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Abstract

For any group 5 let Ab(S) ={/4|/4 is an abelian subgroup of S of maximal order}. Let G be a
Chevalley group of type Am, Bn, C, or £)„ over a finite field of characteristic p and let C/eSyl,
(G). In this paper Ab(t') is determined for all such groups.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 G 40.

Introduction

Let q =/»*, p a prime number. For an odd prime r different from p, a theorem of
Alperin (1965) shows that an r-Sylow subgroup of GL(n,q) has a unique largest
normal abelian subgroup and that no other abelian subgroup has order as great.
Goozeff (1970) considered a />-Sylow subgroup U of GL(n,q) where q is odd. He
bounded the order of an abelian subgroup of f/and showed that this bound is always
attained. Goozeff also pointed out that, if n is even, U has a unique largest abelian
subgroup. Thwaites (1972) considered a p-Sylow subgroup U of GL («,/?). He showed
that if n is even, U contains precisely one abelian subgroup of maximal rank, while
if n is odd and n > 5, U contains precisely two abelian subgroups of maximal rank.

Theorem 2.1 of this paper identifies Ab(£/) where U is a p-Sylow subgroup of
SL(n,q) and hence of GL(w,<7) with no restriction on whether q is even or odd.
If n is even |Ab(t/) | = 1; while if n is odd and n>5, |Ab(f/)| = 2. Finally if n = 3
then |Ab(C/)| =q+l. In all cases Ab(C/) contains groups which are elementary
abelian and so the abelian subgroups of maximal rank can be read from the list of
groups in Ab (U). Hence Theorem 2.1 generalizes the results of Goozeff and Thwaites.
In Sections 2-5 solutions to the problem for groups of type Bn, Cn and Dn are also
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presented and the results are arranged in order of difficulty. In Section 6 we calculate
the Thompson subgroup J(U) of U and we note that J(U) = (,A\A ^ U, A abelian
of maximal rank).

Most of the results of this paper were contained in the author's doctoral thesis which
was written under the direction of Professor Warren J. Wong at the University of
Notre Dame. The author wishes to thank Professor Wong for posing this problem
in the first place, and for his patience and encouragement during its solution. Thanks
too are owed to the Department of Mathematics at Notre Dame for its generous
support throughout.

1. Notation and terminology

The current standard references for the theory of Chevalley groups are Steinberg
(1968) and Carter (1972). In this section we will fix our notation and dwell a little
on those aspects of Chevalley groups which we will need.

F will always denote a finite field of q = p" elements where p is a prime number.
Let O be a root system for a simple finite-dimensional Lie algebra g over C. Then
<t+ will denote the set of positive roots and II = {rur2 .--,'•„} the fundamental set
relative to some ordering. The universal Chevalley group of type g over F, denoted by
g(q), is obtained from a particular representation of g over C by choosing an admissible
lattice and 'going mod-p\ Thus An(q) will mean the universal Chevalley group of
type An over F and the meaning of Bn(q), Cn(q) and Dn(q) is now clear.

Now

AJLq)&SL{n+l,q), Cn(q)^Sp(2n,q),

Bn(q) = Spin (2n + \,q) and Dn(q) ̂  Spin (2n,q)

where Spin {In +1, q) (respectively Spin (2n, q)), is the universal central extension
of Q (2n+l,q) (respectively Q (2n,q)), the commutator subgroup of O(2n+l,q)
(respectively O + (2n,q)) using the notation of Carter (1972), p.6.

Let G = g(q). Then G = (X(r)\re<S>} where the root subgroup

as an additive group. We define the subgroup U = <A'(r)|re^) + >.Now £/isa/>-Sylow
subgroup of G. We shall be concerned with Ab(£/).

Let B be the normalizer of U in G. Then B is a semi-direct product of U with H
where H is an abelian /?'-group. The parabolic subgroups of G are those subgroups
which contain B and there is a natural bijection between the family of subsets of
II and the parabolic subgroups of G.

THEOREM 1.1. Suppose G is a Chevalley group amd Pj the parabolic subgroup
naturally associated with Jc. u. Then Pj = L} Uj, a semidirect product with UJ^PJ, is
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known as the Levi decomposition of Pj. Here Uj = (X(r)\r e<£>+ — <J>j>, Lj = (H, Sj),
Sj = (X(r)\re<Pjy and <S>j is the root system with J as the fundamental set.

We next define a partial order on <I> as follows: if r,se<S> then r ^ j i f r — j is a
non-negative linear integral combination of elements of II.

EXAMPLES. In Theorem 1.1, if / = II—{slt ...,sr} then U3 = <A"(r)|r^s} for some
j such that 1 ^7<r>.

Throughout this paper, the Dynkin diagrams of the indecomposable roots systems
of type An, Bn, Cn, and Dn will be labelled as in Humphreys (1972), p. 58.

The root system O can be thought of as a subset of R" where II = {rt, r2, •.., rn) is a
basis for R". If R" is equipped with an inner product (,) we define a new form <,> on
R" as follows:

<j,s> = 2ir,s)Hs,s)

for all r, s e R", s ̂  0. A vector A e R" is called an abstract weight provided that <A, r>
is integral for all r e <I>. These vectors form a lattice A which has a basis of fundamental
dominant weights {k1,X2, --^K) for which (A^rj} = dt].

A dominant weight is any non-negative linear integral combination of the Xu

l^i^n. Denote by A + the set of all dominant weights. For each Ae A + there is
(to within isomorphism) exactly one irreducible g-module V{X) over C whose highest
weight is X and this weight occurs with multiplicity 1. By choosing an admissible lattice
and 'going mod-/>' we construct a g^-module over F which we denote by V(g, n,X)
where n is the rank of g.

2. The solution for An(q), any q, and Cn(q), q odd

THEOREM 2.1.

(a) LetG = A2n+l(q)andB = <X(r)\r^rn+lyThenAb(U) = {B}and\B\ =<7<" + 1>\
(b) LetG = A2n(q), B(l) = <JT(r)|/•>/•„> am/5(2) - <X(r)\r>rn+1). Then
(i) if n>l, Ab(U) = {B(l),B(2)};

(ii) ifn = 1, Ab(t/) = {B(l),B(2)tB(&)\aeF*},
where B(q) = <ix(rl,t)x(r2,at), X^i+r^teFy. Further, any element of Ab(U) has
order ^ ( " + 1 ) .

PROOF. We will prove only (Jb) from which the method of proving (a) will be quite
apparent. We proceed by induction on n.

Consider n = \. Then U= <Ar(r1), X(r2), X(ri+r2)>. If ^ e A b ( t / ) then clearly
Z{U) = X{rx+r2)^A. Now
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and

if II > 2

= {B1(l),B1(2),B1(a)\aeF*} if « = 2,

Cv(x(ruat)x(r2,t)) = <x(ruas)x(r2,s), X(ri+r2)\seF> if

Gathering these pieces of information together and noting that these centralizers
are abelian we get part (ii) of (b).

We now assume the result is true for any integer r where 1 =$ r < n. Let P} be the
parabolic subgroup of G — A2n(q) associated with J = TL—{rur2^. Then

and

Further, [£/,, £/,] = X(r0) = Z(Uj) where r0 = rt + r2 +... + rln is the highest root.
From now on let V = Uj. Let t/t = <X(r)\r e O/ >. Then U1 e Sylp (S,) and by induc-
tion.

where

and

B2(a) = <x(r

LEMMA 2.2. // CeAb(K), then \C\ = q2n.

PROOF. Let K = {r e O+1 r # r0, r ̂  r t or r ̂  r2n} and let' be the natural epimorphism
of V on V\Z(V) = V. Then V is abelian since Z(V) = [F, V]. Now K' can be
made into a vector space over F with basis {x'(r, l)\reK}by defining

tx'(r, 1) + ux'(s, 1) = x'(r, f) x'(a, u)
for all r,seK, t,usF.

Moreover it is even possible to equip V with an alternating bilinear form (,) as
follows:

x(ro,(vi, i>2')) = [vuv2]

for all Vi, v2 e V. Note this definition is independent of the choices of the preimages
vt, v2 in V since the kernel o f =Z(V) = [V, V]. The form is non-degenerate since
(vi, v') = 0 for all v' e V implies [J;^ p] = 1 for all ve V which implies vy eZ(V) and
finally that vi = 0.

It is clear that a subgroup W of K is abelian if and only if ( W)' is contained in a
totally isotropic subspace of V. The maximal dimension of a totally isotropic subspace
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of K' = dimK'/2 = 2n - l . Therefore W abelian implies that |W'| <^2"-1 and
hence | W\ ^q2n. In fact iXir^r^r^ is an abelian subgroup of V of order q2n. This
completes the proof of Lemma 2.2.

Let

and

LEMMA 2.3.

(a) K,(i)< U,i= 1,2.
(b) F,(/)eAb(K) and hence CV(K,(/)) = F,(j), i = 1,2.
(c) Cv.(fl,(/)) = (K1(/))',/=1,2.
(d) [*,(/), K,(/)] = 1 and 5(0 = £,(/) K,(i), i = 1,2.

PROOF.

(a) This follows from Chevalley's commutator formula.
(b) K,(0 is abelian, |K,(i)| = ?2" and so K^OeAbCK) by Lemma 2.2. Hence

Cv(F,(0)=K,(/) , /=l ,2.
(c) This follows by inspection.
(d) This follows from the commutator formula and the definitions of B(i), 5,(0

and K,(i),i = 1,2.
This completes the proof of Lemma 2.3.

Let q> be the natural epimorphism of U on U/V^Ul, and let AeAb(U). Then
|/4|^9»<»+')= |B(/)|, i = l , 2 . Further, (A)q> = A, ^ t/, and M| = |/4,| |/4nK|.
Therefore

| f l ( / ) | ^ | = 1/1,1 MnK|<|fi,(i)|?2-= |B,(i)| |K,(i)| = |5(/)|, / = 1,2,

making use of Lemmas 2.2 and 2.3. Hence Ax eAb(C/,)and,4nKeAb(K). Calling
on our induction hypothesis Ax eAb(t/t) means that A, = Bt(l) or J5l(2) if n>2
and ^ , = fi,(l) or 5,(2) or 5,(a) if n = 2.

We consider the case « = 2 and At = B2(a) for some aeF*. Clearly

An easy calculation gives CV(B\ fa)) = <•*''('• i + r2 + r3)> X'(r2 + r3 + r4)>. This implies
|(/4nK)'| <<72 and hence |/<nK| <^3. This contradicts AnV eAb( V) and so we have
ruled out the case A{ = B{(a) for some aeF.* Therefore Ax = B,(\) or B,(2) in all
cases.

We may suppose that At = fl,(l). Then A^B^l) V. Note that fl,(l)nK= 1.
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Let veAnV, aeA. Then a = Zwt where beB^l) and Vi e V. Now

1 = [a, P] = [A, »]•>[»!,»]•
Hence [b,v\H eZ(F) = [F, K] and hence [i,»]eZ(F).

Now since At = 2?i(l), given any beB^l) there exists aeA such that a = bw for
some weF. Therefore [51(l),t;]<Z(F) and so D'eCv.(5i(l)). By Lemma 2.3(c)
ve Vt(l) and so AnV^ V^l). Since |^nK| = | ^(1)1 we get equality.

Again let aeA, a = bvx where beBt(l) andt^e Fandletr>e,4nK= K^l). Then

since [Bl(l),V1(l)] = I by Lemma 2.3(d). Therefore », 6^ (^ (1 ) ) = ^(1) by
Lemma 2.3(b). We have proved A^B^l) V^\) = B(l).\A\ > \B(l)\ gives equality.
This completes the proof of Theorem 2.1.

NOTE 2.4. Two techniques in this proof will be used again and again. Firstly J
will always be chosen so that [ U}, Uj] — X(r0) =S Z (Uj) where r0 is the highest root and
Z{Uj) is the direct product of root subgroups. In this way by putting a non-degenerate
alternating form on UJ/Z(UJ) we will always be able to get an exact bound on the
elements of Ab(£/,). Secondly, whenever we have a situtaion where AeAb(U), we
have identified A t and AnUj, and we can compute that AnUje Ab (Uj), [AuAnUj]
= 1 and that the centralizer of At in Uj is (AnUj)' where ' maps U} naturally onto
UjlX(r0), then we shall be able to prove that A = Ax x(AnUj) exactly as we did
towards the end of the above proof.

THEOREM 2.5. Let G = Cn(q) where n^2 andq is odd. Let B = <Ar(r)|r^rB>. Then
Ab(C/) = {B} and \B\ =9»<«+»>/2_

PROOF. The proof is by induction on n. If n = 2,

B = <X(r2), X(ri+ra), JT(2r, +r2)>
and |B\ = q3. In Wong (1969) it is established that in PSp (4,q), q odd, and hence in
C2(q), U contains a unique largest abelian subgroup of order q3. Hence B is this sub-
group and the result is true for n = 2.

We now assume the result for any integer r where 2 < r < n. Let Pj be the parabolic
subgroup of G = Cn(q) associated with ^ n - j r j . Then 5, = iX(r)\reOj}^
C.-&), and C/, = <*(r)|r^r,). Further, [Uj, Uj] = X(r0) = Z(Uj) where r0 =
2ri+2r2 + ...+2rn_1+rn is the highest root. Note that if q is even [UJ,UJ] = 1.
From now on let V = £/,.

Let Ul =<A'(r)|re«D+>. Then UleSylp(SJ) and by induction Ab(i/1) = {51}
where 5 t = <X(r)\re<!> + , r^rn}. Finally let Vt = <X(r) r>rt+r2 +...+rn>. Then
using the techniques of Theorem 2.1 one forces, for any AeAb(U), that Ax = B^
and AnV= Kt and finally that A = BXV^=B. Hence Theorem 2.5.

What about Cn(q), q even ? This will be attended to in Section 4.
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3. The solution for Dn(q)

THEOREM 3.1. Let G = D^q). Then AeAb(U) implies \A\ =q6. Further,
(a) ifq is odd, Ab(f/) = {BUB2,B3} where Bl = (X(r)\r>riX B2 = <X(r)\r>r3>

(b) ifq is even andq>4, Ab(U) = {B(\,a), B(2,b), B(3,c)\a,b,ceF} where

5(1,a) = <,x(r1,ti)x(r3,ati), x(r1+r2,2)x(r2+r3,at2), x(r1+r2 + u,t3)

x{r2 + r3 + rA,at3), Xir^r^r^^ + r^ t,eF>

and B(2, c) and B(3, c) are defined in a similar fashion;
(c) if q = 2, Ab(C/) is as in (b) with one additional element, namely A* which is

defined in Lemma 3.10.

THEOREM 3.2. Let G = Dn(q) where n> 5. Then A eAb(f/) implies \A\ = g»<»-i>/2.
Further,

(a) ifqisodd,Ab(U) = {BuB2)whereBl = <X(r)\r>rn_l>andB2 =
(b) ifq is even, Ab(f/) = {B2,B{\,a)\aeF} where B2 is as in (a) and

where f, = ru f2 = r2, ...,fB_2 = rn_2, rn_1 = rB,fn — /•„_, and - is extended by

linearity to O.

Before we attempt the proofs of Theorems 3.1 and 3.2 we establish some notation
for this section and we prove some general results. Let Pj be the parabolic subgroup
of G associated with / = Tl—{r2}. Then, if necessary, by Barry (1977), Theorem 3.2
we have Sj = MxN where M = <X(rt),Xi-rJy^A^q)and N = <.X(r)\re<bK}^
Dn_2(q)wheKK = I I - { r ^ } A l s o Uj = (X{r)\r>r2y and [[/,, t/,] = X(r0) = Z(Uj)
where r0 = r1+2r2 + ... +2rn_2 + rn_t+ rn is the highest root. From now on let
V=Uj. MxN acts on Vby right conjugation and by Barry (1977), Theorem 3.2
we have

V/[V, V]^V(A, MO® W as an Mx TV-module
and

V/[V, K]s W® W as an Af-module,

where W= V(D,n-2,Xt) can be identified with <.X(r)\r >r2, r^r^.
LetX=X(ri) and Y = <X(r)\re<S>+

Ky. ThenA'x Y eSylp(M x N) and U = XYV.
Let <p be the natural epimorphism of U on U/V and ' that of V on V/[V, V].

LEMMA 3.3. Let xeXandye Y.Let{e,f) beabasisof V(A, l^^such that ex = e
and fx = /+ae. Then

(1) // x±\,a±Q; further, e®u+f(g>veCv, (xy) if and only if ueV.trw(y-\)2

and v = —u(y—l)/a where u,ve W and so dimCy.(xy) = dimker „,(>>— I)2.
(2) e®u +f<g>v e Cv.{y) if and only if u,ve Cw(y).

3
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PROOF.

(1) V(A, 1, At) is the natural representation for A(q) s SL (2, q) and hence is faithful.
Therefore if x # 1, a # 0.

Let e®u+f®veCv.(xy) where x+\. Then

e®u+f®v = (e®u+f®v)xy.

= e®uy+(f+ae)(B)vy

= e®(uy+avy)+f®vy.

Uniqueness of expression gives vy — v and u = uy+avy. Therefore v(y—1) = 0
and v = —u(y— \)ja. So 0 = v(y— 1) = — u(y— l)2/a gives us that uekerw(y— I)2.
The result in the other direction is trivial. Since u determines v and ueker w(y— I)2

we have dimCv(xy) = d imker^j— I)2.
(2) Trivial.

We record

LEMMA 3.4. / / CeAb(F) then \C\ = q2a~3.

REMARK 3.5. Note that V= Vr V2 where Kt = <Ar(r)|r^r,+r2>At/ and V2 =
<A'(r)|r>r2, r^r^}. Let xeX, ye Yand vteVt, i= 1,2. Then

[xy,v1v2\ = [x,v2f [x^!]"*" [y,v2] [y^^

= [x,v2Y[y,v2][y,v1Y>

since [x,vt] = 1. If [xy,ViV2]eX(r0) then [j,v2] = 1 and hence

[xy, vt v2] = [x,t;2] [ j . f ! ] ^

since xy = x and v\ = v2.

PROOF OF THEOREM. 3.1. This will follow in a series of lemmas.

LEMMA 3.6. Let x = x(r1 ( / ,) , y = x{r3,atx), tt #0 . Then

Cy(xy) =

<x'(r1+r2,dl) x'(r2 + r3, -Af(r3,r1+/-2)Ar(r1,r2+r3)ad1),

i^2 + r3+rA)ad2),

PROOF. Let v,v2 be an element of the preimage of Cv.(xy) in V where vte Vh

i = 1,2. Then v2 = x(r2 + r3,ul)x(r2 + r3 + r4.,u2) by Remark 3.5.
Suppose
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We are ignoring any component of Z(V) in »,. Then

[x,v2] = [*(/-!,fj), xirz + r^U!) x(

3, N(rur2+r3)t1u1)

using Chevalley's commutator formula. Also

A, N(r3,rx +r2 + r4)atl d3)

3, N{r3,rl+r2)atldl)

again by Chevalley's formula.

Now [y,i;,]"* = [y,Vj]. Therefore

[xy,vlv2] = x(rl+r2 + r3, N{rur2 + r3)tl ux +N(r3,rt +r2)at1dl)

Therefore [xy,vY v2]eX(r0) implies that

«, = - N(rl,r2 + r3)N(r3,r1 +r2)ad,

and

u2= -N(r1,r2 + r3 + rA) N(r3,rl +r2 + rA) ad3

since N(r, s) = ± 1 in these cases. This completes the proof of Lemma 3.6.

LEMMA 3.7. Let x = ^(r , , / , ) , y = x(r3, t3)x{rA,at3), /,, t3andaJ=0. If q is odd then

/ / q is even then

Cv.(xy) = (x'{ri+r2,dl)x'(r2 + r3, ?3 /f ' dl)x'(

Here it should be noted that we are choosing N(r,s) = N(r,s) where r, = r,,
f2 = r2, r3 = r4 and r4 = r3. That we can so choose follows from Steinberg (1959),
Lemma 3.2. :.

PROOF. Let r, v2 be an element of the preimage of Cv\xy) in V where v, e Vt,
/ = 1 , 2 . As before [.F,tf2]=l an<i s o vi — x(r1+r3,Ui)x(r2 + rA., — N(r
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Since we are choosing N(f, s) = N(r, s) we get

N(U, r2 + r3) N(r3, r2 + r4) = 1
and so

v2 = x(r2+r3,

Computing we get

[x,v2] = x(rl+r2+

Ar('"1,'-2 + r4)(-flr1M1)) x(ry+r2 + r3, N(rl,r2+r3)tlul)z

where zeZ(V) = X(r0). In similar fashion

[y, vj] = x(rx + r2 + r3 + r4, N(r3, r t + r2 + r4) f3 </3

+ N(r3, rx + r2) N(rt +r2 + r3, r4) at\dx+ N(rA, rt + r2 + r3) at3 d2)

x x(rv + r2 + r3, N(r3, r, + r2) dv t3)x(rt +r2 + r4, N(u, rt + r2) dr at3).

Now [y^i]"! = [y,vt]modZ(V). Therefore

[xy^iV^modZiV) =x(r1+r2+r3> A^(r1,r2+r3)?1M1 + iV('"3,''i+'>2)rfi t3)

xx(rt+r2 + r4) N(r1,r2+u)(-at1u1) + N(rA,rx + r2)dtat3)

+, rt+ri + rj at3 d2 + N(r3, rx + r2) N(r1 +r2+r3, r4) at |rf,).

Therefore [xy,vt v2]eZ(V) implies that

(a) «! = -tf(r1,r2+r3)tf(r3,rI+r2)/3f1-1«/I,

(b) Mt = A (̂rj, r2 + r4) Mr4, ri + r2) t3 q
1 d1 and

(c) u2= -N(rur2 + r3 + rt)t;l(N(r3,rl+r2 + ri)t3d3

+ N{rt, rl+r2 + r3) at3 d2 + N(r3,ri+ r2) N(rt +r2 + r3, r4) at | dt).

If q is odd then (a) and (b) force dt = «i = 0 since Mri>r2+r3) = Mri,
and N(r3,ri +r2) = Mr*.ri + r2). In this case

«2 = - M/i. r2 + r3 + r4) Mr3. rv + r2 + r4) r3 /i" H

If ^ is even, since Mr, J) = 1 in all cases, (a) and (b) are the same equation, namely
u! = t31J"l di, and (c) becomes u2 = t^l{t3d3+at3d2-\-at\dl). This completes the
proof of Lemma 3.7.

Let A e Ab(t/). Then \A\^q6 since C/ contains abelian groups of this order. Also
(A)tp = A^XxY and M| = \At\ \Ac\V\. Note that /4nK>Z(K) = X(r0) by the
maximality of A since ^(roJ^ZCt/). Suppose a^A^ and veAnV. Then
for some pt e K. Then

1 = [«!»!,»] = [ai,»]B'[Pi,i'].
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Therefore [auv]eZ(V) = [V, V] and so [AuAnV]^ Z(V). It follows that

(AnV)' ^CyiAi).

Now CK.(y4j) is a vector space over F and so |C^-(^4x)| = q* for some integer />() .

LEMMA 3.8. Let xeX and^e Y with x,yr&\. Then xy and y^ cannot both be
elements of Ay.

PROOF. AS observed

V/[V, V]=V'^ V(A, 1,A)® W as an Mx //-module

S W<g> W as an JV-module.

Choose c,/as in Lemma 3.3. Nowe®u+f®v e Cv.(xy) if and only if u e ker^ ( j — I)2

and v = —u(y—\)la, and e<g>u+f<g>veCy.(y) if and only if u,veCw(j). Therefore
e® u +/<g) v e Cy(xy)n Cv .(y) implies that u e ker (y — I )2 n C ^ ) and i> = - M ^ - 1 )/a.
Therefore xy and y&A^ implies dimCv.(Aj)^dimCw(y). Identifying W with

we see easily that y^\ gives dimCH,(^) = 2. Therefore dim
2. Since ( ^ n F ) ' sj CK-(^i) it follows that \Ar\ V\ <q3. Now \A\^q6 and so

Mx| ^^3 . Recall that Y = Z(r3) x X{rA) and so | Y\ = q2. Therefore A = XxY.
Now the preimage in V of Cv>{Xx Y) is <Ar(r1+r2 + r 3 +r 4 ) , X(r0)}. Therefore

\AnV\ ^q2 and so \A\ = \At\ \Ar\V\ ^qs which is a contradiction. With this contra-
diction the proof of Lemma 3.8 is completed.

LEMMA 3.9. Ifq > 3, b = x(rt, tt) x(r3, t2) x(rA, t3), tut2,t3^0 cannot be an element
of A , .

PROOF. Suppose b e A t .

Observation (a). If x(r1,d1)z(r3,d2)x{rA,d3)eAi where at least one of the dt

is zero then all of the d, are zero or we get a contradiction by the symmetry of ru r3

and rA and Lemma 3.8.
Observation (b). If x(r1,dl)x(r3,d2)x(r4,d3)eA1 such that d^ = tx then either

d2 = t2 and d3 = t3 or we get a contradiction again by Lemma 3.8. By the symmetry
of ru r3 and r4 we could replace the condition dt = tt by rf2 = t2 or rf3 = ?3. And so
our conclusion now reads: if dt = tt for any i then rf, = tt for all /, 1 sgis?3.

Observations (a) and (b) force \At \ ^q and force elements of Ax -{1} to be of the
form x{rud)x{r3,t)xir^u) where d,t,u^0. If |v4x| <q, then since by Lemma 3.4
|/4nK| <^5 we get \A\ <q6 which is a contradiction. Hence \At\ =q.

If q is odd we are done since by Lemma 3.7 we get that |CK.(6)| = q3 which gives
| ^ n F | < 9 * and so |.<4|<<75—a contradiction. Suppose q is even and q^4. Since

we can choose two distinct non-identity elements of Al3 Xj and x2 where
and x2 = x(r1,Z»1)x(r3,fe3)x(r4,a1Z>3). If Cv.(xi)#
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Cy.(x2) then |CK<04i)| ^q3 by Lemma 3.7 and so | / 4nF | ^q* which gives the contra-
diction \A\ ^qs. Hence Cv-{xi) — Cv.(x2).

Using the notation of Lemma 3.7 this implies (i) ux = (c3cl~
l)dl = (b3bl~

1)d1

for all d1eF and (ii) u2 = (c3cl~
1) (d3+adx c3 + ad2) = (63 b~[!) (d3+ax dx b3+ax d2)

for all dud2,d3 sF. (i) implies c3cXl = b3 b^l which in conjunction with (ii) implies
adi c3+ad2 = av dx b3+a1 d2 for all dud2 eF. This is a contradiction which we see
as follows. If a = at take dt = 1 and d2 = 0 to get c3 = b3 (recall xt +x2 implies
c3¥

ib3); if a^ax take dt = 0 and rf2 = 1 to get a = flj. This completes the proof of
Lemma 3.9.

LEMMA 3.10. / / |F| = 2 and x = x(r,, 1) x(r3,1) x(r4,1) e A, /Aen the only possibility
for A is

A*={xv, Vt\vex(r2 + r3 + u,l)Vi}
where

Vi = (x(rx+r2, \)x(r2 + r3, \)x{r2 + r4r, I)x(r2 + r3 + r^, 1),

^ I +r2+r3,dt) x(rx +r2+ r4, d2) x(r2 + r3 + r4, dx + d2),

) , X(ro)\dud2sF>.

PROOF. AS in Lemma 3.9 l ^ l = q — 2 in this case and so Ax = {\,x}. Let

J i =x(r1+r
and

3,d1)x(rl+r2 + r4, d2) x(r2 + r3+ r4, dx+d2).

Using Lemma 3.7 one gets that the preimage Vx of CyiA^ in F equals

<yi,yz{dud2\ X(ri+ra + r3 + r4), X(ro)\d1,d2eF}.

One checks that Vx is abelian.
Nowl^il =2and| /4 |^26 forces | An V\ >25. But^nK^Kj andso^nK= Vy.

Now [^c,ji] = x(r4,1), [jc,^2(d,,rf2)] = 1 and [x, W] = 1, where
Jf = A-(r, + r2 + r3 + r4) x X(r0).

LetaeA — (y4nK). Then a = xt;1forsomei;1e V. Now [a, AnV] = 1 forces [y,,^,] =
Ar0,1), [DL^rf,,^)] = 1 and [vu W] = 1. Hence p, e C ^ ^ . ^ K ^ I ^ . ^ e F ) )
which turns out to be <Fi, x{r2 + r3 + rA, 1)>. Now [^i.ji] = x(r0,1) gives

w^^r j+ra + r^ 1)K,.

So we have that A is a subset of ^*. One computes that A* is an abelian group of
order 26 and so A = A*. This completes the proof of Lemma 3.10.

LEMMA 3.11. //x(r1,O*(''3>a'i)e^i> h¥=0 then At = (x(rut)x(r3,at)\teFy.

PROOF, (a) Suppose a = 0. Then by Lemma 3.8 and the symmetry of r,, r3 and r4

we get that At contains no non-identity elements of the form xir3,bl)xirA,b2) or
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x(rl,cl)x{rA,c2), c 2 /0 , or x(rl,d1)x(r3,d2)x(r4.,d3),di=£0, all 1. (b) Suppose a#0.
Then A t contains no non-identity elements of the form

xir^bjxir^bz) or xir^c^xir^c^) or x(rudl)x(r3,d2)x(r4,d3),

again by Lemma 3.8 and the symmetry of ru r3 and rA. (a) and (b) force
Ai^X(ri)xX(r3) and so I^IsS^2. Note we know {A^^q since \AnV\^q5 and
\A\>q6.

Suppose Xi = xir^tjxir^ati) and JC2 = •*('ii>^i)*(r3>fli^i) De non-identity
elements of Ax with a + ax. Then Lemma 3.6 gives us that

dim CviAi) < dim Cv. ((xu x2}) «S 2.

Therefore |>4nK|^^3 and so |/4|<95—a contradiction. Hence a must equal ax

and this combined with \Ax\>q forces the desired conclusion. This completes
the proof of Lemma 3.11.

One notes that by the symmetry of r,, r3 and r4 we might just as well consider
elements of the formx(r3, t^)x(rA,atv) andx(r4, ^ i ) ^ ! . ^ ! ) , /i^O, in Lemma 3.11
and we would get the appropriate conclusion.

LEMMA 3.12. AeAb(U) implies \A\ =q6.

PROOF. Lemmas 3.10 and 3.11 tell us that the possibilities for At are

<ix(rut)x(r3,alt)\teF>, <x(r3,t)x(u,a2t)\teFy, ix(u,t)x{rua3t)\teF},

where au a2 and a3 range overF, and (x{ri,i)x(r3,i)x(rtr,t}\\eF'y, this last one
being possible only when |F| = 2. Now each of these possibilities has order q. Since
\Ar\V\ ^qs it follows that \A\ ̂ q6. Since we know \A\^q6 we get that \A\ = q6.
Hence Lemma 3.12.

LEMMA 3.13. If q is odd the possibilities

Al=(,x(rl,t)x(r3,at)\teFy or <x(r3,t) x(u,at)\teF'> or

ix(rll,t)x{ruat)\t€F'}

do not occur when a#0.

PROOF. Suppose Ax = (x(ry,i)x(r3,ai)\teF} for some a / 0 . Lemma 3.6 tells us
that

<x'(r1+r2,di)x'{r2 + r3, -N(r3,rl+r2)N(rl,r2

x'fri +r2 + rA,d2)x'(r2 + r3 + rA, -N(r3,rl+r2 + rA)N(ri,r2 + r3 + rA)ad2),
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To simplify calculations choose N(f,s) = N(r,s) where now fl=r3, f2 = r2,
r3 = rt and r4 = f 4. Steinberg (1959), Lemma 3.2 again justifies the legitimacy of this
procedure. Then

Cy^Ai) = <x'(rl+r2,dl)x'(r2 + r3, -adl),x'(rl + r2 + u,d2)x'(r2 + r3 + rli, -ad2),

Now
[x(rt + r2, dj x{r2 + r3, -ady), x(rt + r2 + r4, d2) x(r2 + r3 + r4, -ad2)]

= [x(rt + r2, dt), x(r2 + r3+ rA, - ad2)] [x(r2 + 3,-ad1), x(rt +r2 + r4, d2)]

= x(r0, [N(rt + r2, r2 + r3 + r4) + N(r2 + r3,r1 + r2 + r4)] ( - ad,, d2)).
Since

2, r2 + r3 + r4) = N(rx+r2, r2 + r3 + r4) = N{r2 + r3,rl+r2 + r4)

these elements commute if and only if q is even.
Therefore, if q is odd, then An V is properly contained in the preimage of CV-(J4,)

in V. This means that \Ar\V\<qs and as a consequence \A\ <q6—a contradiction.
Thus A, = (x(r1,t)x(r3,at)\teF} is not a possibility if ̂  is odd anda#0. The two
other configurations for A^ are disposed of in like manner. This completes the proof
of Lemma 3.13.

We are ready now to wind up the proof of Theorem 3.1. If q = 2 and AY =
(x{rut)x(r3,t)x(rA,t)\teFy then by Lemma 3.10 A = A*. The other possibilities
when q is even are A^ = (_x(rlyt)xx(r3,at)\teFy for some aeF and the r3—r4 and
rA — rt mixtures. Suppose^! = (x(rl,t)x(r3,at)\teFy.OnechecksthatthepTeim&ge
Vi of Cy^Ai) in V is abelian of order q5. Now An K< Ft and in fact An V = Ft

by order considerations. One has that AnVe Ab (V), [A j , An V] = 1 and so we prove
that A = Atx(AnV) which turns out to be 5(1, a). The other remaining possibilities
for Al are handled in similar fashion.

If 9 is odd ,4! is one of Xir^X^oxXir^.llAy = XirJltenA = fi^if^x = X(r3)
then A = B2 finally if A = X(rA) then A = B3. This completes the proof of Theorem
3.1.

PROOF OF THEOREM 3.2. We start with

LEMMA 3.14. Let yeY, y^ 1. Then dim Cw(y) «S In - 6.

PROOF. Recall W = V(D,n — 2, X,) as an N-module. Then N is represented on W
as a subgroup of the orthogonal group O+(2n—4,q) using the notation of Carter
(1972), p. 6, Y being represented faithfully. Since N = [N, N], N maps into (actually
onto) Q(2H-4 ,<7)= [0 + (2«-4,g), O+(2n-4,^f)]. However, Q(2n-4,^) contains
no transvections and hence our lemma follows immediately.

The proof is by induction on n. Let A eAb(i/). First we consider the case n = 5.
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Then \A\^q10 since abelian subgroups of U of this order exist. As usual (A)q> =
A^Xx Y and \A\ = 1^1 \AnV\. Now N^A3(q) and so by Theorem 2.1(a) Y
hasauniquelargestabeliansubgroup<A'(r)|r ^ r3, r^r2y of order q*. Hence \Ai\ ^q5.
Now by Lemma 3.4 we have | ,4nF | ^<77. Hence \A\ ^q12.

LEMMA 3.15. Let xeX, yeY. Then no element of the form xy occurs in At where
x^l. Hence A^ Y.

PROOF. Suppose there exists xysA^ with x # 1. Note that | A11 ^ q3 since | A n V\ < q1.
We claim that there exists y^ e YnA with j>i TM . Suppose not. Then all elements of
A! are of the form x2 y2 where x2 = 1 implies y2 = 1. If there exists xteX such that
xty3 and xiyAeAl with J 3 # j 4 then j t = y3y^1eAl which is a contradiction.
If there exists no such x, then | ^ , | <# which is another contradiction. Our claim
holds.

So xy and yl e A,. Now CK.(/4,) ^ C K - C ^ O C K - C J ! ) . Choose {e,/} as in Lemma 3.3.
Then e(g)M+/(g)i;eCV.(;c}')nCV"O;i) implies ue)ntTw{y—\)2r^Cw(y1) and r =
— u(y— \)ja. Hence dimCK(y4,)^dimCH/(^i)^4 by Lemma 3.14. Therefore
|^4nK| ^q5. This forces \Ar\ ~£q5 which in turn forces A^ to be the unique largest
abelian subgroup of X x Y of order q5, namely X x <A'(r)|r ^ r3, r # r2>. Easy calcula-
tion gives OV-O^) = ^ ' ( r i + r2 + ^3 + r4). Hence |,4nK| 4,q2 and |y4| ^q1—a contra-
diction. This completes the proof of Lemma 3.15.

LEMMA 3.16. \A^ =q3. If q is even then

Ax = <x(rA,t)x(r5,at), x(r3 + r

for some fixed aeF or A = <A"(r5), X(r3 + r5), X(r3 + r4 + rs)). If q is odd then A t is
one of the two choices which remain when a = 0.

PROOF. AX ^ Y by Theorem 3.15. This implies \AX\ ^q* since Y has a unique
largest abelian subgroup of order q*.

Suppose dimCH,(^1)^2. Then dimCK.(^!) = 2dimCH,(/i1) ^ 4 which gives
\AnV\ i?g6and \A\ ^q9—a contradiction. Hence dim CW(A) ^ 3. Identifying Wwith
<Ar(r)|r>r2, r^r^ we get that A^ x CW(AX) is an abelian subgroup contained in
P = <AXr)|re«> + >whereZ. = II -{r^.NowPESylpCG,) where Gx = <*(/•) |/-e<DL>^
DJ4)- Hence Theorem 3.1 implies \At x C^A^] ^q6.

Therefore I ^ J I ^ ^ 3 . But we know already that {A^^-q3. Hence l^^ = q3 and
\Ai x Cw(Ai)\ = q6, that is ,A t x Cw-(/41)eAb(/>). Checking through the elements of
Ab(P) we find that Ax is as desired. This concludes the proof of Lemma 3.16.

For all A x in Lemma 3.16 we find that the preimage £>, of CV(A,) in Kis an element
of Ab(F) with [Ai,Dl]= 1. Order considerations force AnV = Dt and we prove

https://doi.org/10.1017/S1446788700016645 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016645


74 Michael J. J. Barry [16]

that A = A1D1\n our usual fashion. This settles Theorem 3.2 for n = 5. Assume now
that Theorem 3.2 is true for any integer k such that 5^k<n and we deal with
Ue Sylp Dn(q). Let A e Ab ([/). Then |̂ 4| >^"<"~1>/2 since abelian groups of this order
exist in U. As usual (A)<p = A^Xx Y and \A\ = |/4j| |,4nK|. By Lemma 3.4
\AnV\^q2"-3.ULeAb(Y)then\L\ =?("-2)<"-3)/2byourinductionhypothesisand
Theorem 3.1. Therefore \A^ ^(»-2x«-3>/2+i a nd \A\ ^n-Di

LEMMA 3.17. Let xeX,yeY. Then no element of the form xy occurs in At where
x=£l. Hence A^ Y.

PROOF. Suppose xyeA^ where x# 1. Exactly the same argument as was used in
Lemma 3.15 forces |v4nK| ^9

2"-5 . Hence M| ^9("-2 ) ( n - 3 ) / 2 + 2n-4 = 9"'"-1>/2-1—a
contradiction. Hence Lemma 3.17.

LEMMA 3. 18. A1eAb(Y).IfqisoddthenAl isoneofCuC2 whereC^ = (X(r)\r>
i"n-i, r^fi) and C2 = (X(r)\r^rn, r^r2}. If q is even then Ax = C2or A = C(l,a)
for some aeF where

C(l,a) = (x(r,t)x(f,at), X(s)\r^rn_u r%rn_2 + rn_!+rn, s>rn_2 + rn^i+rn,
r,s%r2, teF>.

PROOF. Lemma 3.17 implies At < Y and so induction with Theorem 3.1 forces
Mil ^^("-2)("-3)/2. Order considerations force equality and so Ax eAb(K). Induc-
tion again with Theorem 3.1 gives us Ab(F). The list is not exclusive enough for
our purposes and we eliminate the undesirable options by checking that in each case
dimCw(Ai)<n — 2. This implies that ICV-O )̂! <q2n~*. Since CV-O^isanF-vector
space iCyiAi)]^2--5. Hence \AnV\^q2"-* and \A\ <9<«-2)<»-3)/2+2»-4 =

^Kn-i)/2-i—a contradiction. This completes the proof of Lemma 3.18.
For all Ai in the conclusion of Lemma 3.18 the preimage Dt of Cy(At) in V is

an element of Ab(K) with [A1,D1] = 1. Order considerations force AnV= Dt

and we prove that A = Ax Dl in our usual fashion. For At = C2 then A = B2 and
for Ai = C(l,a) then A = B(l,a). This completes the proof of Theorem 3.2.

4. The solution for Bn(q), q even

With this section the lacuna in Section 2 can be filled thanks to the fact that
Bn(q)^Cn(q) if q is even. Let q — 2m, m^ 1.

THEOREM 4.1. Let G = B2{q). Let
A, = <*(/-!), X(rx +r2), X{r, +2r2)>,
A2 = <A-(r2), X(rt + r2), X(r, + 2r2)>,
A3 = <*(/•„t)x(r2,t), X(ri +r2), X(ri+2r2)y.
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Then
(a) ifq = 2,Ab(U) = {AuA2,A3},
(b)ifq>2,Ab(U) = {A1,A2).

THEOREM. 4.2. Let G = Bn(q) with n^3and let B = (X(r)\r>rny. Then Ab(£/) =
{B}and\B\ = ^e+n/2.

COROLLARY4.3. Let G = Cn(q) withn^landletB = (,X(r)\r^rn>. ThenAb(U) =
{B}and\B\ =9"<« + »)/2_

PROOF OF THEOREM. 4.1. Since^ is even Z(U) = <A'(r1 + r2), X{rx + 2r2)}. Therefore
A e Ab (U) implies that Z(U) < A. It follows that in order to pin down the elements of
Ab(t/) we need only inspect Cv(x) where x = x(rl,di), x(r2,d2) or x(rltd^x(r2, d2),
dltd2*0. Now Cv(x(rl,dl)) =Ax and Cv{.x(r2,d2)) = A2.

Finally let x(rite,)x(r2,e2)eCv(x(rudx)x{r2,d2)). Then

= x(fi + r2,di e2 + d2ei)x(r1 + 2r2,dlel + eldl)

if and only if dx e2 = d2 et and dt e\ = e, d\
if and only if et = dy d2

 1 e2 and e\ = e2 d2,
if and only if ex = fi^ and e2 = d2 or ey = e2= 0.

Gathering together these pieces of information on centralizers we have Theorem 4.1.

PROOF OF THEOREM. 4.2. The proof will be by induction on n. First we set up some
notation. Let Pj be the parabolic subgroup of G associated with J = IT — {r2}. Then,
if necessary, by Barry (1977), Theorem 3.13 we have S, = MxN where M =
<*(/-,), *(-/•,)>£.4,(</) and N = (X(r)\re<3>KysBn_2(q) where K = n -{ r , , / - 2 } .

Now £/, = (X(r)\r^r2y and [t/,, t/,] = X(r0) where r0 = ' i +2/-2 + . . . +2rn is the
highest root. However, since q is even

Z(£/,) = (X(r2 + r3 + ... + /•„), Z(r, + r2 + ... + rn),X(r0)y.

Let V = Uj from now on. M x N acts on V by right conjugation and by Barry
(1977), Theorem 3.13 we have

*7f> ^ ]= V{A, l,Ai)(8> W as an A/xA'-module

^ H'® ff as an iV-module,

where J f = K(5,n-2,A,) can be identified with (X(r)\r^r2, r ^ r , > .
LetA'= X(ri)and Y = <Jr(r)|reO^>. Then A'x yeSyl2(A/x A') and t/ =

Let <p be the natural epimorphism of U on i//K and ' that of V on Vj[V, V].

LEMMA 4.4. Ler CeAb(K). Then \C\ =qZn~l.
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PROOF. Firstly we observe that Z(V)^C. Now V = V/Z(V) can be made into a
vector space over F and indeed Fcan be equipped with a non-degenerate alternating
bilinear form ( , ) as follows:

x(r0, (^1.^2)) = [i>i»i>2] where J51,t52e V.

The non-degeneracy is assured by our factoring out by Z( V).
Now it is clear, that for W a subgroup of V, that W is abelain if and only if W

is contained in a totally isotropic subspace of V. The maximum dimension of such
a subspace is In — 4 since \V\ = q*"~8. Therefore W abelian implies| W | <<72""4

and so | W\ ^q2"'1. In fact abelian subgroups of V of this order exist, for example,
(X(r)\r^r2 + ...+/•„>. Hence Lemma 4.4 holds.

One notes that Lemma 3.3 applies in the present context even though Y, W, V\
[V, V] et cetera have changed meaning.

Let A e Ab(U). Then \A\ >q6 = \B\. Also (A)<p = A^XxY = Z(rx) x X(r3) and
\A\ = |y4j| |y4nK|. SupposexyeA1 withxeX,ye Fand x^ 1. Then by Lemma 3.3
we get dim Cy(xy)*i dim W = 3. Therefore \AnV\ ^q*. Now \A\ ^q6 forces \Ay\ =
q2 and hence ^ , = 1 x 7 . But then Cy-iA^ = (XXr^+ri + rs), X'(r1+r2 + 2r3)}.
This implies that \AnV\^q3 and |^4|<?5 which is a contradiction. Therefore
A^ < Y and order arguments force equality. The preimage Vx = (X(r)\r^r2 + r3y
of CviAi) in V is an element of Ab(F). As in previous sections we prove
A = Vt Y = B to conclude the case of n = 3.

Assume now that Theorem 4.2 is true for any integer k such that 3 < k < n and we
deal with £/eSyl2 (£„(?)). Let AeAb(U). Then | ^ | ^ | 5 | =g"<»+>1/2 and (A)<p =

Y. By induction y has a bound ^("~1)(""2)/2 on abelian subgroups and so

Suppose xyeAi, with xeX, ye Yand x# 1. Then by Lemma 3.3, dim Cv.(xy)^
dim ^ = 2 / 1 - 3 and so MnK| ^ 2 " - 2 . Now

implies |y4,| = qr<"-2)<"-1)/2 + 1
) which in turn implies/1, eAb(Xx Y) and so Ax =

XxE where .EeAb(y). Induction and Theorem 4.1 provide the possibilities
for E and by an easy calculation one finds that in each case |Cv-(y4,)| Kq"'1.
This gives \AnV\^q" and so |^ | ^ 9 ( " - 1 ) ( " - 2 ) / 2 + 1 .9n<^1 <"+ 1 ) / 2 sincen^3. Wehave
arrived at a contradiction and so A, ^ Y.

An order calculation forces Ax e Ab(t/). Again by induction and Theorem 4.1 we
have Al — (X(r)\re<5>+

K, r~^rn) if n ^ 5 , A1 is one of £ „ / = 1,2,3 if« = 4andqi = 2,
while A1 is one of Et,i = 1,2, if n = 4 and <7 > 2 where

and
£3 = <x(r3,t)x(u,t),
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One checks that \CV.(E,)\ sjg4 if n = 4 and / = 2 or 3. Hence \Ar\V\ ^qs and
\A\ ^q8 which is a contradiction. In all cases then Ax = (X{r)\r e<b\, r^rn}. The
preimage Kt in Kof Cy^A^ = (X(r)\r^r2 + r3 + ...+ray is an element of Ab(f/).
In our usual fashion then we get A = Ax V± = B. This completes the proof of
Theorem 4.2.

PROOF OF COROLLARY 4.3. Since q is even, Cn(q)^Bn(q) and so a 2-Sylow subgroup
of Cn(q) is isomorphic to a 2-Sylow subgroup of Bn(q). If n ̂  3 Theorem 4.2 guarantees
then a 2-Sylow subgroup of Bn(q) and hence of Cn(q) has a unique abelian subgroup
of largest order ^"<>'+1)/2. Now B — <Ar(r)|r^rn> is an abelian subgroup of order
^(n+D/2 i n t h e 2-Sylow subgroup U of Cn(q). Hence Ab(t/) = {£}.

5. The solution for Bn(q), q odd and n ̂  3

Let q = pm, /» an odd prime and m > 1. Before we state the main results of this
section we need to define some abelian subgroups of U. Firstly let B = <A"(r)|r #s r^.

Next for (a1,o2,...,aB)6F"-{0} we define

, a2). ..,an) = (x(rn,a1t)x(rH_1 + rma2t)...x(r1+r2 + ...+rn,an t),

For (ai,a2, ••• ,an_l)&Fn~i — {0} we define

...+rn,an_1t), X(r),

, teF}.

Note that B(aua2,..., an) = B(bub2, ...,bn) if and only if there exists usF* with
(aua2, ...,an) = i4J>l,b2, •••,bn). A similar remark holds for the groups C(ax,a2,
• ••,oB-i).

THEOREM 5.1. Let G = B3(q). Then
(a) Ab(V) = {B} and \B\ = ^5,
(b) if A is an abelian subgroup of U not contained in B, then \A\^q*.

THEOREM 5.2. Let G = B^q). Then

Ab(tf) = {B, B(ai,a2,a3,aA), C(bub2,b3)«'<-»\

(c1,a2,fl3,a4)9fc(0,0,0,0), (ft1,fc2,63)9S(0,0,0), teF}.

Hence any element of Ab(U) has order q1.

THEOREM 5.3. Let G = Bn(q) where n^5. Then Ab(U) = {B(aua2, ...,an),
C(bub2,...,bn-ir

r^(aua2,...,an)eF"-{0},(b1,l>2,...,bn-1)eF»-1-{0}, teF}.
Hence any element of Ab(C/) has order ^ O
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The notation we set up in Section 4 at the beginning of the proof of Theorem 2.4
will apply in this section also. However here [V,V]=Z(V) — X(r0) since we are
in odd characteristic. As a consequence of this we record

LEMMA 5.4. //CeAb(K), then \C\ = q2n~2.

LEMMA 5.5. / /ye Y, y¥= 1, then dimCw(y)<dim W-2 = 2n- 1.

PROOF. This is exactly the same as the proof of Lemma 3.14.
One notes that Lemma 3.3 applies to this section as it did to section 4.

PROOF OF THEOREM 5.1. (a) Here Y = X(r3). Let A e Ab(t/). Then \A\ 2 \B\ = q5.
Since by Lemma 5.4 |/4nK| ^q* we get that \A^\ ^q2 where At = (A)<p. Suppose

i where xeX, ye Kand x,y£\. Then by Lemma 3.3

dim Cv.(xy) = dimker^^— I)2.

Now y = x(r3, t), t*0, and k e r ^ - 1 ) 2 # W since x(r2, \)(y-l)2/0.

([[x(r2,1), x(r3, t)], x{r3, t)] = [x(r2 + r3, ± t)x(r2 + 2r3, ± t2),

x(r3,t)] = x(r2 + 2r3, ±2/2)#l

since q is odd. The signs here depend only on structure constants). Therefore
dimker^(j- l)2<2. It follows that \AnV\ <q3. \A\^qs implies Ax = Xx Y. But
Cv,(Xx Y) = A"(r,+r2+2r3) giving \Ar\V\^q2 and |^|^^4—a contradiction.
Therefore A t < X or A1 < Y. Suppose that A, < Y and let y e Y, y / 1 . Then Cw(y) =
X(r2 + 2r3) and sodimCV0>) =2dimCw(y) = 2. Hence \AnV\ ^q3 and \A\ ^q*—a
contradiction. Hence A, ^X and now \At\^q forces Ax—X. We get A — B in our
usual fashion.

(b) Suppose A is an abelian subgroup of U such that | A \ > qA which is not contained
in B. Then by Lemma 5.4 A ̂  V. Therefore (A)(p = A i ^ 1. If A, ^ Y then |/4, | ̂  q
and |^4nK| <,q3 as in part (a) giving the contradiction |y4| ^^4.

Suppose now that a = x{rl,t1)x{r3,t3)eAi, tu f3#0. Then dimCK(a) = 2
sincedimker^(x(r3,/3)-l)2 = 2. Therefore \AnV\ ^q3. Now A t ^(x(rut)x(r3,ct)\
teF, c = t3ti

1} leads to \A\ ^q* and a contradiction. Suppose then that av =
x(rud)x(r3bd)eA1 with d¥=0, b^c. Then CK'(/4,)<CK.(a)nCK.(ai). But

Cy.(a) = (x'(ri+r2 + r3,t)x'(r2 + 2r3,±2ct), X'(rt +r2 + 2r3)\teF},

where the sign depends only on the structure constants. Therefore dim C
which implies \AnV\^q2 and |/4|^94—a contradiction. The supposition that
0i = x(r3,d)eAi with c/#0 meets a similar fate. This leaves Ax ^X.

N o w Cy,(Ai) = <X'(r)\r^rl+r2> a n d so An,V^{X(r)\r^rt +r2}. \At\^q and

\A\ >q* imply |^nK| >q3. Let a, Gy4,. Then ar veA for some re K Let v = vx w
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where t>, e(X(r)\r^r2, r~%rxy and we<Ar(r)|r^r1+r2>. Let v2eAc\V. Nowl =
[aivlw,v2] = [vi,v2] for all v2eAnV. If Vl = <Ar(r)|r^r1+r2> then Vx is the
natural vector space for <A'(r)|r e <PL} ̂  52(g) where L = {r2, r3}. Now dim C V ^ ) > 3
since \An V\ > q3. By exactly the same argument as that of Lemma 5.5 dim CVl(vi) > 3
forces »t = 1. Hence ^ s£ B—a contradiction. This completes the proof of Theorem
5.1.

PROOF OF THEOREM 5.2. The proof will consist of a long series of lemmas. Firstly

y = (X(r3), X(rA), *(r3 + r4), X(

LEMMA. 5.6. The representatives of the conjugacy classes of Y are as follows:
(a) 1, one class,
(b) x(r3 + 2r4,a), a # 0 , q-\ classes,
(c) x(r3,b), b=£0,q—l classes,
(d) x(r3 + r4,c), c^O, q-\ classes,
(e) x(rA,d), */#0, q— 1 classes,
(f) x(r3) fe) x(r3 + 2r4, a), a, fc^0, (q-1)2 ctoje5,
(g) x(r3,b)x(u,d), b,d^\,(q-1)2 ctojej.

PROOF. This can be gleaned from a reading of Srinavasan (1968) or one can compute
the result by hand.

Let AeAb(U). Then M|^|fi| =q\ As usual (A)<p = Al^Xx Y and \A\ =
l^il \An V\. By Theorem 2.5 Y has a unique abelian subgroup of largest order q3.
Hence \A^\ ^q*. On the other hand, by Lemma 5.4 we have | / lnK| s£<76 so that

LEMMA. 5.7. Ax < Y or Ax = X.

PROOF. If At < X then \A^q forces yl, = X. We will suppose that A^ is neither
contained in X nor in y and obtain a contradiction. Then there exists x,y¥= 1 s.t.
JCGX, j e Y and xy&A^.

Suppose q2^\A!\>q. We claim that | F n ^ 11 > 1. This we see by considering the
projection epimorphism of Xx Y onto X. Restricting to Au this has kernel YnAu

image contained in X and so | ̂ n ^ l \X\ > \At\. Therefore | Kn^!! > |y4i|/|Jf| > 1
since \A^\ >q. Let j t e YnAl, yt # 1. Now

— 2 = 3 in this case.

Here we have used both Lemma 3.3 and Lemma 5.5. Thus \An V\ ^q* and \A\ ^q6

which is a contradiction.
Suppose now that q*^\A1\>q2. Using the projection of A'x Y on X we get that

\AlnY\>q. Now \(AlnY)xCw(A1nY)\^q4 by Theorem 5.1. |^,ny|>?and
>Y) a vector space over F force \Cw(A1nY)\^q2. Now xyeAx and
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imply dim CV-C4 x) s£ dim CVO^n 7) < 2. Hence \AnV\^q3 and so
Mil =<f- This forces A± = XxE where E is the unique element of Ab(T). One
checks that |CV<(.<4i)| = q in this case and this leads us to a contradiction.

We are left with Mil =q. The assumption is still that xy e A x, x e X, y e Y, x, y # 1.
y cannot be conjugate to x(r3 + r4, c), x(r4, d) or jc(r3,6) x(r4, </), 6, c, d^0, since in
each case dimker^O?— l)2<dim W= 5. This implies |CV.(J4I)| ^1* which leads to
\AnV\^q5 and Ml <<?6—a contradiction.

Suppose j is conjugate in Y to x(r3, b),b^0. In fact we may syppose without loss
of generality for what follows that y — x(r3, b). Recall that the long roots of a system
of type Bn form a system of type £>„. Now the preimage V\ in Kof Cv.{xy) is a direct
product of X(r1+r2 + r3 + r4) with Z>4—contribution of order q5 as in Lemma 3.6.
This D4—contribution was found to be non-abelian for odd q in the proof of Lemma
3.13. Therefore AnV is properly contained in Kandso|j4nK| <q6. Thus|/4| <q7—a
contradiction. The same argument works for y conjugate to x(r3+2r4,a), a#0 or
y conjugate to x(r3, b) x{r3 + 2r4, a), a,b^0. This completes the proof of Lemma 5.7.

We suppose until further notice that Ax ^ Yand so q< \AX\ ^q3, \AnV\^q6 and

LEMMA 5.8. l^ l = q or \A^\ = q2 are the only possibilities.

PROOF. Suppose q2 ̂  \A^ >q. Then by Theorem 5.1(b) and the fact that Cw{At)
is a vector space over F, ICV^)! ^q2. This implies |Cv"(^4i)| ^q* which results in
\AnV\^q5. Now \A\^q7 forces \At\ =q2.

Suppose instead that q3^\A1\>q2. Again by Theorem 5.1(b) and the fact that
CW{A!) is a vector space over Fwe get | CW(A,) | ̂  q, Thus \A n V\ < q3 and so \A \ ^ q6—
a contradiction. Hence the lemma.

LEMMA 5.9. Let Dx = (X(r)\r^r3, r%r2} and D2 = (X(r)\r^r4, r%r2). Then
A^D! or A

PROOF. Suppose not, then there exists y^&A^ such that yx is conjugate y =
x(r3,b)x(r4,d), b,d*0. Then \Cw(yx)\ = \Cw(y)\ = q. This implies \AnV\^q2

which leads to a contradiction. Hence the lemma.

LEMMA 5.10. If x(r3,b)eA! with 6#0, then XirJ^Ai.

PROOF. NOW x(r3,b)eDt and so by Lemma 5.9 Ax *£ Dt. One checks that if y eDx

then y commutes with the preimage in V of Cv-(y). Since CK.(^j) =nyeAlCy(y)
we have [Au AnV]= 1. But \A\ = \At\ \AnV\ implies that At x(AnV)eAb(U).
If x = x(r3, t)$A for some / ̂  0, consider the goup (x, A t x (Ar\ F)>. Then [x, A t] = 1
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since I>i is abelian and [x, AnV] = Isince[x(r3,b), Ar\V] = l .ThusO:,^! x(AnV)y
is an abelian group of larger order than A—contradiction. This completes the proof
of Lemma 5.10.

LEMMA 5.11. If \Ax\ = q then Ay can only be one of the following:

(a) X(r3 + 2rJ,

(b) X(r3),
(c) a conjugate of X(r3) by x(rA, t) for tsF*.

PROOF. If yeAt and y conjugate to x(r4,d), d / 0 , we can suppose without loss
of generality for what follows that y = x{r^,d). Then the preimage Vx in VofCv/(y) =

r1 + r 2 ) , J r ( r 2 ) ,* ( i ) |Or 2 + r3 + 2r4>. Clearly [VuVt] = X(r0) while Z(F.) =
r1+r2 + r3 + 2rA), X(r2 + r3 + 2rA), X(r0)}. Reasoning similar to that of Lemma

4.4 gives that Ce Ab(K,) implies \C\ = q5. Therefore \AnV\ ^q5 and so \A\ <?6—a
contradiction. A similar argument rules out the case of y e A t conjugate to x{r3 + r4, c),

If y e A x and y is conjugate to x(r3, b) x(r3 + 2r4, a), a, b # 0 we may assume without
loss of generality that y = x(r3,b)x{r3 + 2r4.,a). The preimage V2 in V of

Cv.(y) = <x(rt +r2 + r3,ti)x(r1+r2 + r3 + 2r4, ±ctx), X{rx +r2 + r3 + r4),

x(r2 + r3, t2) x(r2 + r3 + 2r4, ± ct2), X(r2 + r3 + r4),

t1,t2eF,c = ab'1},

where the signs depend on the structure constants. Clearly [V2, V2] = X(r0). Further
since the long roots of a system of type Bn form a system of type Dn, the proof
of Lemma 3.13 guarantees that x(r1+r2 + r3,tl)x(r1+r2 + r3 + 2r4., +c?,) and
x(r2+r3,t2)x(r2 + r3 + 2r4., ±ct2) do not commute thus ensuring that Z(V2) =
<Ar(5)|j^r2 + 2r3 + 2r4>. As for Vu C6 Ab(K2) implies \C\ = q5. This leads to \A\^
q6—a contradiction.

If ye A t a n d j is conjugate to x{r3,b), fc#0, we may assume^ = x(r3,b). Lemma
5.10 forces X(r3)^Ai and \At\ = qforces equality. Any element conjugate in Yto
x(r3 + 2rA,a) is of course equal to x(r3 + 2r4,a) since x(r3+2r4,a)sZ(Y). If
x{r3 + 2r4,a)e At for a^O, then by an argument similar to that of Lemma 5.10 we
get X(r3 + 2r4) < A j and | A, | = q gives equality. By Lemma 5.9 we have considered
all the elements of Y to which an element of A± could be conjugate and so we have
proved the lemma.

LEMMA 5.12. / / l ^ l = q2 then Ay can only be one of the following:
(a) (X{r3 + rA\ X{r3 + 2rA)y,
(b) <x(r4,/)x(r3 + r4,aO, X(r3 + 2r4)\teF} for some aeF,
(c) <X{r3),X(r3 + u)y,
(d) a conjugate of (X(r3), X(r3 + rA)} by x(r4, t) for some teF*.

4
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PROOF, (a) and (b) list all abelian subgroups of order q2 in D2. So we concentrate
on A^Di. Suppose y = x(r3,b)eA1 for £>#0. Then by Lemma 5.10 we have
X(r3)^Ai. Suppose now that yx — x(r3 + 2r4,a)eAly a # 0 . The preimage Vx in
V of Cv.(y)nCv.(y) = (X(ri+r2 + r3 + r4), X(r2 + r3 + r4), X(s)\s>r2 + 2r3 + 2r4>.
Clearly [Vu F,] = X(r0) while Z(Kj) = <X(s)\s^r2 + 2r3 + 2r4}. Reasoning similar
to that of Lemma 4.4 gives that CeAb^Vi) implies \C\ = q*. This is not suf-
ficiently large since | ^ , | = q2 forces \AnV\~2-q5. T h u s j e ^ implies yt $AX.

Suppose thaty andy2 = x(r3 + r4,c)x(r3 + 2r4,a)sAua,c^0. Then the preimage
V2 in Kof Cy(y)nCy,(y2) equals

±dtJ2), Z(Vt),

where d = ac~x and the signs depend only on the structure constants. Now Z( V2) =
Z(Ki) and [V2, V2] = [Vu KJ imply as above that if ysAx then >>2<Mi- Therefore
if y e A, then A t < <.X(r3), X(r3 + r4)> and | A, | = q2 forces equality. If an element of
A1 is conjugate in Y to y then Al is conjugate to <AXr3), X(r3 + r4)} by the same
element. If an element of AY is conjugate in Y to x(r3 + 2r4, a), a # 0 , (and hence
equal), a similar argument gives At = <Ar(/-3 + r4), Ar(/-3 + 2r4)>.

We are reduced to considering^ ^Dt containing no conjugates of x{r3, b), b #0 ,
or of x(r3 + 2rA,a),a#0. One notes since, for a^O,x(r3 + 2r4,d)^A^ and since
\Ai\=q2 then A j s£ <A"(r3 + u), X(r3 + 2r4)> = Ys. Since all F-conjugates of
^ 3 + /-4»c).c # 0, are contained in Kj, there exists an element y e A t with >» conjugate
to x(r3,b)x(r3 + 2r4, a), a, 6 # 0 . As usual we may assume j = x(r3,b)x(r3 + 2rAa),
and then by an argument similar to that of Lemma 5.10 we get

If x(r3,11)x(r3 + 2r4, t2) e A t with / 2 f [ ' 1 # / then jc(r3,/3)ey4! for / 3 ^ 0 which is a
contradiction. Therefore the rest of the elements of Ax must be of the form x =
x(r3, ti)x(r3 + r4, t2) x(r3 + 2r4, t3) where f 1, t2 # 0 and x is not a conjugate of x(r3, tt)
or x conjugate of x(r3 + r4, t) for some teF*. We claim that A t does in fact contain a
conjugate of x{r3 + r4, t) for some teF*. Suppose not. Then^ = x(r3, tl)x(r3 + r4, t2)
x(r3+2r4,t3)eAl for some tut2^O for otherwise \Ai\ =q2 and At^(x(r3,t)
x(r3+2r4,ft)\teF)—a contradiction. Since x(r3,t1)x(r3 + 2r4,ftl)eA1 we get that
x(r3 + r4,t2) x(r3 + 2r4, t3-ft,) e A x. This element is conjugate in Y to x(r3 + r4, t2)—a
contradiction. Hence our claim.

We now assume that x(r3 + r4, t2) e A! for 12 #0 . As before A"(r3 + r4)^Al. We can
no longer assume that x(r3, b)x(r3 + 2r4,a)eAi but only that some conjugate of it is
in A1. No element of the form x(r3 +r4,t) x(r3 + 2r4, u)eAt where u # 0 since then we
get x(r3 + 2r4,u)eAt which is in contradiction to our assumption. Further
A!^(X(r3), X(r3 + r4)} since Ax contains no element conjugate to x(r3,b),6/0.
Therefore A, contains an element of the form j>3 = x(r3,t)x(r3 + r4, u)x(r3 + 2r4, v)
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where t,u^0 a n d y 3 is not a conjugate of x(r3, t). But theny 2 = x(r3, t)x(r3 + 2r4, v)

eAt. Let yy = x(r3 + rA., t2). Then the preimage V3 of Cv(yi)nCv(y2) in

V = (x(rt + r2 + r3, ut) x(r± +r2 + r3 + 2r4, ± bu,), X(s),

3,u2) x(r2 + r3 + 2r4 )±bu2)\s^r2 + 2r3 + 2r4, uuu2eF, b = vt'1},

where the signs depend only on the structure constants. Now q odd forces V3 non-

abelian as in the proof of Lemma 3.13. Hence | j 4 n F | <qs which leads to \A\ <q7.

With this final contradiction Lemma 5.12 is proved.

In Lemmas 5.7, 5.11 and 5.12 we have limited the possibilities for A t . We will now

see that all of these possiblities do occur. We ought perhaps, at this stage, to show

that AeAb(U) implies \A\ = q1 by calculating and examining the preimage of

Cv.(Ai) for each of the possible choices for A± but this will become apparent

anyway as we determine the possibilities for A.

UAl = Z then ,4 = B without further ado. Suppose then that At = X(r3). Then the

preimage Kt of CK-04i) in V equals

Now Z(Vl) = <.X(r1+r2 + r3),X(r2 + r3),X(r)\r>r2 + 2r3 + 2r4.}. Therefore if
i) then V2 is of the form

for some (62,63)^(0,0). Order considerations force AnV'= V2 for some (b2,b3)^=
(0,0) and the usual argument gives A = A^V2. A then turns out to be C(0,b2,b3).
If Ax = Z(r3)

1(r-"> then A = C(0,b2,b3)
xir-u\

If A! = X{r3 + 2r4) we get in similar fashion that A = B(0,0, a3, a4). Suppose now
that Ax = (X(r3), X(r3+r4)y. Then the preimage V3 of CK.(/4t) in Vequals

<*(r, + r2 + r3), X(r2 + r3), X(r)\r> r2 + 2r3

V3 is abelian and |K3| =q5. Now since AnV^V3 and since \Ay\ =q2 forces
\An V\ ~^q5 we get equality.

Let aeA and veAnV = V3. Then a = alvl where ot eA and vx e V. Then 1 =
[a,v] = [fli.p]"' [»„»] = [vuv] since [Au V3] = 1. Thus

which in turn implies

Vi = x(r2 + r 3 + r4, / J x(r, + r 3 + r3 + u, t2) v2

where v2eAnV. Let bub2tA where

and
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where w1,w2eAnVandt2,«2/0. Then since [bltb2] = lwegetOi = ctanda2 = c2.
Again let b1,b2eA where b2 is as above and

where w^eAnV. Since [bub2] = 1 we get t2 = t3 = 0. Therefore A =
If ^ i = <X(r3), *(r3 + r4)>*<v<> then A = C( l ) a i , a 2 )^ -" . If ^ =

Ar(r3 + 2r4)> then A = 5(0,I,a3,a4) and finally if ^ = {x{r^,t)x{r3 + rA,at),
X(r3+2r^)\teF> then .4 = B(l,a,a3,a4). This completes the proof of Theorem 5.2.

PROOF OF THEOREM 5.3. We use induction on n. Consider firstly n = 5. Let
AeAb(U). Then \A\^\B(ai,a2,...,a5)\ =q11. As usual (A)<p = A1^Xx Y and
\A\ = l^il |.4nK|. Since F6Sylp(Af) where N^B3(q) we get I^J Hq6 by Theorem
5.1. On the other hand by Lemma 5.4 \AnV\^q8 and so l^ l ~^q3.

LEMMA 5.13. At^ Y.

PROOF. Suppose not. Then there exists xeX, ye Y such that x+1 and xyeAt.
Consider the case q6'^\A1\^q5. The restriction of the projection of Xx Ton A1 to
At has kernel ^ n Y, and image <Jfand so \Atn Y\ \X\ ̂  \At\ giving

By Theorem S2\{AYn Y)xCw(A1n Y\ ̂ q1 and so \Cw(A!r\Y)\ ^q3. Now xyeAu

AinY^ Yand Lemma3.3 give dim Cv(A{) ^dim C^C^^ F)^ 3. Hence | / lnF| <^*
leading to |y4|̂ <710—a contradiction. A consideration of the cases qs> \Ax\ ~zq*
and q*> \Ar\ ~^q3 leads in each case to the contradiction \A\ <q10. Hence A^ ^ Y.

LEMMA 5.14. The possibilities for A t are:

(a) B(aua2,a3), (a1,a2,a3)#(0,0,0),
(b) C(aua2), (a1)a2)#(0,0, or a conjugate by x(r5,t),
(c) 5 1 = <X(r)|r^r4 + 2r5)r>r2>,
(d) Ct = (X(r)\r = rA, r3 + rA or r3 + 2r4 + 2r5> or a conjugate by x(rs,t); where

B(aua2,a3) = (x(rs,a1t)x(r4. + rs,a2t)x(r3 + r

X(s)\s>u + 2r5,s%r2, teF}
and

C(aua2) = <x(r4 + r5,a104'-3 + '"4 + ''5,a2

s = r4, /-3 + U or r3 + 2r4 + 2rs>

PROOF. Since ^ ^ F w e have qs^\Al\^q3. Consider the case q5 > \A t \ > qA. By
Theorem 5.2 |^! x CW{AX)\ ^q1. This implies ICVG4JI ^q2 since C^/l^is a vector
space over F. Hence |CK-(Xl,)|<^* and \Ar\V\^qs leading to the contradiction
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Ml<910- The case q*>\A1\>q3 leads in similar fashion to the contradiction
\A\ <q11. Hence |̂ 4 |̂ = ?4or Mil =q3.

Suppose Mil = q*. Then \CW(AY)\ ^q3. If ICVC^)! <?3 then \CW(A!)\ <q2which
implies \AnV\^qs and M|<<79—a contradiction. Hence \Cw(A1)\=q3 and
Mi x CW{AX)\ = q1. Theorem 5.2 now gives Ax as (a) or (b).

SupposeMil =?3.Thenasabove|CH,(^1)| = qAaad\A1xCw(A1)\ =q\ Theorem
5.2 again gives Ay as (c) or (d). This completes the proof of Lemma 5.14.

If At = B(ai,a2,a3), then A = B(al,a2,a3,a4.,a4) for some aA,a5eF; if
A1 = C{al,a2y

clr'-'\ then /4 = C^.az .as .a^ 1 1 " 0 for some a3,a^eF; if
Al=Bi, then ^ = 5(0,0,0,a4)a5) where (a4, a5) # (0,0); if ^x = Cf(l>s>0, then
y< = C(0,0,a3,a4)

x(r5>l) for (a3,a4)7^(0,0). All these conclusions are arrived at by
calculations similar to those at the end of Theorem 5.2.

Hence Theorem 5.3 is true for n = 5 and we now assume it true for any integer
r where 5^r<n and consider the case of G = Bn(q). If AeKb{U) then
\A\>\B(ai,a2, ...,an)\ = q-"-^2 + 1, (A)<p = A^Xx Y and \A\ = \A,\ \AnV\. By
induction and Theorem 5.2 CeAb(Y) implies \C\ =?<»-2><»-3>/2+i. Therefore
|^iN9( n-2 ) ( n - 3 ) / 2 + 2 . On the other hand by Lemma 5.4 \Ar\V\^q2"-2 and so
Mil

LEMMA 5.15. ^ t < Y.

PROOF. Suppose not. Then there exists xeX, ye Y such that x^ 1 and
We claim that there exists j t G T n ^ , j , # 1. We have proved similar claims before
and we take this claim as true without further ado. Now xy, y-^eA^ implies
dimCV.(.41)^dimCV(j'i)<dim W— 2 = 2n — 5 using Lemma 3.3 and Lemma 5.5
Thus \AnV\^q2"-4.

Now Ml ̂ ^"("-1>/2 + 1 gives Mil = 9(n-2)<I-3)/2 + 2 which implies/^ =XxE with
Ee Ab (Y). For each possibility for E supplied by Theorem 5.2 and induction we find
dimCv.(XxE)<«-2. This gives MnF| ^qn~i and so Ml ^<"-2><—;»/2 + V " 1 =
9("J"3B+8)/2<^I("-1)/2 + 1 since n^6. With this contradiction Ax ^ Y is forced.

Now Ay«: F implies ^ o - w - w ^ Mil <9(»-2)<"-3)/2 + 1.

LEMMA. 5.16. The possibilities for Ax are:

(a) 5(a1)a2,...,an_2)/or(a1)a2,...,an_2)^(0,0,...,0),
(b) CCaj.az, ...,aB_3) for (a!,a2, ...,an_3)/(0,0, ...,0) or a conjugate by x(rn,t),
(c) 51=<Z(r)|r^/-n_1+2rB,r^r2>)

(d) Cx =<Ar(r), A'C^lr^r,.!, r^rB,5^rB_2+2rn_1 + 2rB,r,J^r2> or a conjugate
by x(rn, t) where the definitions of B(ai,a2, ...,an_2) andC{aua2, ...,an_2) are
obvious.
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PROOF. Thecase^("~2K"~3)/2< l^ l <qr(""2)("~3)/2+1 isruledoutinsimilarfashion
to the case q3 < \A±\ <q* in Lemma 5.14.

Suppose |y4i| = qi«-wn-3)/2+i Then by induction or Theorem 5.2, \At x Cw(At)\
<9(n-iK»-2)/2+i a nd so I C ^ ^ I <q"~2- |CV(A)| <q"~2 leads to a contradiction as
in Lemma 5.14. Thus \A^y.Cw{Ax)\ =9<«-i><»-«/2+i. Induction or Theorem 5.2
gives Ax is one of (a) or (b). In similar fashion 1^1 = ^»-2)(»-3)/* gives Ax is one
(c) or (d). This completes the proof of Lemma 5.16.

Exactly the same argument as in the case n = 5 completes the picture and proves
Theorem 5.3.

6. The Thompson subgroup of U

We define the Thompson subgroup J(V) of U as <A\AeAb(U)y.

THEOREM 6.1.

(a) / / G = A2n+M then J(U) = <Z(r)|r^B+1>,
(b) ifG = A2n(q) then J{U) = <X(r)\r>rn or r>rn+1>,
(c) if G = B2(2

m) then J(U) = U,
(d) if G = B2(q), q odd, then J(U) = <JT(r)|r>r1>,
(e) if G = Bn(2

m), n>3, then J(U) = <X(r)|r>rB>,
(f) ifG = B3(q), q odd, then J(U) = <.X{r)\r^ri\
(g) ifG = B^q), q odd, then J(U) = <JT(r)|r>r,, r3 or r4>,
(h) if G = Bn(q), q odd andn^5, then J(U) = <AT(r)|r>rII_1 or r>rn>,
(i) if G = CM, 9 oddandn>3, then J(U) = (X(r)\r>rHy,
G) if G = DM, then J(U) = <X(r)\r>rlt r3 or r4>,
(k) ifG = DM, n>5, then J(U) = iX(r)\r^rn_1 or r>rn\

PROOF. By inspection of the results in Sections 2-5.

COROLLARY. 6.2. IfG is of type An, Bn, Cn or Dn then J(U) = (A\A < U, A abelian
of maximal rank}.

PROOF. Ab(C/) in all cases contains elementary abelian subgroups of U. Thus if
A^U,A abelian of maximal rank, then AeAb(U). Inspection of the results of
Sections 2-5 then completes the proof.

Some have defined J(U) as (A \A < U, A abelian of maximal rank) and so Corollory
6.2 assures us that these two definitions yield the same subgroup for the Chevalley
groups under consideration here.
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7. Conclusion

We have not considered the case of the twisted Chevalley groups 2An(q
2) and

2Dn(q
2) in this paper. The methods of Section 2 can be used to determine Ab(£/) if

G = 2An+1(q
2). In this case |Ab(£/)| = 1. If G = 2Dn(2

2m) the methods of Section4

work even though | Ab (U) | # 1. However the solutions for 2A2n(q
2), any #, and 2Dn(q

2),

q odd, demand the introduction of more geometrical methods. Because of this and

the fact that the inclusion of the twisted Chevalley groups would mean even more

notation we felt that these cases should be presented in a separate paper.
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