variables. Among the un-
conditional models, Akaike’s Information Criterion
(AIC) values indicated that the model including a cat-
egorical variable for week was the preferred model;
however, the model including a spline function for
week provided similar estimates and AIC values.
However, the AIC value for the conditional model

Fig. 3. Plots showing the sensitivity analysis performed using different combinations of parameter values. VE, Vaccine
effectiveness; PV, proportion vaccinated; PI, proportion infected. Data shown are point estimates and sampling intervals
for each model.
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was lower, suggesting this approach fit the data best.
The models were run using differing units of time
(i.e. week, month, 12-week period). When the unit
of time was 12 weeks no weeks were dropped in the
conditional regression or the model with categorical
time, and therefore the sample size included in the
conditional regression was the same as the sample
included in all the unconditional models allowing for
a fair comparison of AIC values. This comparison
still shows the AIC to be the lowest in the conditional
model. Regardless of the unit of time, the conditional
model shows the lowest AIC, concluding that this
model fitted the data the best. Each model, with the
exception of the continuous unconditional model
(which stayed consistent across all time indicators),
provided a better fit with the smaller unit of time
(week).

DISCUSSION

Based on the analysis presented here, the need to ad-
just for time depends on which scenario best fits the
data under study. Scenario 1 may best represent a typ-
ical, temperate season, where the majority have been
vaccinated prior to the start of the epidemic. On the
other hand, scenario 2 may be more realistic in sea-
sons where the epidemic starts early, or where seasons

closely follow or even coincide with vaccine availabil-
ity, which may occur in some regions [27–30] or during
pandemics [4]. However, we conservatively recommend
that either the conditional logistic model, or an uncon-
ditional model in which week is included either as a cat-
egorical variable or using a spline function may be the
most appropriate models to use for a test-negative data
set. As well as producing accurate estimates for the
simulation data under a range of scenarios, these mod-
els also permitted reliable estimation of VE in the Hong
Kong hospital data. Although not seen in the simula-
tion or Hong Kong application here, the conditional
logistic model has been shown to produce slightly lar-
ger standard errors than the logistic model due to a
higher number of parameters needed for the condition-
al logistic regression model resulting in greater uncer-
tainty [11]. However, the reduced bias may be
preferable to reduced precision.

One limitation of our approach is that we did not
consider the impact of potential confounding vari-
ables on the estimation of VE. An important confoun-
der of this relationship is age, which we attempted to
control the effects of by restricting the analysis to chil-
dren aged 2–5 years. However, we did not explore how
adjustment for this variable might influence estimates.
This would be one area for further work, perhaps with
an agent-based simulation model. Further to this, we

Table 3. Sensitivity analysis showing the effects of differing the epidemic period for non-influenza viruses. Values
shown in table are VE (%) with 95% sampling intervals

6 weeks before 2 weeks before (main analysis) 2 weeks after 6 weeks after

Scenario 1
1. L 59·90 (43·28–76·52) 59·66 (42·86–76·45) 59·80 (43·82–75·78) 59·35 (42·77–75·93)
2. LW 59·40 (37·97–80·82) 59·70 (42·90–76·50) 59·78 (43·46–76·09) 58·52 (34·21–82·83)
3. LC 59·78 (35·94–83·62) 60·03 (43·10–76·96) 60·12 (43·60–73·64) 59·01 (33·99–84·04)
4. LS 59·63 (36·37–82·90) 59·83 (42·99–76·66) 59·88 (43·50–76·25) 58·80 (34·12–83·49)
5. CL 59·27 (35·54–83·00) 59·71 (42·80–76·63) 59·75 (43·25–76·26) 58·50 (33·61–83·40)

Scenario 2
1. L 36·26 (8·31–64·21) 55·71 (37·15–74·27) 61·65 (45·79–76·98) 62·11 (45·42–78·80)
2. LW 58·78 (34·65–82·91) 60·13 (42·86–77·41) 59·51 (42·70–76·32) 58·85 (34·49–83·51)
3. LC 59·28 (34·48–84·08) 60·41 (42·99–77·82) 59·70 (42·81–76·58) 59·35 (34·62–84·07)
4. LS 58·93 (34·23–83·63) 60·15 (42·83–77·46) 59·49 (42·64–76·33) 59·11 (34·48–83·75)
5. CL 58·85 (34·07–83·42) 60·04 (42·66–77·43) 59·38 (42·52–76·25) 58·85 (34·24–83·44)

Scenario 3
1. L 33·48 (-4·03–70·99) 45·91 (19·35–72·47) 68·23 (53·35–83·12) 75·38 (63·46–87·29)
2. LW 56·87 (23·48–90·26) 59·46 (38·75–80·17) 59·62 (40·22–79·01) 57·95 (30·44–85·47)
3. LC 57·77 (23·27–92·26) 59·91 (38·95–80·88) 59·80 (40·36–79·24) 58·28 (30·31–86·26)
4. LS 57·37 (23·24–91·50) 59·59 (38·75–80·42) 59·63 (40·17–79·08) 58·10 (30·20–85·99)
5. CL 57·22 (22·96–91·47) 59·49 (38·58–80·40) 59·55 (40·12–78·98) 57·84 (30·00–85·68)

L, crude model; LW, adjusting for week as a continuous variable; LC, adjusting for week as a categorical variable; LS, adjust-
ing for week with a spline term; CL, conditional logistic model matching on week.
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Table 4. Estimated vaccine effectiveness (VE) under alternative regression models

Time indicator (weeks) Sample size* VE (%) (95% CI) AIC

1. LW 1 2467 55·10 (28·32–73·56) 1908·72
2. LW 2 2467 55·10 (28·32–73·56) 1908·72
3. LW 4 2467 55·11 (28·34–73·57) 1908·71
4. LW 12 2467 55·02 (28·19–73·51) 1908·85
5. LC 1 1603 65·41 (39·71–80·17) 1679·42
6. LC 2 2027 62·82 (38·06–78·88) 1718·12
7. LC 4 2305 62·64 (38·29–78·62) 1721·85
8. LC 12 2467 60·99 (36·64–77·35) 1774·21
9. LS 1 2467 62·40 (38·97–78·16) 1759·47
10. LS 2 2467 62·64 (39·06–78·16) 1764·82
11. LS 4 2467 62·44 (39·06–78·16) 1764·82
12. LS 12 2467 60·34 (35·71–76·93) 1773·77
13. CL 1 1603 62·66 (36·06–78·19) 1117·57
14. CL 2 2027 61·53 (34·60–77·30) 1323·44
15. CL 4 2305 61·99 (35·84–77·48) 1469·67
16. CL 12 2467 60·78 (34·66–76·45) 1660·62

CI, Confidence interval; AIC, Akaike’s Information Criterion; LW, adjusting for week as a continuous variable; LC, adjusting
for week as a categorical variable; LS, adjusting for week with a spline term; CL, conditional logistic model matching on week.
* Weeks without a case and a non-case were dropped from models 2 and 4.

Fig. 4. Enrolment of patients and vaccination coverage over calendar time in Hong Kong. (a) Number of enrolled children each
week, by laboratory test result. The dark grey bars show the test-negative patients and the light grey bars show the test-positive
patients. (b) Vaccine coverage among cases testing negative for influenza virus, smoothed using the Daniel 1 kernel [26].
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did not explore effect modification across levels of this
confounder. However, we note that in practice most
published datasets may have insufficient sample to ad-
equately explore effect modification. Gains in under-
standing how an effect varies across levels of
covariates must be weighed against other potential
biases. For example, inclusion of product terms can
overparameterize the model and lead to sparse data
bias, the severity of which may be greater than con-
founding bias [31–33]. Second, for the application to
clinical data, the true VE is unknown and we cannot
be sure that the regression models we used were able
to account sufficiently for confounding. In practice,
matching on calendar time may be more useful in
tropical regions, like Hong Kong, where there may
be multiple influenza seasons within a year; conversely
in temperate climates where the influenza season typ-
ically follows a neat epidemic curve and where most
patients will have been vaccinated prior to the epidem-
ic, the need to control for time may be reduced.
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