L.J. Goldstein Nagoya Math. J. Vol. 45 (1971), 119-127

ON PRIME DISCRIMINANTS

LARRY JOEL GOLDSTEIN¹⁾

1. Introduction.

Let $L = Q(\sqrt{d})$ be a quadratic field of discriminant d. We say that d is a *prime discriminant* if d is divisible by exactly one rational prime. It is classically known that the prime discriminants are given by

-4, ±8,
$$(-1)^{\frac{p-1}{2}}p$$
 (p an odd prime).

Further, it is known that every discriminant d of a quadratic field can be written uniquely in the form

$$d=d_1\cdots d_t,$$

where d_1, \dots, d_t are distinct prime discriminants. (See, for example, [2, p. 75].) In this paper, we will prove a generalization of these facts.

Let K be an algebraic number field of narrow²) class number 1 and let L be a quadratic extension of K. Let \mathcal{O}_K (resp. \mathcal{O}_L) denote the ring of integers of K (resp. L). Since K has class number 1, L has a relative integral basis $\{\alpha_1, \alpha_2\}$ over K. The relative discriminant

$$\varDelta_{L/K}(\alpha_1,\alpha_2)$$

is a non-zero integer of K. Furthermore, if $\{\alpha'_1, \alpha'_2\}$ is another relative integral basis of L over K, then

$$\Delta_{L/K}(\alpha_1', \alpha_2') = \varepsilon^2 \Delta_{L/K}(\alpha_1, \alpha_2), \qquad (1)$$

where $\varepsilon \in U_{\kappa}$, U_{κ} = the group of units of \mathcal{O}_{κ} . Let

Received April 28, 1971.

¹⁾ Research was supported by National Science Research Grant GP-20538.

²⁾ Let I_K denote the group of all K-ideals, $P_K^0 =$ the group of all principal K-ideals (α) , with α totally positive. The narrow class number of K is the order of I_K/P_K^0 . Class field theory implies that the narrow class number 1 is if and only if K has no non-trivial abelian extension which is unramified at all finite K-primes. If the narrow class number of K is 1, then the ordinary class number of K is 1.

$$\mathscr{S}(K) = \{ \mathscr{A}_{L/K}(\alpha_1, \alpha_2) \}$$

where L varies over all quadratic extensions of K and $\{\alpha_1, \alpha_2\}$ varies over all relative integral bases of L over K. An element of $\mathscr{S}(K)$ is called a *K*-discriminant. A K-discriminant which is divisible by exactly one K-prime is called a *prime K*-discriminant. We say that two K-discriminants d, d' are equivalent if $d = \varepsilon^2 d'$ for some $\varepsilon \in U_K$. The first main result of this paper is

THEOREM A. Let K be totally real of narrow class number 1, and let $d \in \mathcal{G}(K)$. Then d can be written in the form

$$d=\pi_1\cdot\cdot\cdot\pi_\iota,$$

where π_i $(1 \le i \le t)$ are distinct prime K-discriminants.

Let $d = \pi_1 \cdot \cdot \cdot \pi_i = \pi'_1 \cdot \cdot \cdot \pi'_i$ be two decompositions of the K-discriminant d into the product of distinct prime K-discriminants. We will say that the two decompositions are *equivalent* if s = t and, after suitably renumbering $\pi_1, \cdot \cdot \cdot, \pi_t$, we have π_i equivalent to π'_i for $1 \le i \le t$. Our second main result is

THEOREM B. Let K be totally real of narrow class number 1, and let $d \in \mathscr{S}(K)$ and let L be a quadratic extension of K having d as the discriminant of some relative integral basis of L over K. Let d be divisible by t distinct K-primes, and let $L^* =$ the maximal abelian extension of K which is unramified over L at all finite primes. Then:

- (1) $\deg(L^*/L) \ge 2^{t-1}$.
- (2) All decompositions of d into a product of prime discriminants are equivalent to one another $\iff \deg(L^*/L) = 2^{t-1}$.

The author wishes to thank Professor Tomio Kubota for several valuable suggestions.

2. Generalization of Furuta's Genus Formula.

In this paragraph, let K be any number field and let L/K be an abelian extension. Let L^* denote the maximal abelian extension of K which contains L and is such that L^*/L is unramified at all finite L-primes. We will refer to L^* as the *weak genus field* of L/K, and deg (L^*/L) as the *weak genus number* of L/K. Furuta [1] has introduced a similar notion which assumes

that L^*/L is unramified also at infinite *L*-primes. In this case, we will refer to the *strong genus field* of L/K and the *strong genus number* of L/K.

Let h_K denote the ordinary class number of K, S_{∞} = the set of infinite K-primes, $S_{\infty,1}$ = the set of real K-primes, $S_{\infty,2}$ = the set of complex K-primes, r_i = the number of elements in $S_{\infty,i}$ (i = 1, 2). We will prove

THOEREM 2.1. The weak genus number of L/K is given by

$$\deg \left(L^*/L \right) = \frac{h_K 2^{r_1} \prod_{\mathfrak{p} \notin S_{\infty}} e_{\mathfrak{p}}}{\deg \left(L/K \right) \cdot \left[U_K : U_{L/K} \right]} +$$

where \mathfrak{p} runs over primes of K, $e_{\mathfrak{p}} =$ the ramification index of \mathfrak{p} in L/K, $U_K =$ the group of units of the ring of K-integers, $U_{L/K} =$ the group of units of the ring of K-integers, which are local norms at all finite primes and are totally positive.

Our proof will follow the derivation of Furuta's formula [1] for the strong genus number.

LEMMA 2.2. [1, p. 282]. Let J_L denote the group of ideles of L and let \hat{H} be an admissible subgroup of J_L , $\hat{L} =$ the class field over L corresponding to \hat{H} . Let \hat{L}_0 be the maximal abelian extension of K which is contained in \hat{L} . Then $K^{\times} \cdot (N_{L/K}\hat{H})$ is the admissible subgroup of J_K corresponding to \hat{L}_0 , where $N_{L/K}$ denotes the idele norm from L to K.

LEMMA 2.3. Let H^* denote the admissible subgroup of J_K corresponding to L^* , where $J_K =$ the idele group of K. Then

$$H^* = K^{\times} \cdot \prod_{\mathfrak{p} \in S_{\infty, 1}} \mathbf{R}_{+} \times \prod_{\mathfrak{p} \in S_{\infty, 2}} \mathbf{C}^{\times} \prod_{\mathfrak{p} \notin S_{\infty}} NU_{\mathfrak{P}},$$

where $\mathbf{R}_{+} = \{x \in \mathbf{R} | x > 0\}$, $\mathbf{C}^{\times} = \mathbf{C} - \{0\}$, $\mathfrak{P} = a$ prime divisor of \mathfrak{P} in $L, U_{\mathfrak{P}} = the$ local unit group at \mathfrak{P} and N = the local norm from $L_{\mathfrak{P}}$ to $K_{\mathfrak{P}}$.

Proof. Let \hat{L} = the maximal abelian extension of L which is unramified at all finite L-primes. Then the admissible subgroup of J_L corresponding to L is given by

$$L^{\times} \cdot \prod_{\mathfrak{P} \text{ real}} \mathbf{R}_{+} \prod_{\mathfrak{P} \text{ complex}} \mathbf{C}^{\times} \times \prod_{\mathfrak{P} \text{ finite}} U_{\mathfrak{P}}.$$

But L^* = the maximal abelian extension of K contained in L. Thus, the Lemma follows from Lemma 2.2.

Let us now prove Theorem 2.1. Let U denote the group of unit ideles of K. Then

$$deg (L^*/L) = \frac{deg (L^*/K)}{deg (L/K)}$$

$$= \frac{(J_K : H^*)}{deg (L/K)}$$

$$= \frac{(J_K : K^*U)(K^*U : H^*)}{deg (L/K)}$$

$$= \frac{h_K(K^*U : H^*)}{deg (L/K)} \text{ (since } J_K/K^*U \approx \text{ the ideal class}$$
group of K)
$$= \frac{h_K(H^*U : H^*)}{deg (L/K)} \text{ (since } H^* \supseteq K^*)$$

$$= \frac{h_K(U : H^* \cap U)}{deg (L/K)} = \frac{h_K}{deg (L/K)} \frac{(U : C)}{(H^* \cap U : C)},$$

$$\Pi \cdot \mathbf{R} \times \Pi \cdot \mathbf{C}^* \times \Pi \cdot NU_{\mathbb{R}} \subseteq H^* \cap U \text{ (Lemma 2.3)} \text{ But}$$

where $C = \prod_{\mathfrak{p} \in S_{\infty,1}} \mathbf{R}_+ \times \prod_{\mathfrak{p} \in S_{\infty,2}} C^{\times} \times \prod_{\mathfrak{p} \notin S_{\infty}} NU_{\mathfrak{P}} \subseteq H^* \cap U$ (Lemma 2.3). But $(U:C) = 2^{r_1} \cdot \prod_{\mathfrak{p} \notin S_{\infty}} e_{\mathfrak{p}}.$

Further, it is easy to see that $H^* \cap U = (K^* \cap U) \cdot C$. Therefore,

$$(H^* \cap U : C) = ((K^* \cap U) \cdot C : C)$$
$$= (K^* \cap U : K^* \cap U \cap C)$$
$$= (U_K : U_{L/K}).$$

COROLLARY 2.4. Let L/K be a quadratic extension with relative discriminant $d_{L/K}$. Further, assume that K is totally real and that $d_{L/K}$ is divisible by t distinct K primes. Then

$$\deg (L^*/L) \ge h_K \cdot 2^{t-1}.$$

Proof. Let $U_K^2 = \{u^2 | u \in U_K\}$. Then $U_{L/K} \supseteq U_K^2$. Moreover, since K is totally real, Dirichlet's unit theorem implies that

$$U_K \approx \{\pm 1\} \times \mathbf{Z}^{r_1 - 1}$$

Therefore,

$$[U_K:U_{L/K}] \leq [U_K:U_K^2]$$
$$\leq 2^{r_1}$$

Thus, by Theorem 2.1,

$$\deg\left(L^*/L\right) \ge h_K \cdot 2^{t-1}.$$

122

3. Some Lemmas.

Throughout the remainder of this paper, let K be a totally real number field of narrow class number 1. Let $d \in \mathscr{S}(K)$ and let us fix a quadratic extension L of K and a relative integral basis $\{\alpha_1, \alpha_2\}$ of L over K such that $d = \Delta_{L/K}(\alpha_1, \alpha_2)$. Further, let L* denote the genus field of L/K, H^* =the admissible subgroup of J_K which corresponds to L^* .

LEMMA 3.1. Gal (L^*/K) is an abelian group of exponent 2 and therefore Gal $(L^*/K) \approx \mathbb{Z}/(2) \oplus \cdots \oplus \mathbb{Z}/(2)$,

where
$$\mathbf{Z}$$
 (2) denotes the additive group of integers modulo 2.

Proof. By class field theory,

$$Gal(L^*/K) \approx J_K/H^*$$
$$\approx J_K/K^* \cdot C, \qquad (2)$$

where $C = \prod_{\mathfrak{p} \in S_{\infty,1}} \mathbf{R}_+ \times \prod_{\mathfrak{p} \in S_{\infty,2}} \mathbf{C}^* \times \prod_{\mathfrak{p} \in S_{\infty}} NU_{\mathfrak{P}}$, and where we have applied Lemma 2.3. Let U denote the subgroup of all unit ideles of J_K . Then $J_K/K^* \cdot U$ is isomorphic to the ideal class group of K. But since K has class number 1, $J_K = K^* \cdot U$. Therefore, in order to prove the Lemma, it suffices to show that if $\alpha \in U$, then $\alpha^2 \in K^* \cdot C$. But this is obvious.

LEMMA 3.2. $L = K(\sqrt{d})$.

Proof. Since L/K is a quadratic extension and K has class number 1, $L = K(\sqrt{\mu})$, where $\mu \in \mathcal{O}_K$ is square-free. Let us show that

$$d = \mu \eta^2 \quad (\eta \in \mathcal{O}_K). \tag{3}$$

This will suffice to prove the Lemma. In order to prove (3), let us explicitly construct a relative integral basis of L/K whose discriminant is of the form $\mu \cdot \tau^2$ ($\tau \in \mathcal{O}_K$). By (1), this suffices to prove (3). Let

$$2\mathcal{O}_K = \mathfrak{p}_1^{a_1} \cdots \mathfrak{p}_t^{a_t}$$

where \mathfrak{p}_i $(1 \le i \le t)$ denotes a K-prime. Suppose that

$$\mathfrak{p}_i \mathfrak{P}_{\mu}(1 \leq i \leq s), \quad \mathfrak{p}_i \mid \mu \mathcal{O}_K \ (s+1 \leq i \leq t).$$

Let r_i $(1 \le i \le s)$ be the largest non-negative integer $\le a_i$ such that

 $\mu \equiv u_i^2 \, (\mathrm{mod} \, \mathfrak{p}_i^{2r_i}),$

123

for some K integer u_i . Then a classical result asserts that the relative discriminant $d_{L/K}$ of L over K is given by

$$d_{L/K} = \prod_{i=1}^{s} \mathfrak{p}_i^{2(a_i - r_i)} \cdot \prod_{i=s+1}^{t} \mathfrak{p}_i^{2a_i} \cdot \mu \mathcal{O}_K.$$
(4)

Further, if we choose $b \in \mathcal{O}_K$ so that

$$b \equiv u_i \pmod{\mathfrak{p}_i^{r_i}} \quad (1 \le i \le s),$$

then $b^2 \equiv \mu \pmod{\mathfrak{p}_i^{2r_i}}$ $(1 \leq i \leq s)$. Choose π_i so that $\mathfrak{p}_i = \pi_i \mathcal{O}_K$ $(1 \leq i \leq s)$, and set $\lambda = \prod_{i=1}^s \pi_i^{r_i}$. Then, by (4),

$$\alpha_1 = 1, \quad \alpha_2 = \frac{b - \sqrt{\mu}}{\lambda}$$

is an integral basis of L over K. And the relative discriminant of this basis is $\mu \cdot (4/\lambda^2)$.

4. Proof of Theorems A and B.

Let all notations be as in Section 3. By Lemma 3.1, we have

$$L^* = K(\sqrt{\alpha_1}, \cdots, \sqrt{\alpha_r})$$

for some $\alpha_1, \dots, \alpha_r \in K^*$, where $2^r = \deg(L^*/K)$. By Corollary 2.4, $r \ge t$. Further, by Lemma 3.2, we may choose $\alpha_1, \dots, \alpha_r$ to be K-discriminants. For if β_i is the relative discriminant of some relative integral basis of $K(\sqrt[r]{\alpha_1})$, then Lemma 3.2 implies that $K(\sqrt[r]{\alpha_i}) = K(\sqrt[r]{\beta_i})$. Thus, throughout, let us assume that $\alpha_1, \dots, \alpha_r$ are chosen to be K-dicsriminants. Note that none of $\alpha_1, \dots, \alpha_r$ are K-units since K has narrow class number 1. If t = 1, then d is a prime discriminant and thus we can trivially write d as a product of prime discriminants. Thus, let us assume t > 1, and let us proceed by induction on t. Since t > 1, we have r > 1. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ be the distinct finite K primes dividing d.

Reduction 1. We may assume that no α_i is divisible by all of $\mathfrak{p}_1, \dots, \mathfrak{p}_l$.

For assume that $\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_t|\alpha_1$. Then $\mathfrak{p}_1, \mathfrak{p}_2, \cdots, \mathfrak{p}_t$ all ramify in $K(\sqrt[4]{\alpha_1})$. Since deg (L/K) = 2 and L^*/L is unramified at all finite *L*-primes, we see that $K(\sqrt[4]{\alpha_1}, \sqrt[4]{\alpha_2})/K(\sqrt[4]{\alpha_1})$ is unramified. Therefore, the relative discriminant of $K(\sqrt[4]{\alpha_1}, \sqrt[4]{\alpha_2})/K$ is given by $\alpha_1^2 \mathcal{O}_K$. However, since the relative discriminant of $K(\sqrt{\alpha_2})/K$ is given by $\alpha_2 \mathcal{O}_K$, we see that the relative discriminant of $K(\sqrt{\alpha_1}, \sqrt{\alpha_2})/K$ is divisible by $\alpha_2^2 \mathcal{O}_K$. Thus, $\alpha_2 | \alpha_1$. Let $\alpha'_1 = \alpha_1 \alpha_2^{-1} \in \mathcal{O}_K$. Then $L^* = K(\sqrt{\alpha'_1}, \sqrt{\alpha_2}, \cdots, \sqrt{\alpha_r})$. Moreover, since α_2 is not a unit, and since every K-prime has ramification index at most 2 in L^*/K , we see that not all of $\mathfrak{p}_1, \cdots, \mathfrak{p}_r$ ramify in $K(\sqrt{\alpha'_1})/K$. Let α''_1 be relative discriminant of a relative integral basis of $K(\sqrt{\alpha'_1})/K$. Then $K(\sqrt{\alpha'_1}) = K(\sqrt{\alpha''_1})$ and not all of $\mathfrak{p}_1, \cdots, \mathfrak{p}_\ell$ divide α'' . Thus, $L^* = K(\sqrt{\alpha''_1}, \sqrt{\alpha_2}, \cdots, \sqrt{\alpha_r})$ and α''_1 is not divisible by all of $\mathfrak{p}_1, \cdots, \mathfrak{p}_\ell$. Repeating this construction, we may guarantee that a similar condition holds for $\alpha_2, \cdots, \alpha_r$, thus validating the reduction.

Henceforth, let us assume that the reduction has been carried out. By the induction hypothesis, α_i can be written as a product of prime *K*discriminants

$$\alpha_1 = \pi_1^{(i)} \cdot \cdot \cdot \pi_{j(i)}^{(i)} \qquad (1 \le i \le r).$$

Then

$$K(\sqrt{\pi_1^{(1)}}, \sqrt{\pi_2^{(1)}}, \cdots, \sqrt{\pi_{j(r)}^{(r)}}) = L^{**}$$

is an abelian extension of K which is unramified over L. Therefore, since we clearly have $L^{**} \supseteq L^* = K(\sqrt{\alpha_1}, \cdots, \sqrt{\alpha_r})$, the definition of L^* implies that $L^{**} = L^*$. Therefore, we have

Reduction 2. We may assume that $\alpha_1, \dots, \alpha_r$ are prime discriminants.

By Reduction 2, each α_i is divisible by exactly one K-prime and this K-prime must be one of $\mathfrak{p}_1, \dots, \mathfrak{p}_i$. Let us renumber the α_i so that

$$\mathfrak{p}_i | \alpha_i \quad (1 \leq i \leq t).$$

Let us show that

$$d = \varepsilon^2 \cdot \alpha_1 \cdot \alpha_2 \cdot \cdot \cdot \alpha_t, \qquad (*)$$

where $\varepsilon \in U_{\kappa}$. This will immediately imply that d is a product of prime discriminants.

Since $L^*/K(\sqrt{d})$ is unramified at all finite K-primes, we see that $K(\sqrt{d})$ is the largest subfield of L^* which contains K and in which all of $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are totally ramified. On the other hand, since $L^* = K(\sqrt{\alpha_1}, \dots, \sqrt{\alpha_r})$, we see that $K(\sqrt{\alpha_1} \cdots \alpha_t)$ is a quadratic extension of K, contained in L^* , in

L*, which all of $\mathfrak{p}_1, \cdots, \mathfrak{p}_t$ are totally ramified. Therefore,

$$K(\sqrt[4]{d}) = K(\sqrt[4]{\alpha_1 \cdots \alpha_t})$$
$$\implies d = \eta^2 \cdot \alpha_1 \cdots \alpha_t, \quad \eta \in K^{\times}.$$
 (5)

Since deg $(L^*/K(\sqrt[4]{d})) = 2^{r-1}$ and since L^*/L is unramified at all finite primes, we see that the relative discriminant $d_{L^*/K}$ of L^* over K is given by

$$d_{L^{*/K}} = d^{2r^{-1}} \mathcal{O}_K.$$
(6)

Set $L_0 = K(\sqrt{\alpha_1}, \dots, \sqrt{\alpha_t})$. Then, since each K-prime has ramification index at most 2 in L^*/K , we see that L^*/L_0 is unramified at all finite primes. But since the relative discriminant of $K(\sqrt{\alpha_i})/K$ is just $\alpha_i \mathcal{O}_K$, and since

$$(\alpha_i \mathcal{O}_K, \alpha_j \mathcal{O}_K) = 1 \quad (1 \le i < j \le t),$$

we see that the relative discriminant of L_0/K is given by

$$(\alpha_1 \cdot \cdot \cdot \alpha_t)^{2^{t-1}} \mathcal{O}_K.$$

Therefore, since L^*/L_0 is unramified at all finite primes,

$$d_{L^{*}/K} = [(\alpha_{1} \cdot \cdot \cdot \alpha_{t})^{2^{t-1}} \mathcal{O}_{K}]^{2^{r-t}}$$
$$= (\alpha_{1} \cdot \cdot \cdot \alpha_{t})^{2^{r-1}} \mathcal{O}_{K}.$$
(7)

Comparing (6) and (7) with (5), we see that η of (5) is a unit of \mathcal{O}_{κ} , which proves the assertion (*). This completes the proof of Theorem A.

Note also that if r > t, then the above procedure can be applied to produce several inequivalent factorizations of d as a product of prime discriminants. Thus, if r > t, the expression of d as a product of prime discriminants is not unique. If r = t, and if $d = \alpha_1 \cdots \alpha_m$ is an expression of d as a product of prime discriminants, then $K(\sqrt[r]{\alpha_1}, \cdots, \sqrt[r]{\alpha_m})/K(\sqrt[r]{d})$ is unramified at all finite primes. Therefore, $K(\sqrt[r]{\alpha_1}, \cdots, \sqrt[r]{\alpha_m}) \subseteq L^*$ and $m \le r$. But since $\alpha_1, \cdots, \alpha_m$ are prime discriminants, we see that $m \ge t$, which implies that m = r and

$$L^* = K(\sqrt{\alpha_1}, \cdot \cdot \cdot, \sqrt{\alpha_m}).$$

Therefore, $\alpha_1, \dots, \alpha_m$ are uniquely determined by the extension L/K, up to multiplication by units of \mathcal{O}_K . Thus, all factorizations of d as a product of prime discriminants are equivalent in case r = t. This completes the proof of Theorem B.

126

5. An Example.

Let K be a real quadratic field with fundamental unit ε . Then

$$U_{K} = \{\pm \varepsilon^{n} | n \in \mathbf{Z}\}.$$

Further, we have

$$\{\boldsymbol{\varepsilon}^n \mid n \in \mathbf{Z}\} \supseteq U_{L/K} \supseteq \{\boldsymbol{\varepsilon}^{2n}\} n \in \mathbf{Z}\}.$$

Moreover, a unit $\eta \in U_K$ is a local norm at all K-primes $\iff \eta$ is a (global) norm from, L, by Hasse's theorem and the fact that L/K is cyclic. Therefore, we conclude:

 $U_{L/K} = \{ \boldsymbol{\varepsilon}^n | n \in \boldsymbol{Z} \} \iff N_{L/K}(\boldsymbol{\varepsilon}) = +1 \text{ and } \boldsymbol{\varepsilon} \text{ is a norm from } L.$

In all other cases,

$$U_{L/K} = \{ \boldsymbol{\varepsilon}^{2n} | n \in \boldsymbol{Z} \}.$$

In the first case, $[U_K : U_{L/K}] = 2$, while in the second case $[U_K : U_{L/K}] = 4$. Therefore, by Theorem 2.1, we have $\deg(L^*/L) = 2^t$ in the first case and $\deg(L^*/L) = 2^{t-1}$ in the second case. Thus, we have

THEOREM 5.1. Let K be a real quadratic field of narrow class number 1, d the relative discriminant of a quadratic extension L of K, $\varepsilon =$ the fundamental unit of K. Then d can be written as a product of prime K-discriminants. If ε is not a norm from L, then all representations of d as a product of prime discriminants are equivalent. In all other cases, there exist at least two equivalent representations of d.

Bibliography

- Furuta, Y. "The Genus Field and Genus Number in Algebraic Number Fields," Nagoya Math. J. 29 (1967), pp. 281–285.
- [2] Siegel, C.L. Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961.

Department of Mathematics University of Maryland College Park, Maryland 20742